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Abstract In fault detection systems, massive amount of data gathered from the life-cycle of
equipment is often used to learn models or classifiers that aims at diagnosing different kind
of errors or failures. Among this huge quantity of information, some features (or sets of fea-
tures) are more correlated with the kind of failures than others. The presence of irrelevant
features might affect the performance of the classifier. To improve the performance of a de-
tection system, feature selection is hence a key step. We propose in this paper an algorithm
named STRASS, that aims at detecting relevant features for classification purposes. In cer-
tain cases, when there exists a strong correlation between some features and the associated
class, classical feature selection algorithms fail at selecting the most relevant features. In or-
der to cope with this problem, STRASS algorithm makes use of k-way correlation between
features and the class to select relevant features. To assess the performance of STRASS,
we apply it on simulated data collected from the Tennessee Eastman chemical plant simu-
lator. The Tennessee Eastman process (TEP) has been used in many fault detection studies
and three specific faults are not well discriminated with classical algorithms. The results
obtained by STRASS are compared to those obtained with reference feature selection algo-
rithms. We show that the features selected by STRASS always improve the performance of
a classifier compared to the whole set of original features and that the obtained classification
is better than with most of the other feature selection algorithms.

Keywords Feature Selection � Wrapper method � Fault detection � Contextual measure

1 Introduction

Fault detection has been extensively studied over the last few decades using various tech-
niques. Tyan et al. [36] give a retrospective of the different methods such as parameter
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estimation, state observation schemes, pattern recognition techniques and artificial intel-
ligence methods. Fault detection techniques can be divided into three categories: model-
based, knowledge-based [30, 8] and data-driven methods [37, 36, 32, 35, 39]. The approach
proposed in this paper is data-driven and is based on machine learning tools.

A fault detection system, as shown in Fig. 1, can be identified from the knowledge data
discovery process (KDD) where the output gives the state of the system (faulty or non-
faulty for instance). The input data correspond to recorded sensor measurements that are
considered as features.

The data-mining component relies heavily on classical techniques from the fields of
machine learning, pattern recognition, and statistics to find relevant patterns from the data
and transform them into useful task-oriented knowledge.

[Fig. 1 about here.]

Knowledge discovery and data mining have emerged as some of the most significant
and fast expanding research areas and have found many successful real-world applications
in a variety of disciplines like fault detection. For instance, Casimira at al. [7] develop a K-
nearest neighbors algorithm to identify stator and rotors faults in induction motors. From the
thirty-one features extracted by time-frequency analysis of the stators currents and voltages,
six relevant features are selected by a sequential backward algorithm from the initial subset.
Experimental results demonstrated the effectiveness of this method in condition monitoring.
Sugumara at al. [32] focused particularly on fault conditions in roller bearings of a rotary
machine. They used vibration signals from different functional mode (good bearing, bearing
with inner race fault, bearing with outer race fault, and inner and outer race fault). First, a
set of eleven features were extracted by time-frequency analysis. Among these, four best
features were selected from a given set of samples using C4.5 decision algorithm. Secondly,
Proximal Support Vector Machine (PSVM), was used to efficiently classify the faults. Yang
et al [40] presents a survey of fault diagnosis using Support Vector Machines (SVM) com-
bined with other methods. In a similar study on fault detection of roller bearings, Jack at
al. [16] used Genetic Algorithms to select an optimal feature subset for SVM and artificial
neural network based classifiers.

In chemical process industry large amounts of variables are monitored, which makes
feature selection an important topic for that kind of applications. The Tennessee Eastman
Process (TEP) benchmark has been the object of many studies in the literature [12, 29]. L.
Wang and J. Yu have proposed in [38] a binary Particle Swarm Optimization with mutation
(MBPSOM) combined with Support Vector Machine (SVM) to select the most pertinent for
fault diagnosis. Chiang et al. [9] applied Fisher Discriminant Analysis (FDA), Discriminant
Partial Least Squares (DPLS) and Principal Component Analysis (PCA). Nashalji et al. [27]
used Genetic Algorithm and PCA to determine the main principle components and then used
a neural networks-based classifier to detect faults during the operations of the industrial pro-
cess. Verron et al. [37] proposed a fault diagnosis procedure based on discriminant analysis
and mutual information. In order to obtain accurate classification performance, feature se-
lection is performed with an algorithm based on the mutual information between variables.
P. Cui et al. [10] applied Kernel principal component analysis (KPCA) for analysis of the
TEP, and improved the fault detection of KPCA by a Fisher discriminant analysis scheme.
In the TEP benchmark, three kinds of fault (4,9 and 11) are difficult to distinguish be-
cause they are strongly correlated. To improve the efficiency of fault detection systems with
strongly correlated data, we develop in this paper a detection system based on a feature
selection algorithm devoted to detect interactions between the features and the class. The
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presence of irrelevant and/or redundant features affects the speed and accuracy of learning
or data mining algorithms. Therefore the selection of relevant information is very impor-
tant for the development of a comprehensive and robust model and also for speeding up the
training phase, hence reducing the cost as well as the data collection time for the classi-
fier [2, 5, 11, 22].

This paper takes up the feature interaction challenge. We are specifically interested in
detecting partial correlations among variables. Two criteria are proposed (see section 3) re-
spectively based on the weak and the strong relevance: the discriminating capacity measure
(DC) and the discriminating capacity gain measure (DCG). These criteria are designed to
focus on detecting k-way interactions in the data (i.e., interactions between sets of k features
and the class) and therefore on detecting features that have the exclusiveness to discriminate
concepts (also calles unavoidable features). These criteria are established in a greedy type
algorithm named STRASS (STrong Relevant Algorithm of Subset Selection). This algo-
rithm has the ability to treat partially correlated data. In order to highlight the effectiveness
of the proposed algorithm, and assess its capability to detect partial correlations, STRASS
is first tested on artificial data sets which are well known for their feature interactions. In-
deed, those data sets have challenged many feature selection algorithms. STRASS is then
applied to the TEP benchmark data, by feeding different classifiers with the set of features
selected by STRASS. Experimental results are compared with reference algorithms as CFS,
FCBF, mRMR, INTERACT, LASSO, ReliefF and SVM-RFE. They highlight the ability of
the proposed algorithm to select relevant features for classification purposes.

The rest of the paper is organized as follows: Section 2 overviews some of the fea-
ture selection methods used for fault detection. Section 3 introduces the selection criteria
uponn which STRASS is built. A comprehensive description of STRASS is presented in
Section 4. In Section 5, STRASS is evaluated on synthetic data sets and on the TEP bench-
mark and compared with well-known feature selection algorithms. Conclusions are drawn
in Section 6.

2 Overview of feature selection methods

Different feature selection strategies have been proposed and used in the fault detection
context. Liu [22, 23], Blum and Langley [5] compared different approaches dealing with
data selection and emphasized four major points: the starting point in the feature space, the
search strategy, the evaluation criterion and the stopping criterion.

– The starting point in the feature space could begin with no features with a forward
search, all features with a backward search, or a random subset of features with a bidi-
rectional search. Consequently, features can be successively added or removed by a
certain procedure.

– The search strategy for feature subsets can be done by random heuristics or complete
procedure.

– The evaluation criteria is an important component of any feature selection method, as
it measures the goodness of a specific subset. An evaluation criteria can be categorized
into three main groups based on their dependency on mining algorithm: filters, wrappers
and embedded methods. Filters operate independently of any mining algorithm contrary
to wrapper methods which use the performance of the mining algorithm. Embedded
methods are built upon a data mining or a classification algorithm to perform the feature
selection.
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We propose to categorize feature selection algorithms depending of their evaluation cri-
teria into three main groups based on how the interaction between features is treated [25]:

– The myopic measures which estimate the feature quality independently of the others
features. Most of the existing measures belong to the first category that is why Kira and
Rendel [17] and Kononenko [18] underlined the difficulties for classifiers to work with
correlated data.

– Semi-contextual measures consider low order 2-way (one feature and the class) and 3-
way (two features and the class) interactions.

– Contextual measures consider k-way (k features and the class, k > 2) interactions.

2.1 The myopic measures

Algorithms based on myopic criteria Relief [17], B&B [26], LVF [11], FOCUS [3] do not
detect the correlations between the features and the class, unlike those using semi-contextual
or contextual criteria. Indeed, most of the works in statistics make the features indepen-
dence assumption. Relief, the most powerful individual feature selection algorithm, scores
individual features rather than scoring feature subsets, those features with scores exceeding
a user-specified threshold are selected for the final subset. The actual challenge in feature
selection is to study feature interactions with relevant measures to select the optimal subset
with maximum relevance and minimum redundancy.

2.2 Semi-contextual measures

CFS [15], mRMR [28], FCBF [40] and ReliefF [18, 19] use semi contextual measures. CFS
calculates a feature subset merit, thus detecting the best feature combination. The algorithm
is powerful as long as the interaction between features is not too large. mRMR feature selec-
tion algorithm selects features that should be both minimally redundant among themselves
and maximally relevant to the target classes. The optimal subset maximizes the distance
between the two profits. FCBF uses a correlation measure based on the information gain
to detect the redundancy between features. They chose the Symmetrical Uncertainty (SU).
The algorithm involves two steps: the first one calculates the SU value for each features,
selects and orders relevant ones according to a predefined threshold, and the second one se-
lects predominant features. However none of these algorithms treats high order interactions
(k features and the class) like a contextual measure. Genetic Algorithm (GA) based feature
selection algorithms [6, 21] have been successfully used as a variable subset selection and
attempt to address the variable associations and various effects. Feature interaction is indi-
rectly taken into account via the selection of a set of variables which is determined by a
fitness function, generally based on the classifier accuracy. However, it should be noted that
this method is a wrapper method unlike other methods. The LASSO method [34] is an em-
bedded algorithm. It constructs a model and penalizes coefficients, shrinking many of them
to zero. The principle of LASSO is linked with L1-norm regularization techniques which
aim at penalizing complex models, upon which is also built the Elastic Net approach [42].
SVM-RFE [13] is also one of the most famous embedded method. Weights are assigned to
features while building the model, and the ones with smaller weights are recursively elimi-
nated.
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2.3 Contextual measures

Two more recent algorithms treat and capture k-way interacting features : INTERACT [41]
and STRASS [8, 25, 31]. To do so, INTERACT combines an information measure and a
consistency measure. In the first part of the algorithm, the features are ranked in descending
order based on their symmetrical uncertainty (SU) values. In the second part, features are
evaluated according to their C-contribution which relies on the calculation of inconsistency
rate. The features are evaluated one by one starting from the end of the ranked feature list.
The strong points of these algorithms are their effectiveness to deal with diverse problems
like, modal, continuous, noisy and correlated data.

3 Criteria of relevance and redundancy

In this section, we define two new criteria for feature selection, that are elaborated from the
class discriminatory power, in a pair-wise data representation approach. The STRASS fea-
ture selection algorithm (cf Section 4) is built upon these criteria. These criteria are designed
to take into account k-way interactions in the data and hence lead to a contextual measure.

3.1 Data representation

Let the input data Ω consist of n samples ω1; : : :ωn. Every sample in Ω is composed of r
features. The set of features is denoted x = fx1; : : : ;xrg. Every sample in Ω is labeled with
a class c 2 C = fc1; : : : ;cMg. In the following, the notation xk(ωi) represents the value of
feature xk in ωi and C(ωi) represents the class of sample ωi. Let us associate to a feature xk
the Boolean function φ k

i j; 1� i; j � n; 1� k � r :

φ k
i j : Ω � Ω ! f0;1g

(ωi;ω j) 7! 1 if xk(ωi) = xk(ω j)
0 otherwise:

(1)

Let us also define the function φCi j :

φCi j : Ω � Ω ! f0;1g
(ωi;ω j) 7! 1 if C(ωi) =C(ω j)

0 otherwise:
(2)

3.2 Weak Relevance measure

The weak relevance of a set of features is defined by the number of all pairs of samples who
have at least one discriminating variable and different labels or different distributions of
labels. According to that definition, let us define the discriminating capacity (DC) measure
of a feature set L = (x1; : : : ;xm) with the following formula :

DC(L;Ω) =
n

∑
i=1

n

∑
j=1

m

∏
k=1

φ k
i; j �φCi; j (3)
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3.3 Strong Relevance measure

To measure the exclusiveness of a feature to describe a concept, the equivalent of a ”rele-
vance gain” is defined as the measure related to a feature compared to a subset of features.

The strong relevance (SR) of a feature xk on pairs of instances is defined as the rel-
evance of a feature xk compared to a relevant preselected features subset L = (x1; : : :xm).
This measure is given by:

SR(xk;L;ωi;ω j) = φCi; j �φ k
i; j �

m

∏
l=1

φ
l
i; j (4)

The aggregation of the Strong Relevance (SR) expression on the whole pairs obtained
by the sample Ω of n patterns will define the Discriminating Capacity Gain (DCG) as:

DCG(xk;L;Ω) =
n

∑
i=1

n

∑
j=1

SR(xk;L;ωi;ω j) (5)

The DCG of a feature xk for a set of n objects compared to a set L of features is equal to the
number of object couples discriminated by only xk and no other features.

3.4 Redundancy of a feature

A feature xk is said to be redundant in a feature subset L if the discriminating capacity
measure of the set L fxkg is the same as the one of L. In other words, xk is said to be
redundant if

DC(L;Ω) = DC(L fxkg;Ω) (6)

3.5 Interest of the two criteria

The two suggested contextual criteria upon which STRASS is built are complementary. They
can detect not only strongly relevant features but also weakly relevant ones. The first one
calculates the discriminating capacity of a set of variables, and aims at extracting a subset
of variables with the same DC as the entire set. The second one evaluates the discriminating
capacity gain of one feature relatively to a set of features. This contextual criterion aims at
detecting either the relevance or the redundancy of a feature compared to a subset of features.
Features with the largest gains are integrated into the selected set, while the redundant ones
(with a null gain) are discarded. These criteria have the particularity to be calculated on a
restricted set of object pairs and variables. It can hence detect partial correlations between
features, and study the k-way interactions between them and the class. The criteria which
we have developed under pair data set allow us to explore three aspects of the correlation:

1. the feature correlation on a pair-wise data set, i.e. the feature capacity to discriminate a
part of the studied population.

2. the partial feature correlation relatively to a set of features. Redundant features (that play
the same role of another feature) are searched to be excluded. On the other hand, a fea-
ture can be considered weakly relevant to the class when evaluated alone, but becomes
very relevant when combined with other features. This correlation is also searched with
these criteria.

3. the feature capacity to be the only one to discriminate a population subset. Such features
are called strongly relevant (or predominant).
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4 STRASS (STrong Relevant Algorithm of Subset Selection

4.1 Description of the algorithm

STRASS is based on the contextual criteria established in Michaut thesis [25, 8], and de-
scribed in the previous section. The first criterion measure is a discriminating capacity (DC)
of a set of variables and the second criterion is DCG (Discriminating Capacity Gain) mea-
sure. These criteria when associated with a greedy algorithm allow:

– To capture k-way interacting features
– To detect the partially redundant features. Partial correlation exists when only a feature

combination can discriminate the class
– To rank the variables selected with the complementary criteria (DC: discriminating ca-

pacity).

The STRASS algorithm proposed here belongs to the greedy type category of algo-
rithms. The research is a sequential bidirectional generation, i.e. a core of features is com-
posed from an empty set S f which is built gradually until a subset having the same degree of
relevance as the starting subset noted is obtained. The feature subset is progressively com-
puted and re-evaluated at every feature addition. The algorithm breaks up into three steps
depending on its initialization:

Step 1: The features are ranked in descending order based on their discriminating capac-
ity gain and a subset of strongly relevant features or predominant features is selected.

Step 2: The remaining features are evaluated one by one starting from the top of the re-
maining features list and the weakly relevant features which have the largest discriminating
capacity are combined with the previously selected features S f if the resulting overall dis-
criminating power is increased. In fact a feature may have a little correlation with the class,
but when it is combined with some others features, the resulting subset can be strongly cor-
related with the class.

Step 3: Suppression of redundant features. At this stage, backward elimination is em-
ployed to detect the features that become redundant compared to the preselected features
subset S f when adding a new feature in the second stage of the algorithm. For a predefined
threshold ρ;0 < ρ < 1 features having a discriminating capacity DC < ρ �DCtot are re-
moved. Therefore, we obtain a subset of low cardinal and with no redundancy in the selected
set of features.

The complete algorithm is given in Figure 2.

4.2 Strengths and weaknesses of STRASS

Amongst feature selection algorithms, STRASS is based on contextual criteria. These crite-
ria are established in a greedy type algorithm and select from a learning set a minimal set of
relevant features. The learning set must be consistent, not having missing data and consists
of symbolic data and/or numeric. Noisy data have a negative impact on the associated per-
formance. To our knowledge, the criteria used by STRASS are the first to take into account
the different aspects of the correlation detailed above. STRASS identifies the k-way interac-
tion between features and the partial correlations and partial redundancy in a set of pairwise
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data. Another interesting remark is the fact that STRASS is a filter algorithm which is less
computationally intensive than wrapper techniques, and embedded methods.

STRASS is computationally efficient on databases with reasonable sizes (in the order
of thousands entries and hundreds of features). However for large databases, the pairwise
data representation is inherently a combinatorial problem, and is not adapted. In order to
reduce the complexity of STRASS, we plan to simplify the criteria and express them under
a contingency form. The transformation of the pairwise criteria to contingency criteria with
the help of Marchotorchino [24] might be of interest and will be the object of a future work.

[Fig. 2 about here.]

5 Experiments and results

5.1 Implementation

STRASS algorithm was implemented in MATLAB 7.5 environment. For the filtering algo-
rithms and classifiers, existing tools in WEKA machine learning platform [14] have been
used. The experiments were run using WEKA with its default values. For evaluation pur-
poses we will compare STRASS with other algorithms that consider feature interaction
and correlation using contextual and semi-contextual measures, such as CFS, mrMR, CFS-
FCBF, INTERACT, ReliefF, SVM-RFE, LASSO, Elastic Nets. The mRMR feature selection
algorithm used in this work has been adapted from [28] and has been downloaded online1.
Same conditions are used in Matlab and Weka.

5.2 Evaluation of the algorithm

STRASS performance was assessed in two complementary ways: (i) Direct evaluation through
artificial data sets: Led, Monk, Bool, Parity, Corral and Agrawal’s functions (Appendix B).
These data sets highlight the behavior of our algorithm when the descriptive characteris-
tics interact. Langley and Sage [20] stressed the importance of artificial fields. (ii) Indirect
evaluation on TEP benchmark allows us to study the classification performance with and
without the filtering phase, the classifiers accuracy and the number of features removed by
the filtering algorithm. The results obtained with STRASS are compared with filter meth-
ods, as mRMR, CFS (with best first search), FCBF (with threshold SU set to 0), INTERACT,
ReliefF algorithms, and with embedded methods, as the LASSO principle [34], the Elastic
Net principle [42] the SVM-RFE algorithm [13]. To compare STRASS with mRMR and
ReliefF, we take the same number of features for mRMR as the one selected by STRASS.

5.3 Synthetic data with known feature interaction

[Table 1 about here.]

We have applied STRASS on some synthetic data sets widely used for feature selection.
Results are given in Table 1. Only STRASS is able to determine relevant features in all data

1 http://penglab.janelia.org/software/
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sets. The INTERACT algorithm selects relevant features nine times out of thirteen, which
is more than for the other algorithms. It can be seen from Table 1 that for LED Display
Domain (Led, Led 24) all the algorithms fail to detect the relevance and the sufficiency
of the five segments except STRASS. For the Parity data set, STRASS and INTERACT
establish that the features x1;x2;x3 are relevant whereas the others are useless. For the three
MONKs data sets, STRASS was able to find true relevant features using a loss of 1% of
the DCtot for MONK-3. STRASS, INTERACT and mRMR detected the redundancy of
feature x6 in Corral data set. This feature being correlated to 75% with the feature class is
considered to be relevant alone by CFS and FCBF because the algorithms cannot evaluate
the k-way interactions. In the case of Agrawal’s functions (F1 to F4), STRASS gives the
relevant features for the four functions. Thus, STRASS is the most powerful algorithm on
these data sets. This is explained by the presence of large interactions in the data. Indeed
CFS, mRMR and FCBF detect the pair-wise feature-feature correlation (inter-correlation)
but they cannot identify neither interactions between subsets of features and the class nor
unavoidable features.

5.4 Application on the TEP Benchmark

[Table 2 about here.]

TEP benchmark [12] is described in Appendix B. Instances in this data set are com-
posed of 52 variables and labeled with a fault type between 1 and 15. Three types of faults
denoted as fault 4, fault 9 and fault 11 are considered here, because they are the most dif-
ficult to classify. The problem of their identification is due to a great interaction between
the features for these faults, not to the classifier used. To solve this problem and improve
the classifier performance, we need define a feature filtering taking account feature interac-
tions. Table 2 presents the features that are selected by the different algorithms compared
here. For STRASS, the most discriminating features are f51;41;38;40;37;50;19;18;9;20g.
STRASS uses DCG (discriminatory capacity gain) to rank each feature are sorted according
to its contribution relatively with other features. Fig. 3 shows the DCG for each predominant
feature.

[Fig. 3 about here.]

[Table 3 about here.]

For the classification task, five different classifiers have been used : a decision tree
(C4.5), 1-nearest-neighbor (IB1), Naive Bayes (NB), a multilayer perceptron (MLP) and
Support Vector Machines (SVM). We have applied these classifiers to the features selected
by the feature selection algorithms described above. Results are obtained with 10-fold cross
validation. We have compared the results with semi-contextual and contextual methods :
mRMR, CFS, FCBF, INTERACT, ReliefF, LASSO, Elastic net and the SVM-RFE feature
selection algorithms. To analyze the results obtained in this study, we have employed two
performance measures: accuracy and Cohen’s Kappa. The accuracy is defined as the num-
ber of successful hits relative to the total number of classifications. The Kappa is a statistical
measure of inter-rater agreement. Cohen’s Kappa can be adapted to classification tasks and
it is also used in some well-known software packages, such as WEKA. Tables 3 and 4 show
the performance in terms of accuracy and Kappa respectively. The best results for each clas-
sifier are highlighted in bold. The symbols + and � respectively indicates an improvement
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or a degradation in terms of performance compared with the ones obtained for the whole set
of features.
Let us examine the effect of feature selection on classification performance. Classification
accuracy and kappa score is calculated before and after filtering. These results are reported
in Tables 3 and 4. An interesting point is that the features selected by STRASS always im-
prove the performance of a classifier compared to the complete set of features. This is due
to the fact that the feature subset selected by STRASS has the same discriminating capacity
as the full set of features and hence the classification performance are equal or better than
the one of the full set. The performance obtained with STRASS is always one of the two
best feature selection algorithms apart from when using with the Multi-Layer perceptron. Its
average position is 2:6 which is the best among the other algorithms. The best performance
in terms of accuracy is obtained with IB1 and ReliefF algorithms (98:91%), but STRASS is
just behind that performance (98:56%). Moreover, the feature selection made by the ReliefF
algorithm does not always improve the performance compared to the whole features on the
contrary to STRASS.

In terms of average classification performance, the best algorithms are STRASS, mRMR
and INTERACT. These results hence highlight the benefit of detecting k-way correlations
(particularly for k < 2, as STRASS and INTERACT) compared to only detecting feature-
feature intercorrelation, as most of the semi-contextual and embedded consider. The charac-
teristic of detecting k-way correlations lead to improve classification performance each time
on these experiments.

[Table 4 about here.]

[Fig. 4 about here.]

Fig 4 gives the accuracy results obtained with STRASS with ordered selected features
in decision tree (C4.5) and nearest neighbors classifier (IB1). For IB1 the best results are
obtained with all the selected features whereas for C4.5 the seven first selected features give
the best result.

The confusion matrices obtained with STRASS + IB1 and ReliefF + IB1 for their
associate best feature set are given respectively in Table 5 and 6. In all these cases, the fault
11 is less discriminated because this fault overlaps with the two others.

To conclude this experiment section, we have seen that STRASS gives better or equiv-
alent performance than most of the compared feature selection algorithms when combined
with different classifier. An interesting point is that the features selected by STRASS always
improve the performance of a classifier compared to the complete set of features, which is
not always the case for the other feature selection algorithms. These results hence highlight
the benefit of the k-way feature selection process of STRASS.

[Table 5 about here.]

[Table 6 about here.]

6 Conclusion

This paper describes STRASS, a contextual-based feature selection algorithm for classi-
cation purposes able to detect the interaction between features and the class and select a
minimum relevant feature subset. The efficiency and effectiveness of STRASS to handle
large interactions are demonstrated through a comparative study with other representative
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feature selection algorithms on synthetic data known for their correlation. The proposed
feature selection algorithm was then applied to a well-known fault detection benchmark:
the Tennessee Eastman Process (TEP). STRASS has demonstrated its ability to reduce the
dimensionality of data sets while maintaining or improving the performances of learning
algorithms. In fact for TEP process, the features selected by STRASS decreased the data
correlation and the overall misclassification for the testing set using 1-nearest neighbor de-
creased further to 1.4%. STRASS was also compared to other reference feature selection
algorithms. The results of STRASS outperformed or lead to equivalent performance to those
obtained with those reference algorithms. In addition, the features selected by STRASS al-
ways improve the performance of a classifier compared to the whole set of features.

A The Tennessee Eastman Process

[Table 7 about here.]

The Tennessee Eastman Process (TEP) is a chemical process, created by the Eastman Chemical Company
to provide a realistic industrial process in order to evaluate process control and monitoring methods [12]. This
process was simulated on Matlab by Ricker [29]. The simulator was used to generate overlapping data sets to
evaluate the classification performance. Figure 5 shows a flow sheet of TEP. There are four unit operations:
an exothermic two phase reactor, a flash separator, a re-boiler striper, and a recycle compressor. The TEP
process produces two products (G and H) and one (undesired) by-product F from four reactants (A, C, D and
E). This process has 12 input variables and 41 output variables. Only 52 variables are taken into account in
this problem because one of the input variables (the reactor agitator speed) is constant. The system has fifteen
types of identified faults. In this paper, we considered only three types of fault : fault 4, 9 and 11. These faults
are described in Table 7.

[Fig. 5 about here.]

B Synthetic data

We describe in this appendix the synthetic data used in this paper for simulation purposes.
The LED display domain data set is available on the UCI data set repository [4].
The MONK’s problems [33] are composed of three target concepts :
MONK-1 : (x1 = x2)_ (x3 = 1)
MONK-2 : exactly two of :

fx1 = 1;x2 = 1;x3 = 1;x4 = 1;x5 = 1;x6 = 1g

MONK-3 : (x5 = 3 ^ x4 = 1)_ (x5 6= 4 ^ x2 6= 3)
The BOOL data set is composed of a function of 6 Boolean features giving a Boolean class, for instance :
yclass = (x1 � x2)_ (x3 ^ x4)_ (x5 ^ x6). Six other randomly generated Boolean features are added to these
features.
The Parity data set is composed of a of a function of 3 Boolean features yclass = x1�x2�x3. Seven randomly
generated Boolean features are added. This data set is particularly interesting because no relevant features
taken separately can be distinguished from irrelevant ones.
The Parity2 data set is the same as the Parity data set to which 2 redundant features are added : x11 = x1 and
x12 = x2. This data set allows testing the algorithms ability to work with redundant features.
The Coral data set is composed of six binary features x1 to x6 among which x5 is irrelevant and x6 is correlated
to 75% with the feature class yclass = (x1 ^ x2)_ (x3 ^ x4).
Agrawal’s functions are a series of classification functions of increasing complexity that uses 9 features to
classify people into different groups. More details can be found in [1].
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Input:
E the whole set of pairs
So = fx1; : : : ;xrg the set of features
DCtot = DC(So;E) DC of So
ρ threshold for loss of DC

Output:
S f selected features

Initialize S f to /0
1. Selection of strongly predominant features
For each xk 2 So do
aaaaif DCG(xk;So�fxkg;E)> 0 then
aaaaaaaaS f = S f +fxkg
aaaaaaaaSo = So fxkg
aaaaend
end
Update E, as E = E fdiscriminated pairsg

2. Selection of the remaining weak relevant features
While DC(S f ;E)< ρ�DCtot do
aaaaDCmax = 0
aaaaFor each xk 2 So do
aaaaaaaaif DC(xk;E)> DCmax then
aaaaaaaaaaaaDCmax = DC(xk;E)
aaaaaaaaaaaaxmax = xk
aaaaaaaaend
aaaaend
aaaaS f = S f +fxmaxg
aaaaSo = So fxmaxg
end
Update E, as E = E fdiscriminated pairsg

3. Elimination of redundant features
For each xk 2 So do
aaaaif DC(S f fxkg;E) = DC(S f ;E) then
aaaaaaaaS f = S f xk
aaaaend
end

Fig. 2 Description of the STRASS algorithm
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Fig. 3 Accuracy performance for ordered selected features with STRASS and two classifiers : IB1 and C4.5
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Fig. 4 Accuracy performance for ordered selected features with STRASS and two classifiers : IB1 and C4.5
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Fig. 5 Process flow sheet of TEP
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Table 1 Features selected by different algorithms on synthetic data sets

data sets Relevant STRASS mRMR CFS FCBF INTERACT ReliefF
features

LED7 x1:5 x1:5 x2:4;x6:7 x1:7 x1:7 x1:7 x1:7

LED 24 x1:5 x1:5 x2:5;x7 x1:8;x14 x2:7;x11 x1:9;x11 x1:7

x16;x19; x12;x14; x14:20;

x21 x15;x19:21 x22:23

MONK1 x1:2;x5 x1:2;x5 x1;x4:5 x1;x3:5 x1;x3:5 x1:2;x5 x1:5

MONK2 x1:6 x1:6 x1:6 x4:6 x4:6 x1:6 x1:6

MONK3 x2;x4:5 x2;x4:5 x2;x5:6 x2;x5:6 x2;x5:6 x1:2;x4:5 x1:6

Parity x1:3 x1:3 x2;x6;x10 x5;x8;x10 x10 x1:3 x1:3

Parity 2 x1:3 x1:3 x2;x6;x10 x5;x8;x10 x10 x1:3 x1:3;x11:12

Corral x1:4 x1:4 x1:4 x1:4;x6 x1:4;x6 x1:4 x1:4;x6

Bool x1:6 x1:6 x3:6;x7; x1:6 x3:6;x10 x1:6 x1:6;x7;

x10 x12 x12

F1 x3 x3 x3 x3 x3 x3 x3

F2 x1;x3 x1;x3 x1;x8 x1 x1 x1 x1:3

F3 x1;x3:4 x1;x3:4 x2;x4;x8 x2:4 x2:4 x2:4 x1:9

F4 x1:2;x9 x1:2;x9 x1:2;x8 x9 x1;x9 x1:2;x8 x1:2;x9
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Table 2 Features selected by different algorithms on the TEP benchmark

STRASS 51,41,38,40,37,9, 50,18,19,20
mRMR 9,41,18,37,39,51,21,40,20,19
CFS 9,18,21,37,39,51
FCBF 9,18,21,37,39,51
Interact 51,9,41,38,37,50,40,19
ReliefF 51,37,40,39,41, 38,50,19,18,20
Lasso 51,9,28,32,3,39,35,43,40,34,11,29
SVM-RFE 28,35,34,9,51,19,18
Elastic Net 51,9,28,40,32,29,25,35
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Table 3 Accuracy performance of different classifiers associated with feature selection algorithms
`
`
`
`
`
`
`
`
`
`̀

FS Algo.
Classifier Decision Tree IB-1 Naive Bayes Multi-Layer Perceptron SVM

None 90:34 84:21 86:71 85:95 44:08

STRASS 93:01+ 98:56+ 87.06+ 86:23+ 83.02+

mRMR 92:5+ 97:18+ 86:9+ 87.29+ 82:41+

CFS - FCBF 91:02+ 88:19+ 86:46� 86:64+ 81:23+

INTERACT 93.91+ 98:31+ 86:97+ 86:34+ 80:39+

SVM-RFE 85:72� 90:6+ 86:2+ 87:04+ 81:11+

LASSO 87:54� 85:67+ 86:32� 86:34+ 75:97+

ReliefF 90:42+ 98.91+ 82:61� 80� 82:98+

Elastic Net 87:1� 90.6+ 86:27� 86:38+ 80:37+



24 Brigitte Chebel-Morello et al.

Table 4 Kappa score of different classifiers associated with feature selection algorithms
`
`
`
`
`
`
`
`
`
`̀

FS Algo.
Classifier Decision Tree IB-1 Naive Bayes Multi-Layer Perceptron SVM

None 0:855 0:763 0:8 0:789 0:674

STRASS 0:895+ 0:978+ 0.806+ 0:793+ 0.746+

mRMR 0:886+ 0:958+ 0:803+ 0.809+ 0:736+

CFS - FCBF 0:865+ 0:823+ 0:797� 0:799+ 0:718+

INTERACT 0.909+ 0:975+ 0:805+ 0:795+ 0:701+

SVM-RFE 0:7958� 0:859+ 0:793� 0:805+ 0:713+

LASSO 0:8132� 0:7851+ 0:7948� 0:7951+ 0:6396+

ReliefF 0:856+ 0.984+ 0:739� 0:7� 0:745+

Elastic Net 0:8066� 0:859+ 0:7941� 0:7958+ 0:7056+
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Table 5 Confusion matrix obtained with STRASS+IB1
`
`
`
`
`
`
`
`
`
`
`̀

True Class
Estimated class Fault 4 Fault 9 Fault 11

Fault 4 1430 6 4

Fault 9 1 1435 4

Fault 11 27 20 1393
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Table 6 Confusion matrix obtained with ReliefF+IB1
`
`
`
`
`
`
`
`
`
`
`̀

True Class
Estimated class Fault 4 Fault 9 Fault 11

Fault 4 1432 1 7

Fault 9 1 1435 4

Fault 11 20 14 1406
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Table 7 Description of the faults used in this paper

Fault number Description
4 Step change in the reactor cooling water

inlet temperature
9 Random variation in D feed temperature
11 Random variation in the reactor cooling

water inlet temperature


