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Abstract. 

To avoid performance degradation and maintain the quality of results obtained by the case-based 
reasoning (CBR) systems, maintenance becomes necessary, especially for those systems designed to 
operate over long periods and which must handle large numbers of cases. CBR systems cannot be 
preserved without scanning the case base. For this reason, the latter must undergo maintenance 
operations.  
The techniques of case base‘s dimension optimization is the analog of instance reduction size 
methodology (in the machine learning community). This study links these techniques by presenting 
case-based maintenance in the framework of instance based reduction, and provides: first an overview 
of CBM studies, second, a novel method of structuring and updating the case base and finally an 
application of industrial case is presented. 
 
The structuring combines a categorization algorithm with a measure of competence CM based on 
competence and performance criteria. Since the case base must progress over time through the 
addition of new cases, an auto-increment algorithm is installed in order to dynamically ensure the 
structuring and the quality of a case base. The proposed method was evaluated through a case base 
from an industrial plant. In addition, an experimental study of the competence and the performance 
was undertaken on reference benchmarks. This study showed that the proposed method gives better 
results than the best methods currently found in the literature. 
 
Keywords: Case-based mining, case-based maintenance, prototyping, instance reduction, auto-
increment, competence, performance. 

 

1. INTRODUCTION 

Case-Based Reasoning (CBR) is an approach to problem solving and learning through the 
storing of solutions to similar problems such as cases in a memory called a case base (Aamodt and 
Plaza, 1994). The case is a body of knowledge representing an experience, defined to a description of 
the problem resolution event (new case). It is composed of two options: a description of the situation 
representing a problem and a solution used to remedy this situation (case = (Problem P, Solution S)). 
A case is placed in a case base and is called a source case which will be used to solve a new case 
called the target case. A general CBR cycle may be described as having five phases: elaborating, 
retrieving, reusing, revising and retaining. From a case to be solved, the elaboration phase builds a 
new problem in a target case by completing or altering the problem description from a possibly 
incomplete description. According to a similarity metric, cases similar to the target case are first found 
(the retrieving step) and then adapted by solution construction (reusing). Finally the solution is 
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validated if necessary. The retaining phase consists of storing the new case once validated, provided 
storage is considered relevant. 

A CBR System contains four knowledge containers (Richter, 1998): 1) the vocabulary knowledge 
describing the case and the problem domain, 2) the retrieval knowledge including the similarity 
measure and the indexing method, 3) the adaptation knowledge and 4) the case base itself.  

However, most CBR systems, designed to operate over long periods and that must handle large 
volumes of data and cases encounter problems in the retrieval and adaptation phases. The latter can be 
costly in terms of time (Cao et al., 2001). To maintain the quality of system (i.e.) the speed of the 
retrieval process, maintenance of the case based reasoning system and particularly of the knowledge 
containers becomes necessary.  

1.1. Maintenance of the CBR system 

There are two types of maintenance studies, the maintenance policies and the integration of 
maintenance with case-based reasoning processes (Roth-Berghfer and Iglezzakis 2001). Reinartz et al. 
(2001) define two phase’s steps and tasks (Reviews and Restore) necessary to integrate maintenance 
into a CBR process. Heister and Wilke (1998) propose an architecture integrating maintenance 
component in a CBR system that is composed of knowledge container and modeling tools. 

During maintenance, the contents of each of the four knowledge containers may be revised (Lu et al., 
2009) in order to improve the performance objectives, e.g., the quality of the proposed solution 
(Arshadi and Jurisica, 2004). 

In past decades, a lot of studies have been done in retrieval knowledge maintenance promoting the 
performance of similarity measurement. Craw et al. (2001) developed a method to optimize CBR 
retrieval. Bonzano et al. (1997) combines introspective learning for feature weighting in CBR. Feature 
weights for a set of cases are adjusted dynamically during case retrieval by Zhang and Yang, (1999). 
Zhang and Yang (2001) maintain the important measures of different features of the case base, by 
integrating a learning network method for feature weighting within the CBR system. To strengthen the 
retrieval performance, many works are interested in the case base container and combine problems of 
feature selection and case organization (Yang and Wu, 2000; Aha and Bankert, 1994; Zhu et al. 2015). 

(Salamó and López-Sánchez, 2011a; 2001b) and (Salamó and Golobardes, 2003) focused on feature 
weighting and instance selection methods based on Rough Set Theory (RST).Those works mainly pay 
attention to the feature weighting and similarity measurement techniques partially or simultaneously  

Regarding the maintenance of adaptation knowledge and the case-base, Shiu et al. (2001) transform 
the case-base to a set of small case bases each associated with adaptation rules generated by fuzzy 
decision tree (Lu et al., 2009).   

Iglezakis and Roth-Berghofer (2000) suggest that a CBR system cannot be maintained without 
scanning the case-base. Maintenance activities are activated only via the case-base which plays a 
major role in the maintenance of CBR systems. This explains why the bulk of the work done in this 
field is primarily based on Case-Base Maintenance (CBM). In fact, the case-base is the knowledge 
container that is the most sensitive to changes in the CBR system and its consultation is essential in 
order to set maintenance operations in motion (Leake and Wilson, 1998). 

1.2. Case-based maintenance 
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CBR systems are large scale case bases. It is thus necessary to keep a compact and competent case 
base (Salamó and López-Sánchez, 2011a), to maintain the quality of the case base and the speed of the 
retrieval process (Smiti and Elouedi, 2014). New content cases must be added, existing cases may 
need to be revised, and out-of-date cases must be deleted; this is a classic example of the case-base 
maintenance problem (Ferrandiz and Boullé, 2010). 

The k-Nearest Neighbors classifier frequently used in Case-based reasoning remains as (i) one of the 
most well-known algorithms for supervised non-parametric classification (Duda et al., 2001) in Pattern 
Recognition, data mining and Case based maintenance (Calvo-Zaragoza et al., 2014; Ferrandiz and 
Boullé, 2010)  (ii) as a benchmark for experimental studies in machine learning (Leyva et al  2015). 
To improve the quality of the case-base, many researchers develop reduction of cases method in the 
CBR community (Yang and Zhu, 2001, Smiti and Elouedi, 2014, Iglezakis and Roth-Berghofer, 
2000), or instance reduction in machine learning community and particularly in instance based 
learning (Blum and Langley, 1997). Reinartz (2002) proposes a unifying view on Instance Selection, 
we base on this proposition in order to first draw the link between the work done in instance reduction 
and in CBM, review it, and then propose a new approach to reconstructing the case-base. 

According to Smiti and Elouedi (2014) there are 2 types of CBM policies: partitioning of the case 
base which builds a case-base structure (Yang and Wu, 2000; Cao et al., 2001), and CBM 
optimization which uses an algorithm to delete or update the whole CB (Haouchine et al., 2008; 
Smyth and McKenna, 1995; Smyth, 1998). 

In this study we present, an instance based learning case in the context of classification, where all 
descriptors are indicated and the solution represents a class. 

Different investigations in CBM are reviewed taking into account the framework of Reinartz (2002). 
Indeed, CBM policies following Reinartz‘s framework can be presented as clustering (also known as 
case-base partitioning) and prototyping (also known as case-base optimization) steps. We propose a 
classification of the case-base optimization taking into account selection criteria and search procedure 
to complete the taxonomies of CBM algorithms presented in machine learning. Indeed,   the most 
fundamental criteria that allow evaluating the case base quality in case-base optimization are the 
performance and competence.  

We are especially interested in the latter in order to achieve the objectives related to search-time 
problems as well as to reduce case-base size while preserving its quality. Case-base quality depends on 
a number of criteria that are discussed in the same section. Section 2 ends with a summary of the state-
of-the-art study. Several observations and conclusions are given allowing us to propose our CBM 
method based on the principle that to maintain a case-base, it is necessary to evaluate and optimize its 
quality by structuring it and auto-incrementing it with new cases while maintaining its structure. 

 

Section 3 describes a novel method based on the structuring of a case base and its auto-increment. 
Indeed, after having structured the case base, it will be incremented by new cases. However, this 
integration must be made under specific conditions in order to ensure system quality. Consequently, 
several questions arise. Which case is to be retained among those solved? How is the case to be 
indexed? How can it be introduced with respect for the structure of the expert base, to allow a delicate 
updating of expertise? What is its contribution to the improvement of expert-base quality? An auto-
increment algorithm will therefore be proposed in the same section. Section 4 addresses a comparative 
study of existing methods conducted on particularly significant benchmarks according to competence 
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and performance criteria. The suggested method is applied in section 5 via a supervised industrial 
system of pallet transfer (SISTRE).  

2. RELATED WORK ON CASE-BASE MAINTENANCE 

2.1. Case-base maintenance and instance reduction methods 

Maintenance in CBR involves different operations: outdated, redundant or inconsistent cases may be 
deleted; groups of cases may be merged to eliminate redundancy and improve reasoning power; cases 
may be re-described to repair incoherencies (Smyth, 1998). Furthermore, case-base maintenance 
implements policies for revising the organization or contents (representation, domain content, 
accounting information, or implementation) of the case base in order to facilitate future reasoning 
(Leake and Wilson, 2000a). Note that this definition considers the information defining an indexing 
scheme to be an intrinsic organizational component of the case base itself. Case-base maintenance 
involves revision of indexing information, links between cases, and/or other organizational structures 
and their implementation (Smyth, 1998; Mykola Galushka and Patterson, 2006). 

In this context, maintenance is based on applying update policies for case-base representation and is 
implicated in their reorganization in order to facilitate future reasoning in response to sets of 
performance objectives. The state-of-the-art of case-base maintenance relies on the various methods 
used. Case-base maintenance aims to reduce case search time while improving the performance of the 
system. Time is reduced by minimizing case-base size or by the partitioning it into several smaller 
parts.  

2.2. Unified framework on instance reduction technique and CBM 

Hereafter, we present the different points of comparison between these methods and develop the 
crucial points. There are several different ways to categorize existing case-base maintenance methods. 
In this study we take an interest in case size reduction, hence we can draw an analogy with instance-
reduction techniques. 

2.2.1. Instance reduction technique. 

Dai and Hsu (2011) split up instance reduction algorithms into two types: clustering based learning 
algorithms and instance based learning algorithms. However, Reinartz (2002) has gathered the 
methods specific to the tasks of instance selection in three steps: Sampling, Clustering and 
Prototyping. These steps are viewed by Liu and Motoda (2002) as three basic generic components of 
instance reduction and can be instantiated to individual algorithms.  

Sampling is a procedure in which a sample Si is drawn through a random process by which each Si 

receives its appropriate probability i of being selected (Liu and Motoda, 2002). A general advantage 
of sampling is the efficiency of most of its techniques in terms of execution time. However, the 
existing techniques are not limited only to this method as they are usually combined with others.  

Clustering is one approach to finding regularities from unlabeled data (Liu and Motoda, 2002). It is 
the classification of objects into different groups or, more precisely, the partitioning of a data set into 
subsets (clusters) so that the data in each subset (ideally) share some common trait, often proximity, 
according to some defined distance measure. Our method takes this aspect into account. 

Prototyping is the process of quickly putting together a working model (a prototype) in order to test 
various aspects of a design, illustrate ideas or features and gather early user feedback. Prototyping is 
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often treated as an integral part of the system design process, where it is believed to reduce project risk 
and cost. Indeed, the prototypes are more condensed descriptions of sets of characteristics.  

Prototyping supposes that a simple characteristic can represent the information of an entire subset of 
characteristics (Pękalska, 2006). The basic idea is, once clusters have been obtained within a larger 
space, it is then necessary to find among them the most representative prototype of the set. Prototyping 
thus allows selecting of the relevant cases or the subset of cases which represents the whole set 
according to a given criterion. This allows removing some cases which results in reducing the case 
base to a smaller size having the same characteristics as the original.  

2.2.2. Case-based maintenance and reduction technique 

The case-base maintenance approach can be divided into two policies, one concerning case-base 
partitioning and the other one concerning optimization. Policies found in clustering and prototyping 
steps integrated each one sampling steps. The partitioning policy consists of dividing the case base 
into several search spaces. This enables selection in an increasing manner those attributes which are 
rich in information and which can cover the structure of the case base (Yang and Wu, 2000). In 
contrast, the optimization policy consists of deleting less relevant cases.  

2.2.3. Case base partitioning or clustering  

In the partitioning of case base, Clustering and feature selection techniques have been successfully 
applied to CB maintenance (Aha and Bankert, 1994; Yang and Wu, 2000; Perner, 2006). 

Zhu et al. (2015) propose a hybrid CBR system composed of neighborhood rough set method as in 
feature selection technique and by cluster analysis approach, a growing hierarchical self-organizing 
map (GHSOM), to organize a large case base in a hybrid CBR system. 

Smiti and Elouedi (2014) combine DBSCAN (Density Based Spatial Clustering of Application with 
Noise) and Gaussian-Means algorithms to cluster the case base into small CB’s, easier to maintain 
each one individually. To reduce the size of each partition and preserve maximum competence, 
outliers and internal cases detection methods are applied. These proposed maintenance policies are 
named Weighting, Clustering, Outliers and Internal cases Detection based on clustering technique. 

Salamó and López-Sánchez (2011a) develop three strategies for feature selection based on rough sets 
for dimensionality reduction in Case-Based Reasoning classifiers, and propose (Salamó and López-
Sánchez, 2011b) an adaptive case-based reasoning model that develops the case base during the 
reasoning cycle by adding and removing cases. Salamó and Golobardes (2004) introduce a dynamic 
case base maintenance (DCBM) model that updates the case base based on Reinforcement learning 
(solving process). This approach integrates the solving algorithm in a case base maintenance process. 

To improve performance of CBR systems, Zhu et al. (2015) presents an integrated reduction technique 
and cluster analysis approach to manipulate the problems of feature selection and case organization in 
large CBR system.  

Hamidzadeh et al. (2014) propose an instance reduction method based on hyper-rectangle clustering. 
A hyper-rectangle is defined by its min and max points. The clustering algorithm selects subset of 
instances near or within the boundaries of classes. The size of training set is reduced, improving 
generalization accuracy.  

Ferrandiz and Boullé (2010) propose a new instance selection method, introducing new classification 
scheme for instance selection named the Voronoi-Based Relabeling scheme,( VBR scheme) for short, 
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which is a relabeling method relying on Voronoi partitions. The new optimization algorithm finds the 
best set of instance, by exploiting additive criterion. The kept instances are retained as training data for 
different classifiers and not only for the kNN algorithm. 

2.2.4. Optimization policies or prototyping selection. 

Searching for efficient approaches in instance reduction is still an active field of research (Hamidzadeh 
et al, 2014, Garcia et al, 2012, Lupiani et al 2014, Leyva et al, 2015). A most common technique to 
reduce the size of the training set, to decrease computational cost and sensitiveness to noise is the use 
of Prototype Selection method PS (Calvo-Zaragoza et al., 2014). The method proposed by the authors 
combines the classification accuracy of retaining all the training set and Prototyping Selection 
methods provided in kNN classification. This PS method first reduces the training set by using an 
algorithm and performs the classification of the new element. Prototype Selection PS algorithms allow 
a faster Nearest Neighbor classification by keeping only the most profitable prototypes of the training 
set.  

Prototypes can be defined as generalized numerical examples (Salzberg, 1991) or tuples composed by 
both numerical and categorical values like hyperrectangle.  

Calvo-Zaragoza et al. (2014) list representative sets of PS algorithms, all based on Nearest Neighbor 
NN published in the literature, such as Condensing Nearest Neighbor (CNN), Editing Nearest 
Neighbor (ED) etc. Those algorithms dedicated to the optimization policies of CBM, are classified by 
different authors (Fazzolari et al., 2013; Garcia et al., 2012, Verbiest et al., 2013). 

2.2.5. Taxonomy of optimization policies or prototyping selection methods. 
 

2.2.6. Prototyping selection method 

Some authors have proposed different taxonomies of CBM algorithms (Lupiani et al., 2014; Garcia et 
al., 2012). Garcia et al. (2012) describe the different properties issued from variable selection and 
adapted to the PS methods, the properties specific to the prototyping selection methods and at the end 
the properties that can influence the results of an instance selection algorithm in combination with a 
given classifier.  

Fazzolari et al. (2013) according to Garcia et al. (2012) classified the Prototype Selection PS method 
and the Training Set Selection TSS methods using common proprieties. We retain the most relevant 
properties for the methods of PS: evaluation of search, direction of search propriety, type of selection. 

- The Evaluation of search: according to the strategy used to add or remove instances in the 
subset S. Garcia et al. (2012) define (i) a filter strategy “when the KNN rule is used for partial 
data to determine the criteria of adding or removing and no leave –one-out validation scheme 
is used to obtain a good estimation of generalization accuracy”. (ii) And the wrapper strategy 
“when the kNN rule is used for the complete training set with the leave-one-out validation 
scheme. 

- The Direction of search propriety is defined as well in the framework of feature selection 
algorithm in data mining community by (Liu and Motoda, 2002; Shiu et al., 2001; Blum and 
Langley, 1997) and refined by adding Three items (Batch search, mixed search and fixed 
search a subfamily of mixed search (i.e. item that we don’t retain). 

- Search Direction (Starting point of the best subset case search): there are a variety of 
directions in which search can proceed.  
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o Forward Selection (FS) or incremental search consists of building a reduced case base 
by successive addition, starting from an initially empty case base, according to a 
criterion to be maximized. There are two categories of methods: one maximizing the 
competence criterion and the other the performance criterion 

o Backward Elimination (BE) or decremental search: the case-base will be screened 
entirely when its size reaches a certain threshold, usually followed by the process of 
case deletion 

o Batch search involves deciding if each instance meets the removal criteria before 
removing any of them. 

o Mixed search begins with preselected subset and can iteratively add or remove any 
instance which meets the specific criterion. 

 
- The type of search carried out by the PS algorithms that seek to retain set of point with 

respect to the decision boundaries (border instances, central instances) can be of 3 types: 
condensation, edition and hybrid methods. 

o Condensation methods try to obtain a consistent subset by removing unnecessary 
instances that will not affect the classification accuracy on the training set. 

o Edition methods aim to remove noisy instances, allowing the classifier to increase its 
accuracy.  

o Hybrid methods search for a subset in which both noisy and unnecessary instances are 
concurrently eliminated. 
 

The taxonomy of Garcia et al. (2012) takes into account the type of selection, the search direction and 
the evaluation search. The figure 1 illustrates this classification. 
 
 

 
Fig.1. Prototype Selection (Garcia et al. 2012) 

 
Leyva et al. (2015) propose a classification of the PS algorithm taking into account the type of 
selection and defines (i) the condensation method like the methods of the family of Condensed Nearest 
Neighbor (CNN) Selective Nearest Neighbor (SNN) Minimal Consistent Set (MCS) and Fast Nearest 
Neighbor Condensation (FCNN). These methods are very noise sensitive. (ii) The edition method 
follows the family of Edited Nearest Neighbor (ENN); Repeated ENN (RENN).Theses methods reject 
the instances that affect in classification with their neighbor- hoods like. They are characterized by 
being good noise filters, and achieve little reductions in the number of instances (Leyva et al., 2015) 
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(iii) The hybrid methods are a combination of both edition and condensation strategies like Instance 
Based Learning3 (IB3), decremental Reduction Optimisation Procedure DROP3, Iterative case 
filtering ICF etc... The IB3’s algorithm use previous selected instances to build incrementally selection 
to classify. It retains instances misclassified, and selection the instances having a best accuracy of the 
member of the class and eliminate the instance with the worst accuracy. 

Verbiest et al. (2013) classified the IS method based on the type of selection and the evaluation of 
search. The authors propose a FRPS Fuzzy Rough Prototype selection which is a wrapper-oriented 
edition method. The instances are ordered according to a measure based on fuzzy rough set theory. A 
wrapper approach is used to prune instances and a kNN algorithm to classify the instances. 

2.2.7. Optimization policies  

The main principal of the review of the case-based optimization policies is to build a maintenance 
model that represents the implicit information of the case. We propose to classify the CBM algorithms 
based on two additional proprieties that are defined in the feature selection framework: the search 
procedure and the selection criteria: 

- Search procedure (subset evaluation function): there are three search procedures: complete, 
heuristic and random generations. Each search procedure corresponds to the nature of the case 
base and to the chosen method for case selection. 

- Selection criteria: represent the evaluation criteria of the case base. The various existing 
methods can simultaneously use one or more criteria. 

- Stop criteria: generally, case-base maintenance methods have a stopping criterion of selection 
or removal of case-base cases. This criterion plays a threshold role and it is important to 
determine it well. 

First we describe these criteria adapted to the case-base. 

2.3. The Quality criteria for case-base evaluation 

An effective case base can answer as many queries as possible, efficiently and correctly. Several 
criteria allowing the evaluation of case-base quality have been proposed in the literature. We can quote 
inconsistency, redundancy and abstractness, introduced by Racine and Yang (1996), and relevancy, 
introduced in (Blum and Langley, 1997). 

However, the important criteria contributing to the evaluation of a case base are: competence and 
performance. These criteria can be based on coverage and reachability notions. 

Performance: Case-base performance is measured by the answer time necessary to compute a solution 
for case targets (Smyth and Keane, 1995). This measure is bound directly to adaptation and result 
costs. 

Competence: Case-base competence is measured by the range of problems that can be satisfactorily 
solved (Smyth and Keane, 1995). Case-base competence thus represents the case coverage which it 
contains. Several strategies which make it possible to measure the case coverage have been proposed 
in the literature (Smyth and McKenna, 1999, 2001a, 2001b). 

Indeed, competence is based on the two notions of “coverage” and “reachability”. 

2.3.1. Coverage and reachability notions 
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Given a case base CB be {c1,.., cn} and a set of target cases “T” {t1,.., tr}. A case “c” is composed of 
two parts: problem and solution.  

Case c = { Ps, Ss } Target t = { Pt, ? }  
 
Coverage of a case c: is the set of target problems that it can be used solved by its retrieval and 
adaptation. 
Reachability of a case: is the set of cases that can be used to solve the target problem.  

Coverage (cCB)  = {t CB: Solves(c, t)}  (1) 

Reachability (cCB)  = {t CB: Solves(t, c)} 
Thus, coverage and reachability is formalized by Smyth & Keane (1995) for cϵ CB 

Coverage (c)  = {Adaptable (c, t)} (1bis) 
Reachable (c) = {Adaptable (t, c)} 

 

In the case of instance based learning where there is not the adaptation phase, this definition become 

Coverage (c)  = {Similar threshold (c, t)}  (1ters) 
Reachable (c)  = {Similar threshold (t, c)}  

Good competence of the case base CB means that its coverage is high and that its reachability is low. 

Moreover, we note that the definition of coverage and reachability, introduced by Smyth and Keane 
(1995), takes into account both the problem and solution parts of case. 
Smyth ad Keane (1995) assume that the case-base itself is a sample of the underlying distribution of 
target problems. 

2.3.2. On line problem solving  

On line, the CBR objective is to solve a target case and find the solution St to the problem Pt. We do 
not have the solution target = { Pt, ?} unlike at the offline step ( structuration of the case-base) where 
the set of target case is a distribution of case-base 
Unlike the offline step (the case-base structuring) where the set of target cases is a distribution of the 
case-base, the target solution at this step is not known. 
During the problem solving step, a potential solution is assigned to each target. It is named 
target*={Pt, St} . Once the target* is analyzed, it is integrated in the case-base where it either becomes 
a case or it is deleted. 
 
2.4. Reviews of case-based optimization policies 

As Dai and Hsu (2011), we address the strategies of sample selection developed within the case-based 
optimization policy, namely: forward selection (incremental search) and backward elimination 
(decremental search).  

2.4.1. Forward Selection (FS). 

In the first category of FS, Smyth and McKenna present a method that uses an explicit case 
competence model based on notions of coverage and reachability. Their relative coverage (RC) metric 
provides a precise measurement of competence contributions for individual cases. 



10 





)(' )'(Re

1
)(

ctCoverageSec cSetachability
cRC  (2) 

With definition of coverage and reachability (1) 

CoverageSet (cCB)  = {c’ CB: Solves (c, c’)} 

ReachabilitySet (cCB) = {c’ CB: Solves (c’, c)} 
 

The RC metric, associated with the condensed nearest-neighbor (CNN) algorithm, allows successive 
retention of only those cases which have not yet been solved by a case that has already been retained, 
in order to obtain a new reduced case base (Smyth and McKenna, 1999). Consequently, the selected 
cases make an important contribution concerning case-base recovery. 

Yang and Zhu (2001) describe a case-addition algorithm for case-base compaction that uses a 
problem-neighborhood model of case coverage. The cases based on benefit/usefulness are 
successively added to the case set so far retained. 

The interesting part of these methods is the use of models and metrics that make it possible to guide 
the case-base size reduction by preserving good competence. The cases are ranked by the metrics in 
order to add the most interesting cases to the reduced case base. To obtain a reduced case base, 
computational time becomes greater. Indeed, for each added case it is necessary to re-examine the 
entire original case base. 

In the second category of methods maximizing the performance criterion, Leake and Wilson 
developed a Relative Performance (RP) metric aimed at assessing the contribution of a case to the 
adaptation performance of the system (Leake and Wilson, 2000b). The RP value for a case rejects how 
its contribution to adaptation performance compares to other cases. Likewise, another metric was 
developed concerning a Performance Benefit (PB) metric estimating the actual numerical savings that 
the addition of each case provides. Yet, in comparison to the RP-CNN and PB-CNN methods, RC-
CNN produces a better rate of case-base size reduction, whereas the former methods give a better 
result in adaptation cost. 

The FS strategy includes only one criterion. However, the majority of these strategies use measures of 
performance or competence in combination with the CNN algorithm. Indeed, these strategies classify 
the cases in the initial case-base according to the used measure value used (RC, RP or PB) and they 
then begin the process of a case-addition within a case base that is initially empty according to the 
CNN algorithm. Both RP-CNN and PB-CNN strategies are very close in terms of results concerning 
the performance of the case-base. These last two strategies only concern performance whereas the RC-
CNN strategy and the Yang and Zhu's algorithm (Yang and Zhu, 2001) are only concerned with case-
base competence. In fact, they aim to reduce case-base size while maintaining its competence. 

In summary, the FS strategies treat case-base quality by exploiting only one criterion that is optimized 
according to reduction of case-base size. The majority of these strategies (RC, RP and PB) combine 
the CNN algorithm with either a competence or performance measure. 

The FS strategy results depend on the first case selected, which is randomly selected in CNN, or is 
case-dependent in RC, RP or PB measure. If the first case is badly chosen (due to a skew of measure), 
the reduced case base is affected and is of low quality. Consequently, in this study we focus on the 
backwards elimination (BE) methods, which, though costly in computing time, provide an overview of 
the case base. 
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2.4.2. Backward Elimination (BE). 

From a given case base, this strategy emphasizes cases according to its criteria so as to reduce their 
number and thus shrink the case base to a specific number of cases. Evaluation criteria such as 
competence, redundancy and inconsistency, have been used in different methods, which will be 
explained below. 

In the BE method, the case-base will be screened entirely when its size reaches a certain threshold, 
usually followed by the process of case deletion. There are two kinds of BE methods: 1) suppression 
methods for using case-base screening and, 2) methods from the case categorization. 

Suppression methods  

The first BE method, Random Deletion (RD) is a very simple baseline method, when a case is 
randomly selected and deleted once the case-base size exceeds a predefined limit (Markovitch and 
Scott, 1988). Another method, Ironically (Ir), is slightly more complex. It calculates the frequency 
with which each case is retrieved and deletes those which are not frequently accessed in the case base 
(Minton, 1990). 

BE methods have thus evolved and take into account a quality criterion in their study. Among these 
methods we find Utility Deletion (UD) which is based on Minton's utility metric and chooses a case 
item for deletion based on an estimate of its performance benefits (Smyth and Cunningham, 1996).  

A utility metric is defined by Minton as: 
 

m e t r i c  = ( A p p l i c F r e q  x  A v e r a g e S a v i n g s ) - M a t c h C o s t   ( 3 )  
 

which takes into account the cost of maintaining case and the average savings multiplied by 
application frequency. 
 
The utility problem manifests itself as a trade-off between the solution quality associated with large 
case base and the efficiency problem of working with a large case base. Furthermore, solution quality 
increases with case-base size (Smyth and McKenna, 1998). 

Lastly, there exist other methods such as the Deletion Based on Redundancy and Inconsistency 
method which are endowed with two modules of detection, one with redundancy and the other with 
inconsistency. After a series of tests using these two modules and concerning each case found in the 
base, the specific cases may, after user approval, be either removed or kept (Racine and Yang, 1996). 
Other methods take into account other notions, such as density in Deletion Based on Case-Base Size 
and Density.  

The first of these, proposed by Smyth and Keane, studies case-base size and the density distribution of 
the cases contained in the base. It attempts to respect the homogeneity of case-density size (Smyth and 
McKenna, 1998). 

RNN (Gates, 1972) the reduced nearest neighbor algorithm keeps removing instances until no more 
misclassification is generated by the remaining instances. It is hence better than CNN in terms of 
instance reduction percentage and classification speed. An extension of this algorithm is the 
Generalized Condensed Nearest Neighbors (GCNN), it is the same as CNN, but assigns instances 
which satisfy an absorption criterion (calculated in terms of the nearest neighbors and enemies (the 
nearest instances of other classes)). An instance that is absorbed using the absorption criterion could 
better reduce the size compared to CNN algorithm.  
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Wilson and Martinez (1997) introduced a notion of association where an instance is an associate of 
another instance if it is a one of its k nearest neighbors. This notion is applied in a family of five 
decremental reduction optimization procedure algorithms called DROP1-DROP5. Drop3 uses ENN to 
remove the noisy instance before executing drop1 and presents a best performance (Wilson and 
Martinez, 2000 ; Hamidzadeh et al., 2014). 

Dai and Hsu (2011) propose three Reverse Nearest Neighbor Reduction RNNR algorithm versions 
based on Reverse Nearest Neighbor (RNN) and selecting the better RNR-L1 that achieve higher 
accuracy than ICF and DROP3. 

2.4.3. Batch search. 

The ICF method, whose type selection is hybrid was introduced by Brighton and Mellish (2002a), uses 
an algorithm which iteratively removes a case whose absence produces better results than if it were 
retained. This algorithm also uses coverage and reachability as selection criteria. It repeatedly uses a 
deletion rule that removes cases whose reachability size is greater than that of the coverage until the 
conditions of the rule are no longer satisfied. 

The majority of these methods do not give satisfactory results concerning the optimization of case-
base size according to the studied criterion. Moreover, there are some methods which are difficult to 
implement, and those which are easy to implement do not produce convincing results. We are 
interested particularly in the ICF method because it produces better results than the others (Brighton 
and Mellish, 2002a). 

ICF outperforms alternative local methods such as ENN, CNN, IB3 and DROP3. It is thus the best 
candidate for representing local methods (Ferrandiz and Boullé, 2010). 

Leyva et al. (2015) argue that the ICF method presents some drawbacks but “it is an interesting 
method that opened the promising field of using LSs in Instance Selection, whose study may be a 
source of inspiration for new proposals in this field.” The authors propose three instance selection IS 
methods based on local sets, which follow different and complementary strategies. Indeed the authors 
resolve the problem of instance reduction (maximizing accuracy and reduction size of case base), as a 
bi-objective problem and use a local set concept to develop three IS methods. These methods differ in 
the selection strategy and presents complementary results (the first maximizes the accuracy, the 
second one targets the reduction of size and the third makes a compromise between these objectives. 

2.4.4. Backward Elimination categorization 
 

2.4.4.1. Case base competence modeling 

The second kind of BE is a categorization method used for modeling the case-base competence as 
proposed by Smyth and Keane (1998; 1999; 2001a; 2001b). The cases included in a case-base are 
categorized according to their competence. The key concepts in categorizing cases are the coverage 
and reachability previously discussed. 

The methods developed in this area generate a set of target cases so that case base is categorized. Two 
basic hypotheses underlie these models: in the first the case base corresponds to a sample target or to 
potential cases, and in the second the space problem is regular, which means that similar problems 
have similar solutions. 
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Footprint deletion is the strategy used to remove irrelevant cases, thereby guiding the case base 
towards an optimal configuration (in the sense that competence is maximized while size is 
minimized). 

The case categories described above provide a means of ordering cases for deletion in terms of their 
competence contributions. Auxiliary cases are selected for deletion before support cases, which are 
chosen before spanning and pivotal cases. The optimal case-base can be constructed from all the 
pivotal cases plus one case from each support group. This strategy is not designed to eliminate the 
need for performance-based methods such as utility deletion (Smyth and Keane, 1995). 

Footprint Utility deletion is the hybrid strategy between footprint deletion and utility deletion. First, 
the footprint method is used to select candidates for deletion. If there is only one such candidate then it 
is deleted. However, if there are numerous candidates, rather than selecting the one with the least 
coverage or largest reachability set, the candidate with the lowest utility is chosen (Smyth and Keane, 
1995). 

2.4.4.2.  Specific case categorization 

These two previous methods use a specific case categorization. Four categories of cases are 
considered: 

Pivotal Cases: a case is pivotal if it is reachable by no other case but itself. Its deletion directly 
reduces the competence of a system. 

Pivot(c) iff Reachable(c) – {c} = ∅ 

Spanning Cases: spanning cases do not directly affect competence. They are so named because their 
spaces of coverage link (or span) regions of the problem space that are independently covered by other 
cases. 

Spanning(c) iff Pivot (c) Λ coverage(c)∩ U ∈ Coverage(c) ∅ 

The spanning is intra-class if t and c have as solution the same class. Otherwise it is inter-class.  

Support Cases: support cases are a special class of spanning cases and, again, do not affect 
competence directly. They exist in groups, each support providing coverage similar to the others in a 
group. While the deletion of any one case from a support group does not reduce competence, the 
removal of the group as a whole is analogous to deleting a pivot, and does reduce competence. 

Support(c) iff ∃t	 ∈  Reachable(c) – {c}: Coverage(t)  Coverage(c) 

Auxiliary Cases: a case is auxiliary if the coverage it provides is subsumed by the coverage of one of 
its reachable cases. Auxiliary cases do not affect competence at all and their deletion only reduces the 
efficiency of the system. 

Support(c) iff ∃t	 ∈  Reachable(c) – {c}: Coverage(c) Coverage(t) 

The methods of BE strategy make it possible to optimize only one quality criterion of the case-base at 
the expense of other criteria, the competence for RD and the performance for UD. Although FUD 
takes competence and performance criteria into account in its method, no evaluation of the case-base 
has been made concerning its performance. In contrast, the development of redundancy and 
inconsistency criteria (DRI) provides good competence but bad performance. Consequently, we will 
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jointly study a criterion for case selection that takes into accounts both performance and competence to 
ensure a higher quality case base. 

It is noteworthy that the working sample relating to target cases is exploited to evaluate case-base 
quality according to the criterion under study. This sample of cases represents the entire case base for 
the methods RD, Ir, UD, DRI and DSD, whereas in the other two methods, FD and FUD, the sample is 
only represented by a subset randomly selected from the case base. 

In the first case, the study is of greater interest since the entire case base is scanned and therefore all 
possibilities are represented. However, computation time is greater than in the second case. We can 
also specify that all methods make use of a heuristic search procedure except RD which consists of a 
random procedure as its name implies. 

The advantage of these methods is the case categorization used for their deletions. Clear and effective, 
they also produce good results in execution speed once implemented. Their disadvantage is that their 
setup is costly in computing time. Moreover, Yang and Zhu (2001) have shown that these 
categorization methods do not guarantee the preservation of competence. Cases having a strong 
coverage can be removed. 

The contribution of this paper is in the area of backward elimination strategy. Indeed, we propose a 
methodology for case-base optimization by deleting the lowest quality cases in the case base. The case 
quality is being assessed on the basis of competence and performance criteria. 

3. THE PROPOSED METHOD 

3.1. General cycle of the proposed case base maintenance method 

The proposed case-base maintenance method is comprised of two stages (see Fig. 2): 

 

Fig.2. Proposed case-base maintenance cycle  
 

Stage 1: “structuring the case-base” 

This stage is composed of three steps: (i) evaluation of the case base, (ii) categorization of different 
cases (clustering) and (iii) prototyping. 

The step of assessing case-base quality is undertaken by the joint use of the two criteria of competence 
and performance. Competence is characterized by the calculation of case-base coverage and 
reachability. Performance is characterized by the accuracy of the case base and the number of cases. 
This step is for the preparation of case categorization, an evolution of the competence model of Smyth 

Prototyping Categorization Evaluation 

… 
Categorization  
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Case just solved 



15 

and McKenna (1998), with five case categories defined: pivotal, support, auxiliary, inter-class 
spanning and intra-class spanning. The next step, "prototyping", is for the selection of the most 
representative cases, which, in turn, depends on case categories. 

Stage 2: auto-increment of the case-base" 

This stage makes it possible to incrementally add to the case base new cases that have just been solved 
by the CBR cycle. 

From the average recovery cases of the restructured case base, the coverage and reachability of the 
new case is calculated, taking into account the problem and solution parts of the case in comparison to 
the case base. This requires defining of measures that take into consideration the coverage and 
reachability of the two case parts of problem and solution. We will rely on these measures in order to 
decide to increment or not the new cases in the case base. It would thus be possible to respect the 
structure of the previously set up case base. If the solution is reachable, we focus on the problem part 
of the new case in order to account for the structure of cases previously defined. 

The adopted approach relies on the following points. 

Approach: clustering + prototyping (prototype selection) 

The proposed approach consists of gathering into different categories cases considered to be similar 
according to their coverage and reachability. A prototype is then selected for some categories by 
choosing the case which represents its group as well as possible. 

Search Direction: Backward Elimination 

From a complete case base, cases are removed to reduce the case base according to a set of criteria. 
This suppression is carried out using a categorization algorithm as well as a competence measure. 

Search Procedure: heuristic + random 

For each case in the case base, we estimate its coverage and reachability from a subset of cases 
randomly drawn, that will represent the problem space, i.e. the cases which will be potentially 
reachable by the source cases. 

Selection Criteria: competence and performance 

The objective of the proposed method is to preserve the competence of the case-base while optimizing 
its size and maintaining good performance. Competence is quantified by a measure (CM) that keeps 
with the two basic concepts: coverage and reachability. 

To achieve high competence in the case base, it is necessary to maximize the coverage of cases and 
minimize their reachability. As for performance, it depends on the accuracy of the case-base cases 
(good classification) according to their number (storage). 

)(

)(
)(

cVr

cVc
cCM   (4) 

V c(c) = Cardinality of the c case covering set. 
V r(c) = Cardinality of the c case reachability set. 
 

Stopping Criterion: according to a preset global competence measure 
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A value is determined from the CM measure making it possible to determine when to stop deletion. 
This measure reflects the global competence value of the complete set of the reduced case base which 
is equal to the sum of the CMs of each case, divided by the number of cases in the case base. Thus, 
when the global competence value is equal to “1” and the coverage of each case in the case base is 
alone in its own class, then deletion stops. 

n

cCM
CBetenceGlobalComp

n

i
i

 1

)(
)(  (5) 

Where n: is the number of cases in the case base. 

The proposed method is composed of two steps consisting, on the one hand, of a way to structure the 
case base, and, on the other hand, of the means to dynamically ensure its auto-increment. 

3.2. Structuring the case-base 

As mentioned above, structuring is achieved by backward elimination and is comprised of: evaluation, 
categorization and prototyping.  

3.2.1. Evaluation. 

The evaluation step is based on the case categorization developed in Smyth and Keane (1995) and 
adapted for this study to select representative cases. It can work by means of an algorithm associated 
with the Competence Measure (CM), a methodology that deals with two axes. The cases are treated 
first: Smyth's categorization is used to guide deletion and the CM metric to construct a compact 
competent case base. The labeled instances are treated second: using the Smyth categorization, the 
spanning cases are divided into two subcategories, with the CM metric guiding the deletion. 

To calculate the coverage and reachability of the cases, the k-nearest neighbor (knn) algorithm is then 
applied by using the Euclidian Distance in the numerical instance and the Hamming distance in 
categorical variables.  

A case is composed of a Problem part and Solution part. 

,  

, , … , , … . ; 	  

The similarity in the case of numerical instances is equal to   

	 , 	
1

1 	 	
 

However for the categorical case we have.   

	 , 	
1			 	 	

0			 	 	 	
 

And when there is a mixture of instances, we discretize the numerical variables in order to handle only 
the categorical ones.  
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The algorithm below (Algorithm 1) illustrates the calculation of coverage values (Vc) of each case-
base case 
---------------------------------------------------------------------------------------------------------------------------------------- 

1. Initialization: 
CoverageListCasei=∅  
Vci=0, i=1..n  

2. For i=1..n (each casei) do // n: number of cases in CB 
3. For j=1..n (each casej) do 

4. If sim (casei, casej) > Threshold then // casei covers casej 
5. Vci = Vci + 1 // the value of coverage is incremented 
6. Select the index (casej) and Vcij 
7. Update the List-associated_casei 

8. CoverageListCasei: (Vci, index (casej)j{1..n}) 
EndIf 

EndFor 
EndFor 
------------------------------------------------------------------------------------ 

Algorithm 1. Calculation of Vc 

Two examples of CoverageListCasej: 
CoverageListCase1: (Vc1 = 3, case2, case12, case20)  
CoverageListCase5: (Vc5 = 2, case7, case16) 

The algorithm of Vc calculation results in forming two groups of cases. The first group is related to the 
case base containing “casei” cases (i=1..n), the second to the entire "casej" set of  target cases (j=1..n) 
which is equal to the number of cases in the case base (hypothesis: a source case is a potential target 
case). For each “casei” of the case base, the algorithm scans the entire target case “casej”. If the 
similarity between a casei and a casej exceeds a preset threshold, then the casei covers the casej. The 
algorithm increments a counter dedicated to the casei coverage value “Vci” and simultaneously 
memorizes the index of casej. Thus, when the scanning of the target-base for the first casei has ended, 
a couple is obtained whose coverage value contains a set of casej indices that are covered by the casei. 
The algorithm repeats this operation "n" times corresponding to the number of cases in the case base. 

The algorithm below (Algorithm 2) illustrates a reachable list associated with casej. 

-------------------------------------------- 

1. Initialization: 
ReachableListCasej=∅  
Vrj=0, j=1..n 

2. For j=1..n (each casej  CB) do // n: number of cases in CB  

3. For i=1..n (each casei  CB) do  

// ReachableListCasej = (Vci, 


l

k 0

index( casek), l: number of cases covered by casei ) 

4. For k=1..l (each casei  CoverageListCasei) do  
5. If index(casei)= index(casek) then  // casej is reachable by casei 

6. Vrj = Vrj + 1  // the value of reachability is incremented 
7. Upgrade ReachableListCasej 

EndIf 
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EndFor 
EndFor 

Algorithm 2. Calculation of Vr 

Two examples of ReachableListCasej: 
ReachableListCase2: (Vr1 = 1, case1)  
ReachableListCase7: (Vr5 = 3, case5, case13, case21) 
 

This algorithm begins with the fact that there are already coverage values for the different casei in the 
case base as well as the index sets of covered cases. As in the Vc algorithm, two groups of cases are 
exploited: a case group in the case base and a group of target cases containing exactly the same source 
cases. Then, for each target case, the algorithm compares its index with all of the indexes of the first 
casei of the case base. If there is equality, then casej is reachable by the casei and so on, for all the 
cases of the case base. We obtain at the end of the first scan of casei the reachability value of casej and 
the reachable indexes of casei. The algorithm repeats this operation «n» time. 

3.2.2. Categorization 

The categorization step allows the various categories for cases and labeled instances to be defined. 

A- Treatment of Cases 

Cases are represented by a set of attribute-values. The CM incorporates two properties: coverage and 
reachability (see equation 2) and makes an individual contribution to the case competence in relation 
to the size of the latter's coverage set, while attributing to each coverage and reachability case a value 
that we shall name coverage value "Vc" and reachability value "Vr". 

For a case-base to have good competence its coverage ratio must be high and its reachability rate must 
be low. Consequently, the CM is used to guide the deletion of cases in the case base by favoring cases 
with a high CM value and deleting those with smaller CM value. Our method therefore consists of 
reducing case-base size while maintaining maximal competence. The case categories will be 
determined by CM metric.  

The CM value can be calculated using the Vc and Vr values and thus lead to case categorization. The 
properties that allow this categorization are shown in Table 1. 

Table 1. Properties of the case categories. 

Type of case Vc(ci) Vr(ci) CM(ci) 
Auxiliary case >1 = Vc(ci) 1 

Support case group >1 >1 Same values 
Spanning case ≥1 >1 ≤1 
Pivotal case 1 1 1 

 

The CM value determines the choice of pivotal cases. It is very important that a pivotal case be 
preserved because its deletion directly reduces case-base competence. Moreover, a representative 
having the highest CM value from each support case group is kept. In contrast, auxiliary and spanning 
cases arriving below a certain competence threshold do not affect competence and can thus be deleted. 
It is noteworthy that auxiliary cases are the least important as they make no direct contribution to 
competence. They are followed in ascending order of importance by the support cases, then the 
spanning cases, and finally the pivotal cases, the most important ones. The following is a case-base 
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example comprised of four cases showing the coverage and reachability space of the c1, c2, c3 and c4 
cases (Fig. 3). 

 

 Fig.3. Example for coverage and reachability 
 

Coverage(c1)={c1, c2, c3} Vr(c1)=3 Reachable (c1)={c1, c2} Va(c1)=2 
Coverage(c2)={c1, c2}  Vr(c2)=2  Reachable (c2)={c1, c2} Va(c2)=2 
Coverage(c3)={c1, c3}  Vr(c3)=2  Reachable (c3)={c1, c3} Va(c3)=2 
Coverage(c4)={c4}  Vr(c4)=1  Reachable (c4)={c4}   Va(c4)=1 
 

As a result: CM(c1) = 1.5, CM(c2) = 1, CM(c3) = 0.5, CM(c4) = 1. 
 
Case categorization and deletion are determined by the following rules: 
Vc(c2) = Vr(c2) and Vr(c2) > 1, CM(c2) = 1   auxiliary case   remove case c2 
Vc(c3) = 1, Vr(c3) > 1,  CM(c3) < 1    spanning case   remove case c3 
Vc(c4) = Vr(c4) = CM(c4) = 1     pivotal case    retain case c4 
 
In so doing we obtained the deletion of two cases (c2 and c3) and a case base containing cases c1 and 
c4. By recalculating the CM value of each case, we find that CM(c1) = CM(c4) = 1 with Vr(c1) = V 
r(c4) = 1 and Vc(c1) = Vc(c4) = 1. 
Consequently we found a reduced case base with two cases forming an optimal case base with two 
pivotal cases. 

B- Treatment of Labeled Instances 

When an instance-base is treated containing instances with their classes, the CM metric and the Smyth 
categorization are always needed. However, two subcategories are determined in the spanning cases. 
The first subcategory concerns inter-class spanning cases and the second, intra-class spanning cases. 
An inter-class spanning case of a given class (for example class1) is one which is partially covered by 
another case belonging to another class (class2). An intra-class spanning case is one which is partially 
covered by another case pertaining to the same class. 

Figure 4 shows an example of a pivotal case (c1  class2), an inter-class spanning case (c2  class1), 

an auxiliary case (c3  class1), an intra-class spanning case (c5  class3) and a support group 

comprised of three support cases (c7; c8; c9  class4). 
 

 

Fig. 4. Case categories 
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Case2 belongs to class1 but it is covered by the pivotal case1 pertaining to class2. This case should not 
be removed because it contributes to the competence of class1. In addition, a covering threshold is set 
at which inter-class spanning cases are deleted. If the covering of case1, which is in relation to case2 
(pertaining to the same class), is higher than a preset threshold, then case2 is removed. This is also 
valid with the first scenario (treatment of cases). This threshold is given to prevent the removal of 
cases that make a significant contribution to covering and that are reachable by a small part of their 
covering space. Consequently, the intra-class spanning case definition to be removed is as follows: 

Given that (c1, c2)  same class  

- Intra-class Spanning Case: Spanning (c2) 

	 Recovery ∩	 		 	Recovery ∅ 

The following algorithm (Algorithm 3) shows the removal process of cases according to their 
categories. It concerns the instance bases containing the labeled instances. 

 

1. For each case CB  to calculate Vc and Vr 
2. Associate at each index (case) its coverage-set and reachability -set 
3. Determine the cases categories 
4. If auxiliary Case then Remove all cases 

ElseIf Support Case then 
Classify these cases according to their MC values in an increasing way 
For each Support Group Do 

Remove all the cases except the one that has greatest MC value 
EndFor 

ElseIf Intra-class spanning cases then 
Remove all cases except that which has “Vc < threshold” 

ElseIf Inter-class spanning cases then  
Retain 

ElseIf Pivotal case then 
Retain 

EndIf 
Stop when each case covers only its own case among the existing cases in its class and the 
CompetenceGlobal(BC)=1. 
--------------------------------------------------------------------------------------------------------  
Algorithm 3. Structuring algorithm For each case to calculate Vc and Vr 

The algorithm starts by calculating the two values Vr and Va. It then determines the case categories 
beginning with the support cases in order to carry out the suppression. It classifies cases according to 
their Vr value for each support group, keeping only the one which has the greatest Vr value. Then it 
deletes all auxiliary cases, except the inter-class ones with high CM values. Finally, it keeps all pivotal 
cases. 

Once the cases have been treated, the two subcategories of the spanning cases are no longer taken into 
consideration. 

3.2.3. Prototyping  
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This step allows for the selection of relevant cases. Selection is performed by deleting the auxiliary 
cases, deleting intra-class spanning cases according to certain conditions and deleting all support cases 
except the one with the greatest coverage in its support group, so as to keep inter-class spanning cases 
as well as pivotal ones. This selection is crucial because the quality of the case base depends on it. 
Moreover, it allows the number of cases to be reduced, thus rendering the retrieval and adaptation 
phases effective. 

Moreover, in order to maintain the case base throughout the life cycle of the CBR system, we propose 
an auto-increment method which preserves the structuring previously established with the addition of 
new cases to the base. 

3.3. Auto-incrementing the case base 

In order to increment a case in the case base, it must first be evaluated and categorized. It is then 
trained within the case base by means of a specific algorithm.  

3.3.1. Evaluation and categorization of the new case. 

After setting up the structuring of the case base through case categorization, the aim of the following 
study is to make the base evolve in an incremental (dynamic) way while respecting its structure. This 
evolution requires the introduction of cases into the case base under specific conditions directly related 
to the quality of the case base. 

The two criteria allowing assessment of this quality were discussed in section 2.1, namely competence 
and performance. In the off line step, when a target case arrives, its solution is not available. We must 
differentiate to calculate reachability and coverage of the problem and solution part.   

Regarding competence, in our study, case coverage will concern both the problem and solution parts. 
Coverage of the problem part, denoted by (Vcp), will be considered first, followed by coverage of the 
solution part, denoted by (Vcs). The notations Vrp and Vrs will be assigned respectively to the 
reachability in each part. 

Vrp: is the reachable cardinal of the problem part. 
Vrs: is the reachable cardinal of the solution part. 

The association of the two spaces, problem and solution, is reflected by the sum of these two 
cardinalities. Thus, the two values “Vc” and “Vr” will be defined as follows: 

Vc = Vcp + Vcs 
Vr = Vrp + Vrs 

Furthermore, we associated the average coverage of the case base reflecting the average coverage rate 
of the entire base. This rate will serve as a mark for the introduction of a new case into the base. 
Average coverage is a good reference mark for learning cases in the case base because it characterizes 
the base's capacity and the problem resolution space. The goal is to increase this space so that the case 
base can cover more problems. In contrast, this increase may seriously damage the base's structural 
installation, hence the difficulty of dynamic learning on the part of cases. Consequently, the two steps 
of case-base maintenance and its auto-increment are strongly connected. The average coverage of the 
case base is given by the following formula: 

 
n
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Where "n" is the number of cases in the case base. 

This average rate makes it possible to choose those cases which make the best possible contribution to 
the competence of the case base. This rate evolves with the evolution of the number of cases stored in 
the base. 

3.2.2 Auto-increment. 

The auto-increment stage is supported by an algorithm that takes into account the coverage and 
reachability values of both problem and solution parts and also serves as the VcCB baseline measure. 

Auto-increment algorithm 

When a case is to be added to the case base, a “targett*” is first created, comprised of a target T 
associated with its potential solution.  

target=(Pt, ?)  targett*=(Pt, St) 

Once created, the “targett*” is ready to be learned. To introduce a “targett*” into the case base, its 
solution must not yet exist within the case base. 

Let the problem part (symptom) be reachable by a number of cases lower than the mean coverage rate 
of the case base. This condition will ensure that the introduced case will contribute to the competence 
of the case base because its reachability rate will be relatively low.  

The incremental learning algorithm is as follows: 

 
1. Let the “CB” Case Base  
2. target* case  target case // change of the target case status by associating a solution 
3. For each target* case do 

4. If Vrs > 0 then // the solution of the solved case is reachable by other solutions of the 
source cases 

5. If Vrp < VcCB then // the problem part which is reachable by the problem part of the 
source cases is higher than the average coverage rate of the CB 

6. Source Case  targett* case 

7. CB  CB   source case 
EndIf 

ElseIf 
8. Source case  target*case //Change of target* case status  

9. CB  CB   target* case // Introduce target* case in the CB  
EndIf 

EndFor 
Algorithm 4. Auto-increment algorithm of the case base 

The operating principle of the algorithm is as follows: 

According to the solution part reachability rate of the targett* case, this case will either be admitted to 
the case base or not. If “Vrs” is equal to zero, it means that no case similar to this newly solved one 
was previously listed in the base and it will thus be added. On the other hand, if the solution is 
reachable (Vrs>0) then we are interested in the problem part reachability rates compared to the 
average coverage rate of the case base. If the reachability rate is less than " VcCB " (which means that 



23 

the coverage of the solved case is higher than that of the case base) then the case is admitted for 
learning. This learned case will help to improve the coverage rate of the case base and thus to improve 
overall competence.  

4. Assessment of the proposed method  

4.1. Assessment of structuring method  

In our study of case-base structuring we propose a finer categorization comprised of five (5) classes of 
case by splitting the category of the auxiliary cases into two subcategories: intra-class and inter-class. 

In this section we compare the size, the reduction rate, performance and competence of the case-bases 
produced by means of different editing techniques used on a range of standard data-sets. The CNN 
algorithm was the first reduction technique for reference base size, based on static considerations 
(Dasarathy, 1991). The algorithm aims at reducing the entire input space into a representative 
subspace having the same properties. 

In addition, this section is divided into two subcategories. The first is related to the competence study 
of the two forward selection strategies used in CNN and RC algorithms for comparison with the 
method proposed here. It should be noted that the RC method gives the best results in the case addition 
strategy. The second subcategory relates to the performance study of the proposed method. The ICF 
method produces better results than the others in backward elimination strategy. 

4.1.1. Competence Study 

Three different editing techniques are compared in this experimental study: 1) the standard CNN 
approach, 2) RC-CNN with cases placed in order according to their relative coverage values, and 3) 
CM with cases in order according to their CM values and associated algorithm. To reinforce the 
comparison, four different data sets are used. Travel (351 cases, 34 attributes) and Property (506 cases, 
32 attributes) are traditional CBR data sets. The other two, Credit (690 instances, 15 attributes and 2 
classes) and Ionosphere (351 instances, 34 attributes and 2 classes) represent classification problems. 
Property, Credit and Ionosphere data-sets are available from the UCI Machine Learning Repository 
(www.ics.uci.edu/mlearn/MLReposit ory.html; Blake et al., 1998). 

A Travel data set is also available from the AI-CBR Archive (www.aicbr.org). In this section, the sizes 
of the case base in relation to their competence over unseen target problems are compared. As in 
(Smyth and McKenna, 1999), each editing strategy is used to generate a case base for the four used 
data-sets. This time, however, 100 random test problems are removed from the training set before the 
case-base construction. The final size of the case base and their competence over the 100 test problems 
is noted. The table below (Table 2) illustrates the comparison of the three editing techniques using the 
four data-sets. 

Table 2. Comparison of editing strategies over the test data sets. 

Data set Property/Method CNN RC CM 

Travel 
Mean case-base size 184.28 197 145.74 

Competence(%) 89.25 88.72 90.84 

Property 
Mean case-base size 55.19 57.81 39.62 

Competence(%) 95.92 95.53 95.91 

Credit 
Mean case-base size 344.84 297.4 215.76 

Competence(%) 58.85 58.95 62.37 
Ionosphere Mean case-base size 61.93 46.39 43.87 
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Competence(%) 85.78 84.44 86.92 
 

 

Fig. 5 (a ) competence by one-way analysis of variance (ANOVAL) 

 

Fig. 5 (b )Mean case-base size by one-way analysis of variance (ANOVAL) 

The results are positive. We can see it from Table 2 and from the figure 5 (a and b) defining the One-
Way Analysis of Variance (ANOVAL)" and the box plot of the columns of X. It can be clearly seen 
that the CM method is more efficient than the others since it achieves a better case reduction rate with 
a finer competence for the four data-sets. The reduction rate obtained by the developed method is 
considerably higher than that produced by the four traditional methods, especially in classification 
problems represented by the "Credit" and "Ionosphere" data-sets.  

Concerning competence value, this is higher than the corresponding case base obtained via other 
methods, though it is essentially the same as the traditional method for the "Property" data set. This 
shows that our method selects cases that are more competent than those selected by the other methods. 

4.1.2. Performance Study 

The performance study between the two methods (ICF and CM) was conducted on 18 data sets taken 
from the UCI repository of machine learning data bases (Brighton and Mellish, 2002b). Indeed, 
Brighton and Mellish gathered the compared methods into two groups in chronological order: 

 Older methods: CNN, RNN, SNN, Chang, Wilson Editing, Repeated Wilson Editing, and All 
k –NN. 
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 Iterative case Filtering Algorithms: IB2, IB3, TIBLE, Cameron-Jones’s Extensions and RT3 
the most successful of Wilson and Martinez’s algorithms. 

The performance is evaluated based on the accuracy and the number of cases stored in the case base. 
According to Yan et al. (2014) and Dai et al. (2011), we used the five- fold cross validation. In our 
experiments, initially 20% of instances (randomly selected) are reserved for testing and the other 4* 
20% =80% for training. This process is repeated five times. The average accuracy and mean size are 
given in Table 3. The accuracy and the resulting size are then calculated. 

 

Table 3. Rate of performance and competence of the databases relating to CM as well as the comparison with IC 

Data set 
RT3 ICF CM Best 

method Storage 
(%) 

Accuracy 
(%) 

Storage 
(%) 

Accuracy 
(%) 

Storage 
(%) 

Accuracy 
(%) 

anneal 20.72 91.82 22.59 91.35 20.05 100.00 CM 
balance-scale 18.23 83.40 14.67 81.47 13.78 95.83 CM 

breast-cancer-l 19.94 74.42 23.51 72.81 4.02 96.56 CM 
breast-cancer-w 3.13 95.26 4.27 95.14 5.29 93.24 RT3ICF 

cleveland 20.92 78.89 15.60 72.08 6.00 91.01 CM 
credit 19.9 83.15 16.89 82.28 9.30 88.76 CM 
glass  23.26 69.05 31.40 69.64 13.08 72.51 CM 

hepatitis 19.15 83.33 16.33 82.26 11.03 90.03 CM 
iris  16.04 93.61 42.08 92.56 10.66 86.99  RT3 

lymphography 26.73 72.70 25.63 77.59 18.92 96.31 CM 
mushrooms  5.50 98.89 12.80 98.64 14.65 98.22  RT3 

Pima-indians  22.38 71.08 17.22 69.17 8.00 93.09 CM 
post-operative 6.45 69.44 7.18 65.28 3.33 83.46 CM 

thyroid 16.23 77.91 21.85 86.63 18.3 86.16 ICF 
voting 7.43 93.77 8.88 91.19 2.50 100.00 CM 

waveform 22.79 76.14 18.98 73.93 18.53 96.87 CM 
wine  15.37 86.43 12.00 83.81 3.66 92.94 CM 
zoo 26.13 87.08 52.78 92.42 18.81 100.00 CM 

Average 17.24 82.58 20.25 82.13 11.66 91.22 CM 
 

The results of filtering using ICF and RT3 are exactly those in which competence degrades as a result 
of noise removal. From the results in this table, several observations can be made. The CM method 
had very good storage reduction and generalization accuracy on average. 

Some data sets seem to be especially well suited for the CM method. For example, it required less than 
6% storage for the 6 data sets (“breast-cancer”, “cleveland” “post-operative”, “voting" and “wine"), 
yet it achieved a generalization accuracy that is even higher than the one of the ICF and RT3 methods. 
Generally, CM had higher average generalization accuracy than ICF and RT3, and also had the lowest 
storage requirements. However, “RT3” is slightly better than “CM” concerning accuracy and storage 
for two datasets: “breast-cancer-w'” and “mushrooms”. Regarding “ICF”, it gets the best results for the 
“lymphography” datasets. 

The final result (average storage and average accuracy) concerning the 18 data sets shows that the CM 
method is better than RT3 and ICF in terms of accuracy (91.22% against 82.13% and 82.58%) and its 
results for storage show that the CM method is only about half as large as the RT3 and ICF methods. 
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Fig. 6 (a )Accuracy by one-way analysis of variance (ANOVAL) 

 

Fig. 6 (b )storage by one-way analysis of variance (ANOVAL) 

Figures 6.a and b which are the "One-way analysis of variance"(ANOVAL) respectively, confirm that 
the CM method is the best. (It presents globally the best results in terms of the accuracy and case base 
size reduction as well.) However, we notice that the methods ICF and RT3 gives the best results for 
the iris and breast cancer benchmarks.  

4.1.3. General study  

We further evaluated the approach by testing the Eva (Ferrandiz and Boullé, 2010), and the 
RNNR-L1 (Dai and Hsu, 2011) algorithms. The latter belongs to the condensing type where 
the research strategy is decremental. According to its authors it enhances the results obtained 
by hybrid algorithms such as ICF, DROP3.  
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The Eva algorithm (Ferrandiz and Boullé, 2010) used with the NN algorithm which belongs to the 
clustering methods category presents promising results according to its author. The evaluation is done 
using five-fold cross validation as done in Dai’s studies (Dai and Hsu, 2011). Ferrandiz and Boullé 
(2010) on the other hand, used ten-fold cross validation. This might bias the results as mentioned in 
Lupiani’s recent work (Lupiani et al., 2014). But this gives us an estimation of methods’ performances 
with respect to each other, without having to develop them. 

Table 4. Comparison of different algorithms 

Data set 

RT3 ICF CM Eva RNNR-L1 

Storage 
(%) 

Accuracy 
(%) 

Storage 
(%) 

Accuracy 
(%) 

Storage 
(%) 

Accurac
y (%) 

Storage 
(%) 

Accuracy 
(%) 

Storage 
(%) 

Accuracy 
(%) 

breast-
cancer-w 

3,13 95,26  4,27 95,14 5,29 93,24 0,7 97,1 18,65 96,63

iris  16,04 93,61 42,08 92,56 10,66 86,99 2,3 96 28 96

Pima-
indians  

22,38 71,08 17,22 69,17 8 93,09 0,5 73,4 25,86 69,4

waveform 22,79 76,14 18,98 73,93 18,53 96,87 0,3 79,9 24,61 77,42

wine  15,37 86,43 12 83,81 3,66 92,94 2,2 88,9 25,07 96,62

Average 15,942 84,504 18,91 82,922 9,228 92,626 1,2 87,06 24,438 87,214

 

 

Fig. 7 (a) competence by one-way analysis of variance (ANOVAL) 
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Fig. 7 (b) Mean case-base size by one-way analysis of variance (ANOVAL) 

We can notice from the results defined by ANOVAL analysis that globally EVA and RNNR-L1 
enhance the RT3 results in term of accuracy. CM on the other hand is distinguished by its better 
results for the Pima Waveform and Wine benchmarks. However, it gives less good results for the Iris 
and breast cancer datasets.  

Concerning the storage, Eva presents the best results, it is followed by CM.  

4.2.  Assessment of the auto-increment method 

The auto-increment method can be assessed by using the number of learned cases according to a 
defined protocol. The protocol is as follows: the case-base will be divided into two parts: the training-
set contains 80% of the case base with the new case set containing the remaining 20% of cases and 
added to 10% of cases selected randomly from the training set. Consequently, the newly constituted 
set will contain 30% of cases from the case base (Fig. 8).  

The cases contained in a test set are then subjected to the training set. If the case in the new case set 
meets the necessary conditions to be learned in the training base then it will be integrated by the latter, 
and so on for all cases of this set. Thereafter, we obtain the learned case base containing all cases from 
the training base as well as the cases from the test base having met the necessary conditions. 

 

 

Fig. 8. Protocol set up concerning the evaluation of the auto-increment algorithm 

Finally, the rate of the number of learned cases from the structured case-base will be calculated.  

The learned cases are shown in Figure 9. 
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Fig. 9. Rate of learning of the various databases relating to the CM method. 

It is noteworthy that the percentage of the learned cases (the number of learned cases resulting from 
the auto-increment out of the number of initial cases of the case base) varies from one database to 
another (from 81% to 100%). This means that one type of cases may not even be considered to be a 
database by another database. The data bases “balances-scale”, “iris” and “mushroom” are those 
whose learning rate is below 90%, which means that the auto-increment algorithm has detected cases 
that were not necessary to the case base. This is because the case-base maintenance was undertaken on 
cases completely independent of the base. As for the data bases with 100% learning  ("anneal ", 
"credit", "glass" ...), this means that the auto-increment algorithm has performed perfectly by 
automatically learning all cases from the test base. 

5. Application of the proposed method 

The proposed method was applied to an industrial system, a supervised industrial system of pallet 
transfer (SISTRE) and was evaluated on a case base that relates the supervised industrial system of 
pallet transfer (SISTRE) (Haouchine et al., 2008).The case base maintenance was developed through 
minor adjustments to simple applications of the “data mining” type. This application is modeled by a 
case base containing attributes that are all informed. The values of these attributes constitute a 
hierarchy, which is operated during the adaptation phase. 

SISTRE is composed of five robotized work stations which are served by a pallet transfer system 
organized into double rings (internal and external). Each station is equipped with pneumatic actuators 
(pushers, pullers and indexers) and electric actuators (stoppers) as well as a certain number of 
inductive sensors (proximity sensors). An inductive read/write module locates and identifies each 
pallet and provides information relative to required operation at a concrete station. Pallet conveyance 
is ensured by friction on belts activated by electric motors. Each pallet has a magnetic label that is 
used as embedded memory that can be read at each work station by means of magnetic read/write 
modules (Balogh) and that memorizes the product assembly sequence. These labels thus determine the 
pallet path through the system. 

Pallets are conveyed on the interior ring which allows transit between the various stations. When the 
pallet is to be handled by a robot at the work station (information read on the label of the pallet), the 
latter is detoured onto the external ring where the work station is located. 
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The station is situated on the external ring and contains pneumatic and electric actuators as well as 
inductive sensors. 

The SISTRE case base is composed of 750 cases, 12 attributes and 9 classes. In this case base, the 
class to be found is an equipment class to be repaired which is formalized in instance form. In the 
SISTRE base, the space is taken from the target cases as the total case base space. 

The case descriptors are provided by components of different sources such as sensors and control and 
command units. A case is composed of eleven modal problem descriptors (ds: source descriptor 
problem) and one solution descriptor (Ds: source descriptor solution) reflecting a given failure class. 

ds1: station ϵ {station1; station2; station3; station4; station5}. 

ds2: zone 2 {internalring; externalring; postzone; pusherzone; pullerzone; robotzone}. 
ds3: subzone { entry; internalconveyer; externalconveyer; robot; exit}. 
ds4: component-equipment 2{ internalcarpet; externalcarpet; indexer; robot; pusher; puller}. 
ds5: presence palette 2 {yes; no}. 
ds6: sensor type _ {balogh0(bal0); balogh1(bal1); sensorDi; i = 19}. 
ds7: sensor state 2 [0; 1]. 
ds8: stopper _ {Si; i = 16}. 
ds9: stopper state 2 [0; 1]. 
ds10: context variable _ {balogh0(bal0); balogh1(bal1); sensorDi; i = 19}. 
ds11: context variable state 2 [0; 1]. 
Ds1 : failure class 2 {sensor; stopper; pusher; puller; indexer; internalcarpet; externalcarpet; balogh; 
robot}. 

 

Fig.10. Example of three cases of the SISTRE case base. (Haouchine et al., 2008). 

The first case reflects a failure in the S2 stopper. The first four descriptors (ds1…ds4) determine the 
failure place which depends on the zone where the pallet is blocked. In fact, the failure is situated in 
the external carpet equipment which is at the entrance of the secondary ring of station 1. Then, the 
following eight descriptors (ds5…ds11) provide the component states involved in this area and their 
values. Finally, in the solution part, the “Ds1” descriptor specifies the failure class which is “stopper”. 

By applying the structuring algorithm, prior to the case deletion, the following results are obtained: 

Table 5. Statistics of SISTRE case base 

Type of case Pivotal 
cases 

Auxiliary 
cases 

Inter-class 
spanning 

cases 

Intra-class 
spanning 

cases 

Support 
cases 

Support 
Group 

Number of cases in CB 80 120 50 155 345 86 
Number of deleted cases 0 120 41 155 259 0 

Number of kept cases 80 0 9 0 86 86 
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The maintenance method carries out the removal of the 120 auxiliary cases and the 155 intra-class 
spanning cases (Table 5). Concerning the support cases, our method keeps the 86 support cases 
representing each support group (each representative has the largest recovery space). It then removes 
the 41 inter-class spanning cases, keeping only 9 (corresponding to the number of failure classes). 
Finally, the method keeps the 80 pivotal cases. The results obtained appear in Table 5 and show a 
reduced case base containing 175 cases. A set of 140 cases will represent the training base and another 
set of 52 cases will represent the test base. By applying the principle of the incremental learning 
algorithm, we obtain the 52 cases to be learned, 35 of which were added to the training-base, with the 
remaining 17 considered similar. The results of structuring and the auto-increment of the case base are 
shown in Table 6. 

Table 6. Performance statistics, competence and auto-increment of the SISTRE case base. 

Initial case base size 750 
Size of  the obtained case base 175 
case base 

Performance 
Reduction ratio  76.67%

Accuracy 100% 
case base Competence 100% 

Training-base size 140 
Test-base size 52 

Learning 100% 
 

The competence rate is of 100% because the resulting case base solves the same number of problems 
as the initial one. The results are promising and, by applying the proposed method to the SISTRE case 
base, a reduced case base was obtained. Indeed, the case base is reduced by three-quarters (175 per 
750 cases) while retaining the same initial competence. The results show the very good case-base 
performance which is in relation to the reduction ratio and the accuracy. This good performance is 
expressed through the decreasing retrieval time with a 100% accuracy. Concerning the learning, the 25 
cases which were added to the training base, in which there were initially 140 cases, thus form a total 
of 175 cases. By comparing the cases of the resulting learned training base with the reduced case base, 
it has been found that there are exactly the same cases and the same number of cases. This gives a 
learning result of 100%. This result may appear excessive, but it corresponds to the test undertaken. 
Indeed, the cases that are not found in the training set (20%) will be added to it and the others are 
covered by the existing cases (10%). This explains why we find the same cases in the initial case base. 
Thus the auto-increment algorithm has been shown to have performed well by learning only the useful 
cases in the training case base. This algorithm led to the initial reduced case base by means of its 
automatic learning process. An optimal case base was therefore obtained.  

 
6. CONCLUSION AND FUTURE WORK 

Preserving the quality of the case base, both in terms of skill and performance, and ensuring its 
updating is a challenge that has been carried out using CBR-system maintenance tools. Indeed, case 
base maintenance (CBM) is crucial to ensuring the continuing success of a CBR system over time. In 
order to optimize and ensure a good quality case base, we have studied the already existing work in 
this field and have synthesized and compared their results concerning the following points: search 
direction, search procedure, selection criteria and stop criterion. This led us to propose a case base 
maintenance method drawing on the strong points of the various existing methods, namely the 
Backward Elimination method, the joint use of the two competence and performance criteria and the 
exploitation of a metric in support of Smyth and McKenna's categorization. We thus propose a case 
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base maintenance method incorporating two main stages, one offline stage enabling its structuring and 
one online stage enabling its auto-increment. The method developed offline is based on three steps: 1) 
one of case base evaluation through quality criteria, 2) one finer categorization of the competence 
model of Smyth and McKenna, relying on a competence measure and, in some cases, on case base 
performance, and 3) one of prototyping enabling the selection of the most relevant cases (pivotal 
cases, support cases according to their coverage and inter-auxiliary cases). This structuring aims at 
reducing the size of the case base by preserving its qualities: competence and performance. However, 
the CBR system works in incomplete environments in which they evolve through the emergence of 
new knowledge. 
Therefore, from a partial case base, an updating mechanism has been developed which utilizes an 
auto-increment algorithm. This algorithm was used to insert new cases into the case base while 
respecting its structuring and quality. Indeed, the two proposed mechanisms for case based structuring 
and its auto-increment are complementary and contribute to the improvement of the CBR system and 
its evolution. The case base maintenance method is validated from several benchmarks and using the 
best methods.  
The competence criterion was studied via four benchmarks and two methods, namely RC - CNN and 
CNN. 
A study of the performance criterion was conducted on eighteen benchmarks and the ICF reference 
method. Finally, auto-increment was performed on the same eighteen previous benchmarks. Thus, the 
introduced method compares favorably to the most successful ones in existence and the results 
obtained were positive in terms of case base size reduction, accuracy and best competence. We applied 
our work to two industrial diagnosis case bases. 
The first relates to a Supervised Industrial System of pallet Transfer (SISTRE) to which we applied the 
maintenance method.  
In the future, we plan to undertake full-scale tests on CBR industrial systems in order to prove the 
feasibility of the proposed method. This will allow us to adapt our method to the continually changing 
needs of companies using CBR.  
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