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Remaining Useful Life estimation based on
discriminating shapelet extraction

Simon Malinowski, Brigitte Chebel-Morello, Noureddine Zerhouni
FEMTO-ST, ENSMM, Besançon, France

Abstract

In the Prognostics and Health Management (PHM) domain, estimating the remaining useful life
(RUL) of critical machinery is a challenging task. Various research topics as data acquisition,
fusion, diagnostics, prognostics and decision are involved in this domain. This paper presents an
approach to estimate the Remaining Useful Life of equipment based on shapelet extraction. This
approach makes use, in an offline step, of a history of run-to-failure data to extract discriminative
rul-shapelets, i.e. patterns that are correlated with the RUL of the considered equipment. A library
of rul-shapelets is hence extracted at this step. Then, in an online step, these rul-shapelets are
compared to testing units and the ones that match these units are used to estimate their RULs.
Therefore, the RUL estimation of a testing unit is based on patterns that have been selected for
their high correlation with the RUL. This approach is hence different from classical similarity-
based approaches that attempt to match complete testing units (or only late instants of testing units)
with training ones to estimate the RUL. The performance of our approach is assessed with a case
study on the remaining useful life estimation of turbofan engines and performance is compared
with other similarity-based approaches.

1. Introduction

Remaining Useful Life estimation is one of the main tasks in the Prognostics and Health Man-
agement domain. The aim of any RUL estimation technique is to provide accurate prediction of
the time after which an equipment will not be able to meet its operating requirements. RUL es-
timation is hence very important for industrial purposes as it can help in planning maintenance
strategies, maximizing the useful operational life of equipment, reducing maintenance costs and
avoiding breakdowns that might have critical impacts.

RUL estimation techniques in the literature are separated into three families : model-based,
data-driven and hybrid approaches. Model-based approaches rely on building a physical model
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describing the degradation behavior of the equipment. For instance, stochastic filtering [1], par-
ticle filtering [2] have been used to model degradation in the case of fatigue crack growth. This
kind of approaches is very accurate but requires the knowledge of the physical degradation of
the system to be available, which is not always the case. In addition, in most of the cases, the
equipment is composed of many components for which a different model needs to be defined.
Furthermore, model-based approaches are closely related to the considered application. They
hence lack genericity. Data-driven approaches make use of available run-to-failure data to ex-
tract relevant information based on a learning process. These approaches do not attempt to derive
an analytical model from the data, but attempt to capture the relationship between sensory data
and the degradation level of an equipment, in order to estimate its RUL. These approaches are
usually easier to obtain and implement, but are often less accurate than model-based ones. They
hence offer a trade-off between accuracy, complexity and applicability. Most of the data-driven
approaches in the literature are based on machine learning, probabilistic or statistical tools. A
good survey of machine learning and statistical techniques for prognostics can be found in [3].
Neural Networks have been widely considered to estimate the RUL [4–7]. Many other approaches
based on neural networks techniques have been proposed. The authors of [8] have used echo
state networks for RUL estimation, Javed et al. [9] developed a method combining wavelet based
neural network and fuzzy clustering tools, deep belief networks are proposed in [10] for health
state classification, and complex valued neural networks are used in [11]. Other machine learning
tools have also been applied for RUL estimation, for instance support vector regression in [12].
Probabilistic and statistical tools have also been used for prognostics applications. Bayesian learn-
ing techniques [13], Wiener processes [14], copulas [15], Kalman filters [16], Hidden Markov
models [17, 18] and autoregressive-moving-average models [19, 20] have also been considered in
the literature. Hybrid approaches, for instance in [21–24], combine model-based and data-driven
approaches. Similarly to model-based approaches, knowledge about the physical degradation of
components is required for hybrid-ones, which lowers the applicability of such approaches.

[Figure 1 about here.]

In this paper, we focus on similarity-based approaches which are particular cases of data-driven
ones. Fig. 1 depicts the general framework of such approaches. Sensory data (often multidimen-
sional) is first processed : noise filtering, feature extraction, data fusion... Note that the kind of
processing depends on the type of data. After these steps, data can sometimes be transformed
into an 1-dimensional indicator, denoted health indicator (HI), that models the degradation of an
equipment with a time-series (or trajectory). If the original sensory data already captures the health
status evolution of the equipment, data can also be kept multidimensional. In Fig. 1, this step is
depicted by the data processing box. After this step, data is formalized into instances. The kind
of instances depend on the method : instances can represent complete HI trajectories, blocks of
HI trajectories... Hence, in an offline phase, a library of instances is constructed from the training
sensory data. In an online phase, the same processing and formalization operations are applied
to testing sensory data (whose RUL is to be predicted) in order to obtain a new instance. This
instance is then compared to the library of instances in the retrieval step and the most similar ones
are selected in order to predict the RUL of the testing instance (RUL estimation box in Fig. 1).
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The authors of [25] have won the 2008 PHM challenge with a similarity-based approach where
instances were the HI’s obtained after fusion of different sensor measurements and that relied
on Euclidean distance between training and testing HI’s to select most similar instances. In this
method, the whole test trajectory is used to be matched to the library of training units. Another
approach, in [26], only considers last parts of testing units HIs as instances for the matching, as
last parts are more likely to be correlated with the degradation level. In this paper, we propose an
alternative method for the instance formalization, retrieval and RUL estimation steps (gray boxes
in Fig. 1), based on the extraction of relevant patterns from the training data.

Shapelets have been introduced in [27] and [28] for classification and early classification of
time series. We extend here this notion and define a new kind of shapelets called rul-shapelets,
that correspond to patterns correlated to the remaining useful life of an equipment. In this paper,
in the formalization step, discriminative rul-shapelets are first extracted from a training set of
trajectories representing run-to-failure data of an equipment. This step produces a library of rul-
shapelets that will be used for RUL estimation of testing units. In the online phase, the testing
instance is created and rul-shapelets from the library are searched in this testing instance. The
rul-shapelets that are found in the testing instance provides an estimation about the RUL. Hence,
the RUL estimation relies here on finding similar behaviors between patterns of the testing time
series and the shapelets that have been extracted for their correlation with the remaining useful life.
Hence, a major difference with other traditional approaches is that the RUL estimation is based on
some parts of the test unit (and not the whole testing unit or only last instants), these parts being
chosen because of their high correlation with the RUL.

This approach is compatible with any applications satisfying the following assumptions:

• Run-to-failure data is available

• Trajectories capturing the health status evolution can be obtained from sensory data

• Testing components are assumed to go through the same degradation process as training
ones.

The rest of this paper is organized as follows. Section 2 gives an overview of research work
on similarity-based RUL estimation technique and positions our proposed approach within this
context. Section 3 describes how discriminative shapelets are extracted from a set of time series
representing run-to-failure data. Section 4 explains how these shapelets are used to perform RUL
estimation on testing units, and Section 5 evaluates the performance of the proposed approach on
a case study.

2. Related work

In this section, related work about similarity-based approaches for RUL prediction is presented.
We focus on explaining in details how the formalization, retrieval and RUL prediction steps are
performed in the literature. Similarity-based approaches are relatively new for prognostics appli-
cations. Wang et al. [25] proposed a similarity measure between testing and training trajectories
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based on Euclidean distance. Instances are represented as 1-dimensional health indicator trajec-
tories obtained by linear regression of the sensory data. In the online step, for a given training
trajectory, the Euclidean distance between a testing trajectory and every sub-trajectories (shifted
by different number of cycles) of the training one is computed and the minimum distance is re-
tained together with the optimal shift. This procedure is repeated for every training trajectories.
The best trajectories are selected according to minimum distances, up to a certain threshold. RUL
is estimated from the RUL of the selected trajectories, using a weighted average. Xue et al. [29]
proposed a fuzzy instance based approach for RUL prediction. The approach starts by building
local fuzzy models for testing engines. The fuzzy model defines a cluster of peers in which each
of these peers is a similar instance to the given engine with comparable operational characteristics.
The final RUL estimate is obtained by aggregating the RULs of similar training instance via a sim-
ilarity weighted sum. Zio et al. [30] proposed a similarity-based approach for prognostics using a
fuzzy point-wise similarity defined for degradation trajectories. The distance score between two
trajectories is based on a fuzzy membership function that maps the difference between trajecto-
ries elements into membership. Weights are inversely proportional to the distance score. RUL
is then obtained as a weighted sum of RULs of similar instances. Ramasso et al. [26] proposed
a method that jointly predicts observations (continuous states) and health states (discrete states)
in order to estimate the remaining useful life of components. In this paper, the authors worked
with multidimensional sensory data and the instances were chosen as multidimensional blocks of
data. The instances hence are subsequences of the original sensory data. Instead of aggregating
RULs of the most similar instances, the observation trajectories are aggregated to predict the fu-
ture observations. Those observations are classified as health states and RUL is predicted as the
time transition from the degrading to fault state. The retrieval phase of the algorithm is based on
a Euclidean distance measure where only the last block of the testing trajectory is considered and
compared to blocks of the library. In [31], Khelif et al. proposed a new similarity measure that
aims at giving more weight to last observations (as they are more likely to be correlated with the
degradation level), while using the total testing HI trajectory as instances.

In these works, the retrieval step is hence based on trying to match testing trajectories (or
testing sensory data), or blocks of trajectories with training ones in order to estimate the RUL.
This implies that every piece of trajectories in the training set carry relevant information about
their correlation with the degradation level, which might not be the case. In this paper, we first
rely on extracting, from the training set, patterns that are correlated with the remaining useful life
of an equipment. These patterns are then matched to testing trajectories to estimate the RUL.

3. Shapelet extraction and selection

Let T be a training set composed of |T | time series, T1, . . . ,T|T |. In this set, the time series
may have different lengths. The length of the time series Ti is denoted by l(Ti). With this notation,
a time series Ti in the set T can be written Ti = t i

1, t
i
2, . . . , t

i
l(Ti)

. For the sake of clarity, we assume
here that the time series Ti are univariate, i.e. t i

j ∈ R,∀1 ≤ j ≤ l(Ti). The feature extraction
process described in this section can be extended to multivariate time series by applying it to every
dimension of the time series.
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As we focus in this paper on prognostics (estimation of the remaining useful life of equipment
before failure), time series (or trajectories) in the set T represent a run-to-failure health indicator
trajectory of an equipment. In this section, we aim at extracting, from the set T of time series,
features that are correlated with the remaining length of a time series (time period between the
instant when the feature is met and the failure of the equipment).

In the following, we consider features under the form of time series of small length (relatively
to the average length of the time series in T ), that will be denoted rul-shapelets.

Definition 1: A rul-shapelet is defined by a tuple f = (S,δ ,µ), where S = s1, . . . ,sl(S) is a time
series and δ is a distance threshold. µ represents the average value of the remaining length of a
time series that is matched by f (cf. Definition 2).

Definition 2: A rul-shapelet f = (S,δ ,µ) is said to match a time series T if there exists a
subsequence T ′ of T (of length l(S)) such that the Euclidean distance between S and T ′ is less
than or equal to δ . In other words, f matches T if

∃k ∈ [1, l(T )− l(S)+1],s. t.

√√√√l(S)

∑
j=1

(s j− tk+ j−1)2 ≤ δ . (1)

The match is hence defined at a time instant k. If more than one k satisfies (1), the instant of the
match is defined as the one that leads to the minimal distance.

According to Definitions 1 and 2, when a time series T is matched by a rul-shapelet f =
(S,δ ,µ) at a time instant k, we can estimate that the RUL of T (from time k) is µ , i.e. we estimate
the length of the time series T to be equal to k+µ .

In this section, we describe how to extract rul-shapelets from a set of time-series T and select
the ones that convey sufficiently relevant information about the RUL.

3.1. Shapelet extraction
[Figure 2 about here.]

To extract a rul-shapelet f , we first need to extract a time series of small length (which repre-
sents the feature S of the rul-shapelet) from the set T , and we then need to estimate the other three
features associated with f : δ and µ . For that purpose, all the subsequences of lengths l1, . . . , lN
from the set T are first extracted and stored as it can be seen in Figure 2. The lengths li are pa-
rameters chosen by the user. Depending on the number of time series in T and their lengths, the
number of subsequences extracted here can be very high. In order to keep a reasonable amount
of shapelets, subsequences of length li,∀1≤ i≤ N can be quantized using the K-means algorithm
into a smaller number of subsequences (only the centroids of the obtained clusters are kept). After
this step, a set F = { f1, . . . , f|F |} of shapelets is obtained. For all these shapelets, only the first
feature S is known for the moment. In this case, a rul-shapelet f can also be written f = (S,?,?).
We explain in the following how to obtain the other two features that completely determine a
rul-shapelet.
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3.2. Shapelet selection
[Figure 3 about here.]

Definition 3: Let f = (S,?,?) be a rul-shapelet and T a time series from T . The best-match
features (BMF) between f and T is defined as the pair (d,ρ), where :

d = min
1≤ j≤l(T )−l(S)+1

√√√√l(S)

∑
i=1

(si− ti+ j−1)2

ρ = l(T )− arg min
1≤ j≤l(T )−l(S)+1

√√√√l(S)

∑
i=1

(si− ti+ j−1)2.

(2)

In other words, d is the minimum Euclidean distance between S and a subsequence of T of the
same length and ρ is the remaining time before the end of T when this minimum distance d is met.
In the following, d will also be denoted by best-match distance and ρ by best-match RUL.

We can, according to Definition 3, compute the BMF between a rul-shapelet f and every time
series of the set T .
Definition 4: For a rul-shapelet f = (S,?,?) and a set T of time series, we define the best-match
features list between f and T as the list :

L f = 〈bm f1 = (d1,ρ1), . . . ,bm f|T | = (d|T |,ρ|T |)〉, (3)

where bm fi,1 ≤ i ≤ T is the BMF between f and the ith time series of T . This list of pairs is
then sorted so that the di’s are in an increasing order (d1 ≤ d2 ≤ ·· · ≤ dT ).

On Figure 3 are shown the two first elements of a BMF list (bm f1 and bm f2) for a given exam-
ple shapelet and a given training set. The left picture corresponds to the time series for which the
best match distance d1 is the smallest amongst the other time series. The shapelet is depicted by
circles. The instant of the match is 68 here. This leads to a best-match rul ρ1 of 120 (as the total
length of T1 is 188 here). On the right picture, we can see the second time series (in terms of best
match distance). The best-match distance d2 for this second time series is higher than d1 but lower
than the ones obtained for the other training time series of this example. The instant of the match
is 83 for T2, which leads to a best-match rul ρ2 = 112.

We are now interested, for a rul-shapelet f = (S,?,?), in finding the parameters δ and µ such
that, when f matches a time series T (i.e. the best-match distance between f and T is lower than
δ ), we have a high confidence in estimating that the remaining time (from the instant of the match)
before the end of the series T is mu in average. For that purpose, we use the best-match features
list L f between f and the set of time series T . From this list, we first extract the list of best-match
RULs: R = 〈ρ1, . . . ,ρ|T |〉. This list R is normalized so that its average value equals 0 and its
variance equals 1. We compute the index i (2≤ i≤ |T |) defined by:

i = arg min
2≤ j≤|T |

var[ρ1, . . . ,ρ j], (4)
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where var denotes the statistical variance. This equation also means that we are searching for the
i first elements of R of minimum variance. In order to select only the most discriminative rul-
shapelets, the shapelets yielding to a minimal partial variance (computed as in (4)) that is above
a threshold τ can be discarded. When the values of R are normalized, the variance of the whole
list is 1 (whatever the considered rul-shapelet). As τ gets close to 0, the shapelets become more
discriminative.
Then, the parameters of the selected rul-shapelet f are computed as :{

δ = di
µ = (ρ1 + · · ·+ρi)/i (5)

where the values ρ j correspond to the ones before normalization of R.

[Figure 4 about here.]

Example 1:
Figure 4 shows the steps described above to estimate the parameters of a rul-shapelet f . In this

example, a training set of 100 training time series is used. Figure 4-(a) shows the values of the
best-match RULs between f and the 100 trainingtime series. Note that these values are sorted ac-
cording to the best match distances as explained above. The right part of Figure 4 shows the partial
variances var[ρ1, . . . ,ρ j],2≤ j ≤ 100. From these values, the index i = 11 is chosen according to
Equation (4). The 11st best-match distance (d11 in the best-match features list) is selected as the
parameter δ and the 11 first values of the left image are selected (shown by triangles) to estimate
µ according to Equation (5).

After these steps, the set F = { f1, . . . , f|T |} of rul-shapelets is filled, i.e. every fi is defined
with its three parameters.

4. Shapelet-based RUL estimation

In this section, we explain how we perform RUL estimation using a set of rul-shapelets F
obtained as described in the previous section. The context is the following: we are monitoring
the behavior of a component and our aim is to predict when this component is likely to face a
failure, based on previous experiences. The monitoring of the component is modeled by a time
series U = u1, . . . ,ul(U). This time series is obtained as explained in the introduction after data
processing and instance formalization (cf. Figure 1). No information is given about the last moni-
toring instant l(U): it can be at an early stage of the life of the component, a late stage or any stage
in between. The RUL estimation process described here aims at predicting the time difference
between l(U) and the failure of the testing equipment.
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4.1. Extracting the rul-shapelets that match U
The first step of the RUL estimation described in this section is to find the rul-shapelets in

F that match the testing time series U , and the time instant of the match when applicable. Let
f = (S,δ ,µ) be a rul-shapelet of F . The best-match distance between f and U is computed (i.e.
the minimum Euclidean distance between S and a subsequence of U of length l(S)). If this best-
match distance is lower than δ , then according to Definition 2, f matches U . The time instant
idx f of the match (i.e. the time index of the beginning of the subsequence of U that leads to the
minimal distance) is stored together with f . If the best-match distance between f and U is greater
than δ , then f is discarded. The same operation is repeated for all the rul-shapelets of F , leading
to a set Match(U) = {( f1, idx1), . . . ,( fk, idxk)}, where fi,1 ≤ i ≤ k is a rul-shapelet and idxi the
time instant when fi matches U . This set contains all the shapelets that match the testing time
series U, and is used to estimate the RUL of U.

For some testing units, it might happen that no rul-shapelets match U . In that case, the set
Match(U) is empty and no RUL estimation can be made at that point. To prevent this from
happening, the condition of the match (Definition 2) can be relaxed when Match(U) is found to
be empty, by adding a coefficient β > 1 to Equation (1) :

∃k ∈ [1, l(T )− l(S)+1],s. t.

√√√√l(S)

∑
j=1

(s j− tk+ j−1)2 ≤ β × δ . (6)

Relaxing this condition enables to perform a RUL estimation even when no match is found for
a test instance U .

4.2. RUL estimation
Every rul-shapelet in Match(U) conveys an information about the RUL of U given by the

parameter µ of the rul-shapelet. Let fi = (Si,δi,µi) be a rul-shapelet in Match(U) and let idxi
be its matching time. According to this rul-shapelet, the estimated total length of U is µi + idxi.
Taking into account all the information brought by the rul-shapelets of Match(U), the estimated
total length l̃U of U is given by

l̃U =
1
k

k

∑
i=i

(idxi +µi) (7)

Note that weights can also be inserted in Equation (7) to favor for instance rul-shapelets that
match U at late time instants (as late time instants are closer to failures than early ones). We use in
this paper a weight that corresponds to the ratio between the instant when the shapelet is matched
and the length of the time series where it is matched. Ratios around 1 mean that the shapelet is
matched close to the late instants.

5. Case study

To assess the performance of the approach proposed in this paper on a prognostics case study,
we used turbofan engines data available on the NASA Prognostic Data Repository1 [32]. We first
describe the data, then give the performance metrics that we use, and finally present some results.

1http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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5.1. Turbofan data set
[Table 1 about here.]

The data available from [32] consists of multivariate sensory time series that have been gath-
ered from turbofan engine dynamic simulation process. Run-to-failure data has been obtained
using C-MAPSS, a simulation program for turbofan engines. Four different experimental setups
have been conducted and have led to four different data sets. The settings of these experiments are
given in Table 1. In this paper, we use two of these datasets : the #1 and the #4. The #1 is the
easiest one as it considers only one type of fault and one operating mode, whereas dataset #4 is
the most difficult one with two types of faults and six operating modes.

Run-to-failure data for the training units are composed of 21 sensor measurements at each
cycle. The measurements start at a similar level of degradation, which is considered as healthy and
stop when the equipment has reached a level that is considered not sufficient to meet its operating
requirements. From these 21 measures, only 7 are kept here as they have been shown to be the
most pertinent ones in [25]. These sensors used here are the number 2,3,4,7,11,12 and 15. This
sensory data is corrupted by noise. A third-order polynomial curve is used to smooth the sensor
values and keep only the trends of the time series. For illustration purposes, the 100 training time
series of dataset #1 given by sensor 2 after smoothing are shown in Fig. 5-(a).

We have considered in this paper two different approaches for shapelet-based RUL estimation :
the first one consists in working directly with the sensory data (the process explained in Sections 3
and 4 is done for each sensor) and the second one consists, as explained in the introduction, in
computing a 1-dimensional trajectory called health indicator from the sensory data. For dataset
#1, these two approaches can be considered and compared, whereas for dataset #4 only the second
approach can be considered as the six operating conditions prevents from working directly with the
sensory data. To obtain the HI trajectories, we have used linear regression. The linear regression
maps the seven sensor values at each cycle into a real number between 0 and 1 (approximately).
The coefficients of the linear regression are inferred using training samples. The training samples
are chosen as follows : sensory data from the last 5 cycles of every training units are selected and
assigned the value 0 (which means bad health state), and the sensory data from the first 5 cycles of
the training units whose total life is above 240 cycles are selected and assigned the value 1 (healthy
state). The coefficients of the regression are inferred from the training samples with a least square
optimization. These coefficients are stored and will be used to construct HI trajectories of the
testing units accordingly. For the dataset #4, six models are learned, one for each operating mode.
The 100 training HI trajectories obtained for the dataset #1 are shown in Fig. 5-(b).

Note that, as explained in the introduction, our contribution in this paper concerns the retrieval
and RUL estimation steps in a similarity-based RUL estimation scheme. Our approach makes use
of HI trajectories in order to estimate the RUL of an equipment. In this paper, the HI trajectories
are obtained as explained above from sensory data using linear regression. This method was
used by Wang et al. [25] in their winning approach in the 2008 PHM challenge. They have then
optimized techniques to obtain HI trajectories with more complex tools, as principal component
analysis, kernel smoothing and the use of neural networks (cf. [33] for a complete study). As
these approaches rely on heavy parameter settings and given that our contribution concerns the
retrieval and RUL estimation steps, we used the approach presented in [25] and focus our results
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on showing the efficiency of our method given HI trajectories. Better overall performance might
be obtained with optimized HI trajectories.

In the online phase, the RUL of the testing units are estimated using the testing sensory data.
This data is incomplete: the measurements are stopped at a certain instant and the RUL from this
instant needs to be predicted. Sensory data is smoothed and converted into a HI trajectory (if
needed, depending on the considered approach) using the learned regression model(s), and the
RUL estimation will be made as detailed in Section 4.

[Figure 5 about here.]

5.2. Performance metrics
We present and explain the different performance metrics that we use in this paper to assess the

performance of the proposed RUL estimation method. These metrics are either taken from [34]
or were defined by the PHM Challenge community. Let t be a time instant, r̂t the RUL prediction
made at t and rt the real RUL at time t. Let also tE represent the time at which the considered
equipment reaches end of life (tE = t + rt).

5.2.1. Prediction horizon
Let αh ∈R be a coefficient between 0 and 1 that represent the tolerance to errors. Let tp be the

first time instant when the absolute value of the difference between the predicted RUL and the real
RUL is less than αh times tE . This time instant tp is hence defined as follows:

tp = min t, s.t. rt−αh× tE ≤ r̂t ≤ rt +αh× tE . (8)

As it can be seen in Fig. 6-(a), the prediction horizon PH is then defined as PH = tE − tp.
The higher PH is, the better the prediction approach is. In addition, the prediction horizon should
increase with αh.

[Figure 6 about here.]

5.2.2. Rate of acceptable predictions
This metric evaluates the rate of predictions that fall in a cone-shaped region of acceptable

prediction errors. This metric has two parameters : a time instant tH from which the predictions
are evaluated and αr a coefficient in [0,1] that represents the tolerance to errors (similarly to αh
above). The rate of acceptable prediction RAP is defined as:

RAP =
Card({t ∈ {tH , . . . , tE},s.t. (1−αr)× rt ≤ r̂t ≤ (1+αr)× rt})

tE − tH +1
, (9)

where Card() represent the cardinal of a set. RAP is a real number ∈ [0,1]. High values of RAP
are associated with good estimation performance. Fig. 6-(b) illustrates how the RAP metric is
computed. In this figure, tH is set to 50 and αr to 0.2. Estimations that fall in the cone-shaped
region are depicted by circle points. The RAP metric is equal here to 19/43. Note that estimations
were done every 5 cycles in this example.
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5.2.3. Relative accuracy
The relative accuracy (RA) evaluates the mean absolute percentage errors of RUL predictions

for every time instant between tH (set by the user) and tE . It is formally defined as :

RA = 1−Mean({|rt− r̂t |
r̂t

, tH ≤ t ≤ tE}). (10)

Values of RA close to 1 are associated with good estimation performance.

5.2.4. Prediction score
This metric was defined by the PHM community for the 2008 PHM challenge. It assigns

a score PS to a prediction based on the difference between the prediction and the real RUL as
follows.

PS =

{
e−(rt−r̂t)/10−1 if rt− r̂t ≤ 0
e(rt−r̂t)/13−1 if rt− r̂t > 0.

(11)

The lower the score PS is, the better the prediction is. Note that late predictions are more penalized
than early ones, as late prediction can have harmful impact on the equipment.

In order to compute the first three metrics presented here (PH, RAP and RA), a complete
run-to-failure testing HI trajectory is needed. Different subtrajectories are used from this complete
trajectory in order to compute these three metrics. Hence, the testing data available in the Turbofan
datasets are not compatible with these metrics. Indeed, in the testing data, trajectories are stopped
at a given time and the rest of the trajectory is unknown (only the RUL is given for validation
purposes). In the following, we present some results in terms of these measures (for the data set
#4). To obtain these results, we had to split the training dataset into two parts : a real training
part and a validation part in which the complete HI trajectories are used as testing ones. On the
contrary, the fourth metric (prediction score) can be used with any kind of testing data. For this
metric, we use the testing data available in the Turbofan dataset and we made RUL predictions
from the available testing trajectory (after the last measurement of this trajectory).

5.3. Experimental settings and results
We present in this section the performance obtained with our proposed RUL estimation tech-

nique on two Turbofan datasets : the #1 and the #4. Three parameters influence the performance
of the proposed technique : the lengths l1, . . . , lN of the extracted shapelets (Section 3.1), the num-
ber of centroids n1, . . . ,nN used to quantize the shapelets (Section 3.1), and the discriminative
threshold τ used to select the discriminative shapelets (Section 3.2). The lengths of the extracted
shapelets needs to be chosen according to the distribution of lengths of the training units. Short
lengths need to be taken in order to be able to cope with short testing units. In the considered
application, the length of the training units vary from about 120 of 400. In our experiments,
the lengths 10,20,30,40 and 50 have been chosen to extract the shapelets. The total number of
extracted shapelets before quantization is here more than 16,000 for each li. In the first experi-
ment on dataset #1 (Section 5.3.1), we analyse the performance of our RUL estimation technique
with varying values for the parameters n1, . . . ,n5 and τ . Conclusions about this are drawn in Sec-
tion 5.3.1.
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5.3.1. Dataset #1
In this first experiment, different values for the parameters n1, . . . ,n5 and τ are used. The

values for ni, i ∈ 1, . . . ,5 are taken in the set {50,100,150,200,250,300}. Note that we took
n1 = · · ·= n5 in this experiment. The parameter τ is taken in the set {0.15,0.25,0.35,0.45,0.55}.
In this experiment, the health indicator trajectories obtained from the sensory data are used. Table 2
sums up the performance obtained in terms of the average prediction score for the 100 testing
units. We can observe that the performance generally improves when the value of the parameters
ni increases. Too few shapelets lead to bad estimation scores. When ni ≥ 200, the performance is
somehow stabilized. We can also observe that when τ is very low (τ < 0.25), the obtained scores
are bad for every values of ni. This is mainly because too many shapelets are discarded when
τ is low. When τ ≥ 0.25, the performance also somewhat stabilizes. It can be seen from these
experiments that when the parameters li and τ do not take very low values, the performance of the
proposed RUL estimation technique is stable, and that the predictions are quite accurate. The best
performance is obtained for li = 300 and τ = 0.45 and is equal to 6.52. These parameters are used
in the following.

Figure 7 represents the histograms of the prediction errors for three different approaches : (a)
an estimation approach based on [25], (b) the proposed approach using the 7 dimensional time
series and extracting rul-shapelets on each dimension and (c) the proposed approach using the
health indicator time series obtained by linear regression. We can observe that the prediction
errors are more concentrated around zero for the most right histogram. The prediction error range
is [−39,62] for Fig. 7-(c). Authors of [26] have also applied their technique to this dataset. A
similar error histogram is given, in which the prediction errors are more spread than the ones
obtained with our approach. The range of prediction errors is about [−80,120] in [26].

[Table 2 about here.]

[Figure 7 about here.]

[Table 3 about here.]

Table 3 gives the performance of the proposed approach and compares it to a RUL estimation
technique based on [25] in terms of the average score given in Equation (11). In the method
proposed by Wang et al. [25], the RUL estimation depends on a parameter that determines the
number of nearest neighbors kept. A training trajectory is kept if the Euclidean distance between
this training trajectory and a testing one is less than γ times the minimum distance between the
testing trajectory and all the training ones. We fixed this γ here to 3 as it gives the best results.

From this table, we can see that using the health indicator approach yields better results than
working directly with the sensors. In addition, a better score is obtained using the shapelet-based
approach than the one based on [25].

5.3.2. Dataset #4
We have also applied the shapelet-based RUL estimation approach to the dataset #4, which

is the most difficult one. In order to compare our approach with the optimized approach of [33],
in a first experiment we have split the training dataset into two parts, as explained above : 150
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instances are kept for training and 99 for validation purposes. This splitting enables us to compute
the three metrics PH, RAP and RA and compare the performance with the ones given in [33] for
the same dataset and same configuration. The performance in terms of the metrics PH, RAP and
RA of our approach is given in Table 4. In this table, we also report the best results obtained by
Wang on a testing set of 99 trajectories (cf. results in the thesis [33]). The parameters for metric
evaluation have been chosen according to [33], i.e. tH = 80, αh = 0.2 and αr = 0.2. The values
reported in this table are the median values obtained for the 99 testing instances. It can be seen
that the performance obtained by our approach is very close to the ones obtained in [33]. Note
that, as explained above, the modeling of the HI trajectory in [33] has been optimized with many
different tools (PCA, Kernel smoothing and neural networks), whereas we have considered here a
simple modeling with linear regression.

[Table 4 about here.]

In a last experiment, we have also considered the real testing set of dataset #4. In this testing
set, 248 RULs have to be predicted from incomplete run-to-failure data. Table 3 reports the per-
formance of the proposed approach and compares it to a RUL estimation technique based on [25]
in terms of the average score given in Equation (11). The average score obtained by our approach
is significantly better than the one obtained from a RUL estimation based on [25].

[Table 5 about here.]

6. Conclusion

We have proposed in this paper a RUL estimation technique based on shapelet extraction. The
shapelet extraction process aims at selecting, from a training set of run-to-failure data, patterns
(under the form of small time series) that are correlated with the remaining useful life of an equip-
ment. These extracted patterns convey each an information about the RUL of the equipment from
the instant when they are found. They are then used in an online step to estimate the RUL of test-
ing units (units for which the remaining useful life is not known). Therefore, the proposed RUL
estimation of a testing unit is based on patterns that have been selected for their high correlation
with the RUL. This approach is a similarity-based approach : it makes use of available run-to-
failure data (in which the health state evolution is captured) to estimate the RUL of equipment. It
is hence compatible with techniques aiming at constructing health indicators from sensory data.
We assessed the performance of the proposed RUL estimation technique on Turbofan datasets.
The RUL estimation performance is shown to be effective and competitive compared to other
similarity-based approaches. The proposed method is more adapted to applications where many
training instances are available, in order to select relevant shapelets and to be able to provide an
estimation of the RUL even at early life stages. Extending this method to limited training sets will
focus our attention in a near future. This paper also opens up other possibilities of using shapelets
in the field of Prognostics and Health Management. We are planning to extend the use of shapelets
for diagnostic purposes by linking the apparition of shapelets with different kind of faults, or for
predicting the future evolution of the health status of components.
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Table 1: Experimental settings for turbofan data sets.

Experiment number #1 #2 #3 #4
Number of fault modes 1 1 2 2

Number of operating conditions 1 6 1 6
Number of training units 100 260 100 249
Number of testing units 100 259 100 248

25



Table 2: Prediction score of the proposed RUL estimation technique with different values of the parameters li and τ .
PPPPPPPPPPτ

# centroids 50 100 150 200 250 300

0.15 15.35 17.19 19.39 16.97 17.82 12.34
0.25 12.36 10.30 7.12 7.38 7.36 7.64
0.35 13.30 10.94 7.19 6.88 6.87 6.75
0.45 17.49 10.34 7.00 6.80 6.71 6.52
0.55 17.49 10.90 7.19 6.91 6.79 6.57
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Table 3: Performance evaluation for the dataset #1 in terms of the average prediction score of the proposed approach
and comparison with [25].

Method Average Prediction score of Eqn (11)
Proposed approach (7 sensors) 8.07

Proposed approach (health indicator) 6.52
Estimation based on Wang et al. [25] 7.91
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Table 4: Performance evaluation in terms of the metrics PH, RAP and RA of the proposed approach and comparison
with [33] for dataset #4.

Method Prediction horizon Rate of acceptable prediction Relative accuracy
Proposed approach (health indicator) 176 0.3750 0.6819

Results from Wang et al. [33] 177 0.40 0.7124
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Table 5: Performance evaluation in terms of the average prediction score of the proposed approach and comparison
with [25] for dataset #4.

Method Average Prediction score of Eqn. (11)
Proposed approach (health indicator) 37.7097
Estimation based on Wang et al. [25] 69.2928
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