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Abstract

The identification of the parameters of several constitutive laws is performed

with the Integrated Digital Image Correlation (IDIC) technique in a biaxial ex-

periment for a cruciform specimen made of stainless steel. The sought material

parameters are assessed with the contribution of both reaction forces (from load

sensors) and displacement fields (measured via digital image correlation). For

each constitutive law a global residual quantifying the model error is assessed.

Keywords: Digital Image Correlation (DIC), Full field measurements,

Identification, Constitutive law

1. Introduction

The identification and validation of constitutive models are crucial issues for

mechanical design. Challenges such as optimizing structures with respect to
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mass or using innovative materials, e.g., high performance steels or composite

materials push toward complex and multiaxial constitutive models. However,

standard tests [1] related to the identification of material parameters require

sample geometries for which the mechanical response must be homogeneous

and uniaxial. Such limitations lead to numerous elementary tests even though

more complex (i.e., multiaxial) tests individually provide much more data. To

characterize the latter ones, inverse identification methods based on full field

measurements [2, 3] are developed. Since Hill [4] proposed to account for

anisotropic plasticity, several identification strategies have been proposed. After

briefly reviewing some of them, the paper seeks to solve the problematic of the

identification of elastoplastic laws with Integrated Digital Image Correlation

(IDIC).

First the simplest identification is performed by tuning the constitutive pa-

rameters with uniaxial strain-stress curves and least-squares fit [1]. However,

this strategy does not provide internal checks of the accuracy of the resultant

material parameters. Furthermore, it is assumed that the sample geometry

behaves under statically determinate stress states [5]. This hypothesis is in op-

position with the observed mechanical behaviors when complex and multiaxial

experiments are performed.

Second approximately fifteen years after the appearance of the Finite Ele-

ment Method, Kavanagh and Clough [6] proposed the Finite Element Model

Updating (FEMU) technique. They focused their work on the characterization

of nonlinear elastic materials. FEMU consists of minimizing the sum of squared
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residuals, a residual being the difference between the numerical and experimen-

tal displacement fields (i.e., FEMU-U), strain data (i.e., FEMU-ε), load levels

(i.e., FEMU-F), or combinations of the previous quantities (e.g., FEMU-UF) [3].

This technique also provided new routes to tackle two main issues, namely, i)

the internal validation of the identified parameters, and ii) the use of statically

indeterminate stress conditions.

Some authors proposed strategies aiming to assess elastoplastic properties of

aluminium alloys [7] and metals [8] while combining experimental load measure-

ments and FE simulations. However, full-field measurement techniques were not

used and only reaction forces were considered to solve the identification problem.

The advent of DIC as an experimental tool [9] has allowed elastic properties

to be determined [10, 11, 12]. New strategies have been designed to tackle the

increasing number of experimental data. Avril et al. [2] summarize several tech-

niques based on full-field measurements to identify isotropic linear elastic prop-

erties. Some of these identification strategies have been extended to elastoplas-

ticity and nonlinear mechanical behaviors. Lecompte et al. [13] identified Hill’s

parameters [4] with the FEMU technique under biaxial experiments. Conversely,

Grédiac and Pierron [14] have used the virtual fields method. The constitutive

error gap was also extended to plasticity [15]. Haddadi and Belhabib [16] have

investigated the characterization of a hardening law on a heterogenous tensile

test using the weighted-FEMU technique with both reaction force and strain

field. Réthoré et al. [17] considered quasi-3D measurements with stereo digital

image correlation to perform the identification of elasto-plastic constitutive pa-
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rameters using the integrated digital image correlation technique. Schmaltz et

al. [18] made use of stereo-DIC measurements and FEMU-U to identify a plastic

law for four different biaxial cross-shaped geometries.

All the previous methods use as input the measured displacement fields or

derived strain fields. However, these kinematic fields may be seen as parameter-

ized by the sought material properties. Such observation enables the mechanical

identification to be integrated within the digital image correlation procedure.

This method is called Integrated-DIC [11, 19, 20]. The latter is a global DIC

technique that relies on a mechanically driven choice for the kinematic basis.

The measurement and identification of the sought parameters is thus performed

in a single step. Since the identification is formulated at the pixel level, the

process becomes mesh independent, provided the latter allows for a faithful

description of the displacement fields as obtained from the mechanical mod-

elling [21].

The same type of integrated strategy will be followed herein. In the ap-

proach followed herein, a commercial FE package will be used in a non-intrusive

way to estimate the displacement and load sensitivities to the sought material

parameters. Consequently, any built-in or user-defined material model can be

probed. This type of implementation makes the present work very generic. Con-

sequently different constitutive postulates will be assessed hereafter (e.g., linear

and nonlinear kinematic hardening) to discuss model errors. The analysis will

deal with a cruciform specimen in a biaxial experiment under load-controlled

mode. The testing machine is a compact (2000 cm3) biaxial device. The selected
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material is a precipitation-hardened stainless steel (i.e., 17-7 PH grade [22]). It

is used thanks to its excellent mechanical properties with respect to corrosion

and fatigue [23, 24]. One key aspect of the present study is related to the small

(i.e., sub-millimetric) thickness of the tested sheet since it will be used to make

bellows.

The paper is divided into three main sections. In Section 2, the experi-

mental tools and the theoretical background are presented. Integrated Digital

Image Correlation (IDIC) and the chosen constitutive laws are also introduced.

Section 3 deals with the experimental procedures. The sample geometry, the

prescribed loads and the sources of uncertainties are assessed. Section 4 shows

the identification results and a discussion based upon the identification residuals

is proposed.
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2. Experimental protocol

The experimental procedure utilizes an electromechanical testing machine,

Mini-ASTREE (Figure 1), and one digital camera with a telecentric lens. The

machine prescribes arbitrary displacement and forces in two orthogonal direc-

tions, e1 and e2, with opposite actuators that can be controlled in a symmetric

fashion so that the specimen center is motionless [25]. F1 will denote the

load amplitude applied by the two coupled actuators along direction e1, and F2

for the other two coupled actuators. Biaxial compressive and tensile tests can

be run with a load range F1,2 ∈ [−2000; 2000] N. Furthermore the stroke rate

varies from 30 µm/min to 5 mm/min. 16-bit gray scale images are captured

with a pco.edge camera. The effective magnification is 13.5 µm per pixel or

74 pixel/mm.

Figure 1: Biaxial testing machine. A cross-shaped sample (center of picture)

has been positioned after being patterned for DIC purposes

The specimen is machined via Electrical Discharge Machining (EDM). Fig-
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ure 2(a) shows the sample geometry. The holes in the four arms allow for the

positioning of the sample in the grips. This geometry is different from those

analyzed by Schmaltz et al. [18]. The machining process induces very small

residual stresses in the specimen since no physical contact between the wire and

the specimen is required. The sample is machined from a 300 µm thick sheet

made of precipitation hardened stainless steel (i.e., 17-7 PH grade), itself cut

from a hot rolled 3-mm thick sheet. The chemical composition of the alloy is

shown in Table 1. To avoid deflection during machining the sheet is maintained

between two 3-mm thick aluminum sheets. The mechanical properties given by

the manufacturer are the 0.2% yield stress (σ0.2%
0 = 300 MPa) and Poisson’s

ratio (ν = 0.3). The Young’s modulus is not mentioned and its value is assumed

to be equal to E = 200 GPa, which is the value of the untreated steel.

Table 1: Chemical composition of 17-7 PH grade [22]

Composition C Mg P S Si Cr Ni Al

(wt %) 0.09 1.00 0.040 0.030 1.00 16.00 - 18.00 6.50 - 7.75 0.75 - 1.50

The loading history may influence the identification results. A so-called

triangular loading path is prescribed. Since the assessment of elastoplastic laws

with kinematic hardening postulates is one of the present objectives, a cyclic

loading history is prescribed. Figure 2(b) shows the F2 versus F1 cycles when

the load amplitude is increased by 200 N between each of them. Furthermore,

the load speed is constant and equal to Ḟ1 = Ḟ2 = 3000 N/min when different

from 0.
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This drawing is our property; it can't be reproduced or communicated without our written agreement.
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Figure 2: (a) specimen geometry (expressed in mm). (b) Prescribed loading

history F2 vs. F1 consisting of successive triangles of increasing amplitudes, and

where each triangle consists of a first increase of F1 at F2 = 0, followed by an

equal increase of F2 at fixed F1, and finally and equibiaxial unloading down to

F1 = F2 = 0

Figure 3(a) shows the Region Of Interest (ROI) that contains the specimen

arms and the three-noded triangular mesh with linear interpolation (T3) used

for DIC and IDIC purposes. Since FE-based DIC analyses are carried out,
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the mesh is constructed from the reference image. Consequently, it follows very

faithfully the boundaries of the sample. Further, a small element size was se-

lected (i.e., 25 pixels) to capture the strain gradients as best as possible for

regular T3-DIC. For the integrated approach, it could have been further re-

fined [19, 21], but this option was not considered herein since both approaches

are to be compared with the same underlying mesh. In the following the geo-

metric coordinates shown in Figure 3(b) will be identical for any shown field.

(a)

e1

e2

(b)

Figure 3: (a) Reference image f with the Region Of Interest (ROI) in dark and

(b) mesh used for DIC and IDIC analyses (the characteristic element size is 25

pixel wide)
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3. Identification strategy

The numerical tools and the identification strategy are summarized here-

after. First, global DIC and Integrated-DIC are formulated. Second, the consti-

tutive laws and their respective material parameters are introduced. Last, the

numerical implementation of the identification scheme is briefly recalled.

3.1. Digital Image Correlation (DIC)

Global DIC will be used for comparison purposes with Integrated-DIC.

Among various kinematic bases, finite element shape functions have initially

been introduced to deal with regular meshes made of four-noded quadrilater-

als [26]. It was subsequently generalized to deal with unstructured meshes made

of three-noded triangle (T3) elements [19]. DIC relies on the registration of an

image f in the reference configuration and a series of pictures g in the deformed

configurations. The problem consists of minimizing the global correlation resid-

uals χ2
f = 1/Nt

∑Nt

t=1 χ
2
ft(t), which is the sum of squared differences between the

deformed image corrected by the measured displacement u(x, t) and the refer-

ence image (written for each time t independently) over the Region Of Interest

χ2
ft(t) =

1

2γ2
fNΩ

∑
Ω

((g(x+ u(x, t), t)− f(x))2 (3.1)

with respect to the sought displacement fields u(x, t), where x is any considered

pixel. In this expression Ω denotes the Region of Interest (ROI), NΩ its area

expressed in terms of the number of pixels it contains, Nt the number of time

steps, and γf the standard deviation (expressed in gray levels) of the white
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noise assumed to affect each image independently (including the reference one,

which is responsible for the factor of 1/2 coming as a multiplicative term in this

functional).

The displacement field is decomposed onto a basis of fields ψn(x) that is

selected at will

u(x) =
∑
n

unψn(x) (3.2)

where ψn are (vector) T3 shape functions in the present case ((i.e., three noded

triangles with a linear interpolation of displacements), and un the unknown

degrees of freedom. Ideally, the number of these fields should be kept as small as

possible (i.e., to reduce the uncertainty 1 on their amplitude) yet large enough to

capture the anticipated variety or heterogeneity of the actual experimental field.

The minimization of χ2
f is achieved by successive linearizations and corrections

using Newton-Raphson’s scheme

[M ]{δu} = {b} (3.3)

where [M ] is the DIC matrix, {δu} the vector gathering all increments of mea-

sured displacement amplitudes, and {b} the residual column vector. In the

present case, the minimization is performed independently for each considered

time, i.e., on χ2
ft.

1 ‘The uncertainty [...] is a parameter, associated with the result of a measurement, that

characterises the dispersion of the values [...] [27].’ In the present study, because the sole

considered origin of uncertainty is that resulting from a Gaussian white noise, the uncertainty

is quantified by the standard deviation of the concerned quantity.
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3.2. Integrated DIC

The integration of the mechanical identification at the measurement step

consists of choosing as the generalized degrees of freedom the sought parameters

associated with a chosen constitutive law. Consequently, the kinematic basis is

chosen as the set of sensitivity fields gathered in a matrix [SU ] [28]

[SU ] =
∂{u}
∂{p}

(3.4)

where {u} is the computed nodal displacement vector, {p} the vector gathering

the sought parameters in the computation via forward finite differences in the

present case. One of the interests offered by an integrated approach is that the

mesh size does not prevent the convergence of computations since the sought

material parameters are significantly fewer in comparison with the degrees of

freedom associated with the underlying FE discretization [19, 21]. Consequently,

errors coming from a coarse mesh can be avoided.

If the same mesh is used, and the DIC matrix has been computed as [M ],

and the residual vector {b}, the IDIC procedure simply consists of projecting the

nodal displacement field onto the sensitivity fields [20]. One main difference

with the previous T3-DIC procedure is that only one global minimization is

performed in a single spatiotemporal analysis [29]. The identification of the

sought parameters is achieved by solving iteratively until convergence linear

systems

{δp} =
1

2γ2
f

[MIDIC ]−1[SU ]t{b} (3.5)

where [MIDIC ] = 1/(2γ2
f )[SU ]t[M ][SU ] is the weighted kinematic Hessian. If
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this unique quantity χ2
f is minimized, it can be shown that it is equivalent to a

weighted FEMU-U procedure provided the noise level is small [20].

The applied load is also of importance for the identification because it pro-

vides an additional measured quantity, different in nature from the kinematics,

and hence it contributes significantly to the identification and reduces the uncer-

tainty of the determined material parameters. The reaction forces can also be

measured and computed. Thus, the same approach is followed with the reaction

forces for which χ2
F is minimized

χ2
F =

1

NFNt
{Fm − Fc}t[CF ]−1{Fm − Fc} (3.6)

where {Fm} are the measured reaction forces and {Fc} are the computed levels

with respect to the chosen material parameter set, [CF ] the covariance matrix of

the measured loads (in the present case it is assumed that the load measurements

are uncorrelated so that [CF ] = γ2
F [I], and NF the number of load data.

It is assumed that the load uncertainty is proportional to the magnitude

of the load, namely, γ2
F = ρ2

1|F |2. Moreover, it is easy at this stage to incor-

porate a minimum measurement uncertainty for the load cells by including an

additional noise term whose variance ρ2
0 is independent of the load level. This

practically disqualifies all measurements of forces below Fmin = ρ0/ρ1. Thus,

in the following it is assumed that

γ2
F = ρ2

1|F |2 + ρ2
0 (3.7)

In the proposed procedure, the measured forces will be compared to the

computed ones based on a numerical simulation that itself incorporates i) a
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constitutive law whose parameters will at convergence be adjusted to those of

the material to be identified, and ii) Dirichlet (displacement) boundary con-

ditions that are provided by the DIC measurements. The DIC measurement

itself has an uncertainty that will induce an additional contribution, which is

independent of the load magnitude as the DIC uncertainty is not dependent on

the displacement amplitude, affecting computed forces rather than measured

ones. However, as one will be interested in their differences, it is equivalent to

transfer this additional force uncertainty on the measurement. The result is a

term that cannot be distinguished from ρ0. In practice, load cells are designed

to have a dynamic range adapted to the geometry and mechanical properties of

the specimen, and hence, the minimum and maximum values of these sensors

are not limiting. In contrast, the identification of elastic properties requires suf-

ficiently small strains to ensure the relevance of linear elasticity. In this case, the

contribution of DIC uncertainty to the boundary conditions, and hence to the

load level, is generally expected to provide a level for ρ0 that may be limiting.

The minimization of χ2
F leads to the variation of the identified set of material

parameters

{δp} =
1

γ2
F

[HF ]−1[SF ]t{Fm − Fc} (3.8)

where [HF ] = γ−2
F [SF ]t[SF ] is the static Hessian, and [SF ] = ∂{Fc}/∂{p} the

reaction force sensitivities defined in the same way as the displacement field

sensitivities (see Equation (3.4)). If χ2
F is minimized alone, it corresponds to

a load-based FEMU procedure, which is referred to as FEMU-F.

The identification based upon both observables, i.e., displacement field and
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reaction force, is achieved by minimizing the global functional χ2
I

χ2
I =

NΩ

NΩ +NF
χ2
f +

NF
NΩ +NF

χ2
F (3.9)

where the correlation and reaction force residuals have been introduced in Equa-

tions (3.1) and (3.6) respectively. The choice for the specific weight stems from

a Bayesian foundation in the weighted quadratic difference including noise co-

variance. The minimization of the global residual (3.9) requires an iterative

computation of the parameter increments {δp}

{δp} = [HIDIC ]−1

(
1

2γ2
f

[SU ]t{b}+
1

γ2
F

[SF ]t{Fm − Fc}

)
(3.10)

where the global (i.e., kinematic and static) Hessian [HIDIC ] is the sum of kine-

matic [MIDIC ] and static [HF ] Hessians. The fact that images and load data

are considered enables for the identification of the elastic parameters (i.e., the

Young’s modulus in particular) contrary to what was performed by Schmaltz et

al. [18].

The covariance matrix of the identified parameters reads

[CI
p ] = 〈{δp} ⊗ {δp}〉 = [HIDIC ]−1 (3.11)

where 〈•〉 is the mean value of •. Another useful indicator is the correlation

matrix (no index summation used)

(Corp)ij =
(Cp)ij√

(Cp)ii(Cp)jj
(3.12)

The diagonal terms of the correlation matrix are equal to 1 since one parameter

is perfectly correlated with itself and off-diagonal terms vary between -1 and 1.
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3.3. Constitutive laws

The objective of the present work is to assess several parameters for three

constitutive laws (A) linear and isotropic elasticity, and (B, C) two elastoplastic

laws. The latter ones correspond first to linear kinematic hardening with von

Mises flow rule (B), and second to an exponential kinematic hardening (C) with

von Mises flow rule. The total strain rate ε̇ is written in terms of elastic and

plastic strain rates ε̇ = ε̇el + ε̇pl where ε̇el is the elastic strain rate tensor and

ε̇pl the plastic strain rate tensor. The yield surface J2(σ −X) = σ0 is defined

such that J2 is von Mises’ stress, X the back-stress, and σ0 the yield stress.

As a first approximation, a linear kinematic hardening model is chosen for the

back-stress change [30]

Ẋ =
2

3
Cε̇pl (3.13)

where C is the hardening modulus. Under the assumption of exponential kine-

matic hardening, the back-stress becomes

Ẋ =
2

3
Cε̇pl − cX ṗ (3.14)

where C and c are material parameters, p the cumulative plastic strain [31, 32].

3.4. Numerical implementation

The numerical procedure has been implemented in a C++ framework, which

computes the sensitivity fields from the finite element computations performed

with the commercial code Abaqus [20]. The IDIC code provides to the latter the

required input, namely, the finite element mesh, the current values of the mate-

rial parameters, the chosen constitutive law and boundary conditions obtained
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from a DIC measurement. The parameterization is based on a log scale with a

ratio between the current value of the parameter and its initial guess [33]. It is

defined such that the sought parameters in the new setting {q} are expressed

from the initial basis as {q} = log{p/p0}, where {p} is the vector gathering the

values of the parameters and {p0} their initial values. The procedure is con-

sidered to have converged when the change in the parameters reaches a chosen

threshold

‖{δq}‖∞ ≤ 10−4 (3.15)

where ‖{•}‖∞ denotes the infinite norm of the vector {•}. Finally, the numerical

procedure uses a Levenberg-Marquardt regularization [34, 35], which is shown

to be more robust than a pure Newton based scheme [36, 7, 33] when seeking

material parameters [35].

As proposed by Gras et al. [33], a regularization functional, namely χR, is

associated with the identification functional (χI) to enable for the evolution of

the sought parameters only if their corresponding sensitivities are higher than a

specific bound. This regularization prevents meaningless identification when the

influences of material parameters on the observables are weak. χR is a convex

function reaching its minimum equal to zero and reads

χ2
R = {q}[CR

q ]−1{q} (3.16)

where [CR
q ] is the covariance matrix of the material parameters. Because χI ,

and χR are both dimensionless and normalized to one their summation is valid

and the regularized functional becomes χ2 = χ2
I+χ2

R. Finally, the regularization
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of the linear system reads

([HIDIC ] + λ∗[I]) {δq} = {bIDIC}+ λ∗{q} (3.17)

where λ∗ is the regularization parameter whose choice is performed to cancel

out the influence of noise on the change of material parameters [33].

Most of the computational cost of such integrated procedures is associated

with the computation of the various sensitivities, which each time requires an

additional interrogation of the FE code. For the same number of iterations

IDIC and FEMU procedures lead to very similar computation times [20]. In the

present case, an analysis consisting of 365 pictures required 6 hours on a PC

with an 8-core Intel Xeon E5 processor for the elastoplastic nonlinear kinematic

hardening law (i.e., five unknown parameters).
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4. Identification results

This section presents the identification results and indicators of model errors.

First a resolution 2 analysis is carried out with an initial set of the sought

parameters and the initial DIC solution. Second the assessment of the material

parameters is performed. Last, a discussion is conducted on the kinematic,

static and global residuals.

4.1. Resolution analysis

This part aims to estimate a priori the procedure ability to perform an

identification. The DIC measurement is used to prescribe in the FEM analysis

the experimentally measured displacement (Dirichlet) boundary conditions and

get the sensitivity fields. Table 2 gathers the initial values of the sought material

parameters. For the computation of Hessians, the parameters are ranked in the

same order except for the eigenvalues ranked from smallest to largest.

Table 2: Initial value of the material parameters

Parameter E ν σ0 C c

Value 200 GPa 0.3 300 MPa 10 GPa 10

Load uncertainties are assessed for each iterations as discussed in Section 3.1

and the displacement uncertainty is evaluated since 10 images are acquired in

2 ‘Resolution: smallest change in a quantity being measured that causes a perceptible

change in the corresponding indication. [...] The resolution can depend on, for example, noise

(internal or external) or friction.’ [27]
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the reference configuration before loading the sample. Once the pictures have

been registered, the variance γ2
f is estimated as the root mean square of gray

level differences at convergence (Table 3).

Table 3: Standard gray level and load uncertainties

Quantity ρ0 ρ1 γf

Value 2.8 N 4×10−4 302 gray levels

The displacement uncertainty on the constrained boundaries is evaluated

by measuring the displacement fields with DIC. The covariance matrix of the

unknown degrees of freedom, namely [Cu] taken at the four boundaries pro-

vides this information. Furthermore, only the component in the displacement

direction is kept. Therefore, the standard displacement uncertainty reads

σ2
BC =

1

NBC∆t

∑
t

{V }t[CU ]{V } (4.1)

where {V } is the vector that cancels out the values of the covariance matrix

when they are not related to a constrained node in the prescribed displacement

direction. NBC is the number of degrees of freedom corresponding to the bound-

aries. The standard uncertainty is evaluated as σBC = 1.3×10−4 pixel. In these

experimental conditions with a Young’s modulus equal to E = 200 GPa, the

related uncertainty provides a standard load uncertainty equal to ρDIC0 = 2.4 N.

Finally, the second parameter is evaluated while measuring the load with dis-

placement control at several load levels F ∈ [0; 2000] N. The displacement is

kept constant during 300 s. Figure 4 shows the experimental and interpolated
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standard load uncertainty. The latter depends on the applied load level and its

maximum is reached for a load of 2 kN with γF = 3.1 N.
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Figure 4: Measurement of the load variance under static conditions as a function

of the load level. A quadratic interpolation is used [37]. The value of ρ0 is

obtained when adding the uncertainty from the load cells evaluated as ρLC0 =

0.1 N and that obtained from DIC ρDIC0 = 2.4 N.

The evaluation of the covariance matrix (see Equation (3.11)) is the key

quantity to study. The Hessians are evaluated with the linear elastic law over

the first load cycle, which is assumed to be essentially in that regime

[HF ] =

10 1.4

1.4 0.4

× 103 [MIDIC ] =

0 0

0 8.2

× 105 [HIDIC ] =

 0.1 0.01

0.01 8.2

× 105

(4.2)

The diagonal terms of the static Hessian [HF ] are non-zero but separated by

more than one order of magnitude. Since the Young’s modulus does not influ-
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ence the kinematic fields the corresponding diagonal term (M11) in [MIDIC ] is

equal to zero. The combination of both observables (see Equation (3.10)) leads

to [HIDIC ], which has nonzero diagonal terms. This last result shows that the

Young’s modulus is significantly easier to determine than the Poisson’s ratio

even when static and kinematic data are coupled.

The correlation matrix and eigenvalues are evaluated for the coupled data

by resorting to [HIDIC ]

Cor([HIDIC ]) =

1.00 0.02

0.02 1.00

 ; log10(λI) =


4.0

5.9

 (4.3)

The off-diagonal terms denote a weak correlation between the two material

parameters.

This first evaluation does not prove that the elastoplastic parameters can be

assessed. The same approach is extended to the elastoplastic law with expo-

nential kinematic hardening. The initial set of parameters is shown in Table 2.

[HIDIC ] is evaluated for the first loading cycle

[HIDIC ] =



4.5 0.56 −4.2 −0.07 4 × 10−4

0.56 0.87 −0.52 −0.01 6 × 10−5

−4.2 −0.52 3.9 0.06 −4 × 10−4

−0.07 −0.01 0.06 0.003 −3 × 10−5

4 × 10−4 6 × 10−5 −4 × 10−4 −3 × 10−5 3 × 10−7


× 105 (4.4)

and the corresponding eigen values read

log10(λI) =



−1.75

3.23

4.59

5.90

6.93


(4.5)
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Since a plastic strain occurs a variation of the Young’s modulus modifies the

level of the plastic behavior (i.e., for a smaller E the elastic domain is greater

since more strain is needed to reach the yield stress). Therefore both [HF ]

and [MIDIC ] contribute for the identification of Young’s modulus since both

observables are influenced by the latter. Last the levels of the terms relative

to C and c are very low denoting weak influences on the observables. The

evolution of the corresponding material parameters will be avoided thanks to

the regularized formulation. The corresponding correlation matrix reads

Cor([HIDIC ]) =



1.00 0.28 −0.99 −0.58 0.34

0.28 1.00 −0.28 −0.18 0.12

−0.99 −0.28 1.00 0.61 −0.36

−0.58 −0.18 0.61 1.00 −0.93

0.34 0.12 −0.36 −0.93 1.00


(4.6)

In the early stages of plasticity the differentiation between the elastic and plastic

regimes is not an easy task. Therefore when the boundary between elastic

and plastic regimes are unclear the value of the yield stress depends on the

Young’s modulus. As a consequence, the two parameters are anticorrelated

(i.e., Cor([HIDIC ])(E, σ0) ≈ −0.99). The resolution analysis over the first cycle

shows that some parameters can be identified, especially elastic parameters.

However, a small incursion in the plastic regime is not sufficient to identify c

and C independently.

The same analysis is now applied for the evaluation of [HIDIC ] over the
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entire loading history (Figure 2(a))

[HIDIC ] =



89 4.8 −118 28 −20

4.8 4.0 4.4 −9.3 2.6

−118 4.4 275 −154 72

28 −9.3 −154 125 −51

−20 2.7 72 −51 28


× 105 ; log10(λI) =



4.63

6.42

6.76

7.90

8.64


(4.7)

The levels of the diagonal terms show that the influences of all material param-

eters have increased (elasto-plastic parameters included). The five eigenvalues

have all their levels greater than the uncertainty and therefore can lead to the

identification of all the parameters. Last the correlation matrix is evaluated

from [HIDIC ]

Cor([HIDIC ]) =



1.00 0.26 −0.75 0.26 −0.40

0.26 1.00 0.13 −0.41 0.25

−0.75 0.13 1.00 −0.83 0.82

0.26 −0.41 −0.83 1.00 −0.87

−0.40 0.25 0.82 −0.87 1.00


(4.8)

still showing an important anti-correlation between the parameters C and c.

The correlation between E and σ0 has also been cut down.

Based on this resolution analysis two issues have been highlighted:

• Before performing the identification, it is known whether the test is dis-

criminating to the sought parameters. In particular, it is shown that the

five loading cycles are useful for the identification of the kinematic hard-

ening parameters.

• The assessment of each parameter, its value and its uncertainty are related

to the studied loading history.
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In the following the results of the identifications over the first cycle and the

entire loading history are analyzed for the three constitutive laws.

4.2. Parameter identification for the first loading step

The material parameters are assessed for the first cycle starting from the

reference set of Table 2 and with the IDIC formulation (see Equation (3.9)).

For comparison purposes, a global DIC analysis is also run. In the latter no

hypothesis is made on the underlying material behavior. Table 4 gathers the

corresponding values and the residuals for each law at convergence. The stan-

dard uncertainties γp are obtained from the covariance matrices [HIDIC ].

Table 4: Identified parameters and identification residuals for the three laws for

the first cycle (γp is expressed in % of p).

law χ χf χF E γE ν γν σ0 γσ0 C γC c γc

GPa MPa GPa

A 2.10 2.10 15 174 0.4 0.31 0.09 — — — — — —

B 2.09 2.09 8.9 195 0.21 0.297 0.1 306 0.25 10 — — —

C 2.09 2.09 8.9 195 0.25 0.297 0.1 306 0.3 10 — 10 —

The residuals χf are close to the initial DIC residual (χf = 2.06), them-

selves very close to the lower limit (i.e., 1) had the residuals only contained

noise contributions. Figure 5 shows the change of IDIC residuals (color) and

DIC residuals χf (black) with time. After the first ten pictures captured before

starting the experiment the residual levels increase. The level of DIC residuals

can be explained by the mesh size equal to 25 pixels, which is a compromise
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between displacement resolution and spatial resolution [38]. The residual in-

duced by the linear elastic law becomes slightly higher than the DIC residual

for t ≥ 21 s, and may point out the onset of plasticity. This is confirmed by

analyzing the load residuals, which are 15 times higher than the levels expected

from noise alone.
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Figure 5: DIC and IDIC residuals for the three constitutive laws

Residuals induced by laws B and C are equivalent and marginally lower

than those of law A. Consequently the exponential kinematic hardening does

not improve the identification with respect to the experimental data. It is

noteworthy that due to yielding the Young’s modulus estimate is already 10 %

lower than the levels observed for laws B and C. A small rise in Poisson’s ratio

is also observed. The level of yield stress is found to be in accordance with

known values [22].

Figure 6 shows the change of the parameters with the iterations. The con-
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vergence is reached after few iterations, namely, 5, 7 and 7 for laws A, B and

C respectively. As observed in the resolution analysis, the kinematic hardening

parameters keep their initial values thanks to the Levenberg-Marquardt regu-

larization. The corresponding standard uncertainty is significantly higher for

the hardening parameters than those for the elastic parameters and the yield

stress (Table 4)
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Figure 6: Change of material parameters with the iteration number for the three

investigated laws. Each parameter is normalized by its initial value

Figure 7 shows the displacement field u1 and residual component, which is

the difference between IDIC and DIC measurements at the last time step of the

first load cycle (t = 61 s) for the different constitutive postulates. Non vanishing

displacements exist, which indicate the presence of plastic strains (Figure 7(a)).

This observation validates the results shown in Table 4. Figure 7(b) shows

that law A induces very high differences in particular close to one of the con-

necting radii. This is an indication of plastic activity in the vicinity of stress
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concentration areas. When compared with Figures 7(c-d) there are significant

differences, again validating the identification with elastoplastic postulates that

lead to equivalent differences with raw DIC. The fact that there remain displace-

ment residuals shows that the plastic behavior has been only partially captured.

0.4-0.1  0.7

displacement (pixel)

(a) DIC

0-0.09 0.11
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(c) DIC - IDIC (B)

0-0.02 0.06

displacement (pixel)

(d) DIC - IDIC (C)

Figure 7: Displacement field map u1 measured by DIC and displacement differ-

ences between DIC and IDIC for the three investigated laws

4.3. Parameter identification for the whole history

The same analysis is now carried out over the entire loading history (Table 5).

Even if the IDIC residual of law C (χ = 6.3) is 2.5 times higher than the DIC

residual (χf = 2.5) it is the best of the three chosen postulates. The fact that

the load residuals are still high is an indication that there remains a model error.

This is particularly true for the elastic law that induces very high residual errors.

The Young’s modulus is found to be very small, and the Poisson’s ratio tends

to 0.5 (i.e., incompressibility as expected from dominant isochoric plasticity).
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Table 5: Identified parameters and identification residuals for the three laws for

the whole loading history

law χ χf χF E γE ν γν σ0 γσ0 C γC c γc

GPa MPa GPa

A 15 14.9 1820 8.8 0.25 0.499 0.002 — — — — — —

B 7.1 7.1 113 157 0.15 0.31 0.04 480 0.15 6.7 0.15 — —

C 6.3 6.3 100 148 0.16 0.30 0.04 423 0.16 8.6 0.16 10.8 0.03

All these trends clearly disqualify elasticity as a model able to describe the

reported experiment. This is confirmed by Figure 8 that shows the change of

IDIC and DIC residuals over time. Unlike the previous results (Figure 5), gaps

between IDIC and DIC residuals are much more pronounced, especially when

the level of plastic strain increases. Furthermore, the gain offered by each law

with respect to raw DIC results is also clarified.
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Figure 8: DIC and IDIC residual history for the three constitutive laws. Please

note that a semi-logarithmic scale is used
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For law C, all material parameters have been assessed with a low level of

uncertainty. Regarding laws B and C all the parameters converge in few steps

(see Figure 9). Unlike Figure 6 all the parameters are modified and no regular-

ization is needed in the present case. It is worth noting that the more freedom

the identification code has (i.e., the number of unknowns is increased), the fewer

iterations are needed. Further, the converged solutions are rather far from the

initial guesses, which shows the robustness of the procedure.
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Figure 9: Change of the material parameters for the three investigated laws

during the identification iterations. Each parameter is normalized by its initial

value

Figure 10 shows the displacement maps u1 and u2 at the last time step of

the analysis. The permanent strains are important and the maximum measured

eigen strain is equal to εI = 18.7%. The normal strain map ε11 is shown at the

same time in Figure 10(c). The strain levels are the highest in the concentration

zones induced by the fillets.
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Figure 10: (a-b) Measured displacement fields with DIC at the last experimental

time step. (c) Corresponding strain field (normal component along direction 1)

4.4. Comparison with FEMU-F results

Table 6 shows the parameters assessed only by considering the reaction forces

(Equation (3.6)). It corresponds to a FEMU-F procedure [20]. To compare both

approaches, the gray level and global residuals are also computed. As expected,

the static residuals are lowered for all laws since the residuals only depend on

reaction forces. Conversely, the overall quality degrades in addition to that

associated with gray level residuals. More importantly, the standard uncertain-

ties of the identified parameters are significantly higher, which is caused by the

limited number of data used per analyzed time.

Figure 11 shows the displacement field difference for component u1 for the

three constitutive laws with IDIC or FEMU-F approaches compared with DIC

measurements at the end of the experiment. The choice of an elastoplastic
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Table 6: Identified parameters and identification residuals via FEMU-F for the

three laws over the entire loading history cycle (no regularization prescribed)

law χ χf χF E γE ν γν σ0 γσ0 C γC c γc

GPa MPa GPa

A 19.1 19 1732 10 0.4 0.19 4 — — — — — —

B 8.1 8.0 11.9 188 0.7 0.23 4 330 0.4 3.7 1.2 — —

C 7.5 7.5 9.6 191 0.7 0.25 4 300 0.5 8.5 3.7 29 11

law instead of an elastic law decreases the displacement difference, thereby de-

creasing the model error. The residual level is lower when the identification

is performed with IDIC rather than FEMU-F. An overall residual remains be-

cause i) the model does not correctly predict the plastic strains, ii) localization

phenomena occur.
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Figure 11: Displacement differences u1 between DIC and IDIC (first row) or

FEMU-F (second raw) for the three investigated laws. The color bars correspond

to the largest and lowest values of the corresponding residual map
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5. Conclusion

Three constitutive laws have been investigated with Integrated Digital Im-

age Correlation to analyze a biaxial test with a cruciform specimen of a thin

sheet of precipitation hardened stainless steel. A general formulation was im-

plemented to account for two sources of data (i.e., gray level picture stack and

load data). A weighting that originates from a Bayesian foundation has been

followed. Consequently, each pixel and load cell play the same role, when they

respective noise level is accounted for.

An initial sensitivity analysis enables the impact of the loading history and

the acquisition noise on the identification to be understood. It shows that the

first loading cycle is not sufficient to identify plastic laws but it is sufficient

to detect its onset with the initial set of the material parameters. The corre-

sponding identification leads to an IDIC residual with similar level as raw DIC.

The identification is also performed over the entire loading history accounting

for 5 loading/unloading cycles. Any of the chosen model does not match the

available data with the same accuracy as observed for the first cycle. The three

laws lead to three different residuals and the exponential kinematic hardening

law provides the best results.

In the present study four different error indicators have been considered:

• When DIC and IDIC analyses are performed, the gap with respect to

gray level conservation is computed. It estimates the registration quality

when the pictures in the deformed configurations are corrected by the

measured displacement field and subsequently compared with the picture
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of the reference configuration.

• DIC and IDIC can also be compared by computing the displacement dif-

ferences measured by both approaches. When the mesh is identical, as in

the present case, the comparison is straight forward.

• Load residuals are yet another way of characterizing the identification

quality. In the present analyses, FEMU-F and IDIC could be compared

since both included load residuals in their respective formulation.

• Last IDIC as developed herein has an overall quality indicator χ2
IDIC that

compares all sensor information (be it gray levels for each pixel or load

level) in the same footing when normalized by the variance of correspond-

ing noise.

This wealth of indicators allows the user to assess not only globally but also

with each of the estimators the identification quality and the underlying model

error (i.e., choice of constitutive law, finite element discretization).

The present study aims to pave the way to understand and design experi-

mental protocols to not only identify but to (in)validate constitutive laws. In

forthcoming works, the IDIC framework will be used to identify other laws for

other materials such as polymers and composites. Other scales of observation

may also be investigated by using other imaging systems such as confocal mi-

croscopy or scanning electron microscopy.
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Main notations

χf digital image correlation objective function (DIC)

χF finite element method updating objective function (FEMU-F )

χI Integrated Digital Image Correlation objective function (IDIC)

χR Regularization objective function

{p} vector gathering constitutive parameters in the initial basis

{q} vector gathering constitutive parameters in the log basis

x 2D or 3D coordinates in normal space

eα unit vector along direction α = 1, 2

ψ(x) matrix gathering the shape functions of element e

f(x), g(x) pictures in the reference and deformed configurations, respectively

γf standard deviation of gray levels

γF standard uncertainty of the load measurement

Ω region of interest

u(x) displacement field vector

[M ] global DIC matrix
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[SU ] displacement sensitivity matrix

[SF ] force sensitivity matrix

NF number of load sensors

Nt number of time steps

NΩ number of pixels related to |Ω|

[C•p ] covariance matrix of identified material parameters using a method labeled by •

[MIDIC ] Hessian matrix of the displacement IDIC approach

[HF ] Hessian matrix of the FEMU-F approach

[HIDIC ] Hessian matrix of the global IDIC approach
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