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SUMMARY

This contribution presents a numerical strategy to evaluate the effective properties of image-
based microstructures in the case of random material properties. The method relies on three
points: (i) a high-order fictitious domain method; (ii) an accurate spectral stochastic model and
(iii) an efficient model reduction method based on the Proper Generalized Decomposition in order
to decrease the computational cost introduced by the stochastic model. A feedback procedure is
proposed for an automatic estimation of the random effective properties with a given confidence.
Numerical verifications highlight the convergence properties of the method for both deterministic
and stochastic models. The method is finally applied to a real 3D bone microstructure where
the empirical probability density function of the effective behaviour could be obtained.

key words: fictitious domain method; homogenization; high-order; stochastic; proper gener-

alized decomposition

1. Introduction

During the past few years, image-based analysis has been the object of a large interest
for a wide range of applications. In particular, a large number of studies have been con-
ducted in the domain of biomechanics since the 90’s [1, 2] for building patient specific
models of bones for osteoporosis treatments. The finite element predictions are used
to decide whether surgical interventions are needed, but also to understand the rela-
tionship between bone morphology and load transfer. Besides osteoporosis applications,
patient specific finite element models have also been considered for the optimization
and the design of orthopaedic implants (see e.g. [3, 4]). These techniques have also
been widely applied in material science [5, 6] to understand the relationship between
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the morphology and the mechanical properties of the materials. Two main families of
methods have been designed for building finite element meshes from geometrical data
(CT scans, microscopy). Images being represented as a multidimensional array of pixels
(voxels in 3D), voxel-based finite element approaches [1, 7, 8, 9, 10] can directly trans-
late geometrical acquisitions into numerical models by simply associating a quadrangular
(resp. hexahedral) element to every pixel (resp. voxel). In this case, material properties
can be assigned based on a segmentation, or directly based on the intensity level of
the image (provided that a relationship between image intensity and material properties
is given). This approach ie almost completely automatic, but leads to large numerical
models (directly proportional to the image resolution). In addition, the stair steps ap-
proximation of the geometry is known to decrease stress accuracy near boundaries in
addition to the convergence of the model [11]. The second family of methods is based
on an image segmentation step, followed by surface triangulation and finally volume
meshing [12, 13, 14]. This method allows the use of non-homogeneous (user-defined)
mesh density, and thus improve the efficiency of the numerical model. However, mesh
generation of complex micro-structures is still a challenging task, especially if distorted
elements have to be avoided. To answer the issues raised by these two approaches, al-
ternative methods have emerged recently with the objective to simplify the interaction
between geometry and numerical computations. One can cite for example the Finite
Cell method from Rank, Düster and co-workers [15, 16, 17, 18], and the eXtended Finite
Element Method (X-FEM in the following) [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].
The Finite Cell method is a high-order fictitious domain method which has proved to be
very efficient thanks to the approximation properties of p-fem [31, 32, 33]. The fictitious
domain nature of the method makes possible to use meshes that do not conform to the
geometry, avoiding the use of cumbersome meshing techniques. Instead, the effort is put
on the integration of the weak formulation, as the geometrical error in the solution has
to be mastered. The method has been applied in the context of design through analysis
[34], but also to image-based analysis in both material science [35, 36] and biomechanics
[37, 38]. The use of the X-FEM in the context of CAD and fictitious domain traces back
to the work of Belytschko [39]. The use of the X-FEM in the context of image-based
analysis has been further developed in [11, 40] where a complete strategy was proposed
to build accurate numerical models from 2D or 3D images. The use of an octree data
structure allowed to decrease the computational cost, but also required a special treat-
ment for enriched hanging nodes [41]. The method has been extended to higher order
approximations in [42, 43], and proved to be efficient for image-based analysis. Despite
being very accurate, these methods assume the material properties to be deterministic.
This is not the case in practice, as a large scattering of the properties was observed in
the numerous experimental data that are taken as reference for the material properties
[10].These uncertainties can have multiple sources: (i) geometrical uncertainties due to
the geometrical acquisition process, the associated image treatments and the geometrical
discretization; (ii) material uncertainties due to inter-individual variation in the material
properties of the tissues or even intra-individual variations depending on the biological
site where the bone is located and (iii) experimental uncertainties due to the processing
of the samples, mis-alignments in the experimental devices, and sensors accuracy. In
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this contribution, we will restrict ourselves to material uncertainties alone. This source
of uncertainty is of prime importance in the context of patient-specific models, as they
allow to model both intra and inter-individual material variations. For patient-specific
models, geometrical uncertainties are mainly linked to the resolution of the image which
is considered as sufficiently large (see the example in section 4). Usually, Monte-Carlo
strategies are considered to model the propagation of uncertainties in homogenized mod-
els. The X-FEM is appealing in this context, and was used in [44] and [45] to study
the statistics of the effective properties against the distribution and shape of material
inclusions. In the context of FEM, [46] proposed statistical methods in order to estimate
the size of the representative volume element of random composites and the associated
homogenized properties. Mathematical bonds on the statistics of the effective properties
were also obtained in [47, 48] when the RVE is sub-sampled and in [48] in the case of ran-
dom micro-structures. So far, all these contribution assumed fixed material properties
for the different phases. In Basaruddin et al. [10], both geometrical and material ran-
domness were taken into account by means of perturbation techniques. Wille et al [49]
also studied the impact of the variability of the material properties on the mechanical
response of femurs. This approach was relying on a simple product of the deterministic
response by an identified stochastic function.

The aim of this manuscript is to take into account state of the art stochastic methods
for an accurate representation of the stochastic output of the model. The stochastic finite
element method will be considered in the following [50, 51]. However, this method is
known to require high computational resources. This is why model reduction techniques
will be considered so that large stochastic models can be solved accurately. The accuracy
of the model will be ensured, not only at the deterministic level, like in [52, 38] but for
the whole stochastic model through feedback strategies [33] that proved to be efficient
in the p-fem context. As stated above, randomness is considered only for the material
properties (to model inter-individual variations). In the case where the resolution of the
input images is not sufficient, one could take into account the influence of the image
treatment following the approach proposed in [10] which would lead to a random level-
set.

The manuscript is organized as follows: first, the numerical strategy is introduced,
both at the deterministic and stochastic levels. Emphasize is also put on the PGD
(Proper Generalized Decomposition) model reduction technique [53, 54, 55] in the con-
text of stochastic analysis. In a second part, the numerical strategy is validated on a 2D
model problem, before being applied to a real 3D cortical bone micro-structure.

2. Numerical strategy

The numerical strategy which is proposed in this contribution is based on three ingredi-
ents: (i) an efficient and accurate numerical scheme for computing the overall properties
of image-based structures, (ii) an accurate stochastic model to take into account the
uncertainties in the model and (iii) an efficient model reduction method to decrease the
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computational cost of the stochastic model. These aspects are detailed in the following
sections.

2.1. High order fictitious domain method

One of the main difficulties for simulating image-based micro-structures concerns the
treatment of the amount of geometrical informations produced during the acquisition.
Indeed, 10243 voxels images are now common: such high-resolution images require large
computer resources for the simulations unless tedious geometrical and meshing treat-
ments are used. In this contribution, an alternative path is followed: geometrically
non-conforming approaches in the spirit of fictitious domain methods are considered in
order to alleviate the meshing burden. The method is illustrated in figure 1 a: The
approximation is defined on a regular background grid of simplices or hypercubes which
does not conform to the geometry. Elements that are fully in the domaine are inte-
grated with classical quadrature rules, whereas ad hoc strategies have been developed
for elements lying partially in the domain. The objective is to integrate accurately the
weak formulation on these elements. The Finite Cell method [35, 17, 16, 56, 18] initially
used space-tree algorithms and integration points classification (see figure 1 b), whereas
so-called sub-grid level-sets was advocated in [42, 43] (see figure 1 c) where the geometry
is represented using the iso-zero of a level-set function [57]. With respect to space-tree
algorithms, this method employs a local tesselation near the interface. More recently,
the use of suitable mappings was proposed in order to decrease the integration cost
when the interfaces are represented by means of parametric surfaces [58, 59, 60, 61, 62]
(see figure 1 d). As we are dealing with discrete geometries, we will focus on sub-grid
level-sets in the following. The computational strategy proposed in [40, 11] is used to
convert the images into numerical models using level-sets.

Thanks to this approach, it is possible to treat very complex geometries with an ap-
proximation defined on a regular grid. Accurate results with such coarse meshes are
obtained thanks to the use of high-order approximations (typically up to p = 10 in 2D,
and p = 8 in 3D). This method has been proved to be very effective in previous contri-
butions. This stems from the fact that p methods can attain exponential convergence
whereas classical h finite elements are limited to algebraic convergence [33].

2.2. Numerical homogenization

We are interested in the computation of the overall properties of material micro-structures.
The output of the procedure is the effective elasticity tensor C which relates the macro-
scopic stress and strain tensors, Σ and E:

Σ = C E (1)
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a) b) c) d)

Figure 1: Unfitted approximation of a body, and quadrature points for an element
crossed by the interface: b) Finite Cell quad-tree algorithm, c) sub-grid levelset
and d) transfinite mapping.

where Σ and E are defined by the following spatial averages:

Σ = 〈σ〉, (2)

E = 〈ε〉, (3)

< • > =
1

V

∫
Ω
• dΩ (4)

where tensors σ and ε are the micro stress and strain tensors, Ω is the spatial domain,
and V its volume. The homogenization procedure is based here on kinematic uniform
boundary conditions (KUBC), but could also be based on stress uniform boundary con-
ditions (SUBC) or periodic boundary conditions (PBC) [46, 63, 48]:

u = E · x on ∂Ω (5)

where u is the displacement. Using these boundary conditions, equation (3) is automat-
ically verified, whereas the components of C are obtained by computing eq.(2) for three
macroscopic displacement modes associated to macroscopic strain fields E

1
, E

2
and E

3
(2D macroscopic tractions and shear):

E
1

=

[
1 0
0 0

]
, (6)

E
2

=

[
0 0
0 1

]
, (7)

E
3

=

[
0 0.5

0.5 0

]
. (8)

If a so called energetic extraction is considered, then the components of C can also be
obtained by means of the Hill-Mandel condition:

Cij = E
i
.C.E

j
= a(ui,uj) (9)
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where a(u,v) =
∫

Ω ε(u) : K : ε(v) dΩ is the bilinear form of the weak formulation of
the mechanical problem with K the fourth order Hooke tensor, and ui is the micro-
displacement associated to E

i
in (5). If uh,pi is the finite element solution of the weak

formulation of the unit-cell problem, then the associated finite element effective tensor
verifies:

Ch,pij = E
i
.Ch,p.E

j
= a(uh,pi ,uh,pj ) (10)

Following [52], we can write that:

Ch,pij − Cij = a(uh,pi ,uh,pj )− a(ui,uj) (11)

= a(uh,pi − ui,u
h,p
j − uj) (12)

Using Schwarz’ inequality, the expression can be bounded:

|Ch,pij − Cij | ≤ a(uh,pi − ui,u
h,p
i − ui)

1/2a(uh,pj − uj ,u
h,p
j − uj)

1/2 (13)

Noting that a(uh,pi − ui,u
h,p
i − ui)

1/2 is the energy norm of the error of micro-problem
i, we can use classical finite elements error estimates:

‖ei‖E = a(uh,pi − ui,u
h,p
i − ui)

1/2 ≤ Chp ' C̃N−p/dim for h finite elements, (14)

≤ k/ exp(γNθ) for p finite elements, (15)

where dim is the dimension of the problem, N the number of degrees of freedom and
C, C̃, k, β and θ are problem dependent constants. It can be shown that θ > 1/2 in
2D (resp. 1/3 in 3D) if the solution is regular. Otherwise, the converge rate remains
algebraic, see [33] for the derivation of these estimates. This means that the convergence
of the components of effective tensor behaves like the error of the micro-solution:

|Ch,pij − Cij | ≤ Ch
2p ' C̃N−2p/dim for h finite elements, (16)

≤ k/ exp(2γNθ) for p finite elements. (17)

Note however that Ch,pij may converge to Cij from above or below depending on the com-
ponent. Thus, the absolute value in (16) can be dropped for the diagonal components,
but not for the off-diagonal ones. Nevertheless it is still possible to apply the extrap-
olation estimate proposed in [33] to estimate the error on these quantities of interest.
Indeed, [33] shows that Cij can be estimated from three computations with degrees p,
p− 1, p− 2 by solving the following nonlinear equation:(

Ch,pij − Cij
)

(
Ch,p−1
ij − Cij

) =


(
Ch,p−1
ij − Cij

)
(
Ch,p−2
ij − Cij

)
Q (18)

with Q =
log

(
Np−1
Np

)
log

(
Np−2
Np−1

) . Although less powerful, this approach is easier to implement than

goal-oriented error estimators which require 6 (21 in 3D) additional adjoint resolutions
to estimate the error. The performances of this adaptive method will be studied in the
following sections.
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2.3. Stochastic Finite Elements

We are interested in the prediction of the impact of uncertainties on the overall behaviour
of materials. This impact is traditionally obtained using sampling techniques, such as
Monte Carlo simulations. However, such a strategy is intractable because of the large
number of large simulations it requires (O(1/

√
Nsamples) convergence). Perturbation-

based methods [64, 10] can be used with good results. However, the accuracy of such
methods is satisfactory only for a small range of variation of the input parameters. If
not, one has to rely on improved schemes like [65]. We will focus here on a functional
point of view for stochastic analysis: random quantities are seen as functions of random
parameters that represent basic uncertainties. This vision has led to the development of
spectral stochastic methods [50, 66, 67, 51]. The main advantage of these methods is the
explicit representation of the random response of the model as a function of the basic
random parameters. They also allow for fast post-processing of the solution (envelope
of the solution, sensitivity with respect to the input parameters,...).
In the following, uncertainties are represented by means of a finite number of random
variables ξ = {ξ1, ξ2, · · · ξr} which are random parameters of the mechanical problem
(Young’s modulus and Poisson’s ratio in our case). Let (Θ,B, Pξ) be the associated
probability space, where Θ ∈ Rr is the range of ξ, B the associated σ-algebra and Pξ

the probability measure of ξ. The spatial weak formulation of the mechanical problem
is: Find u(x, ξ) ∈ VΞ such that

a(u,v; ξ) = b(v; ξ) ∀v ∈ VΞ
0 (19)

where u(x, ξ) is the unknown random displacement field, Ω is the spatial domain of
interest, and a and b represent respectively the bilinear and linear forms of the problem:

a(u,v; ξ) =

∫
Ω
ε(u) : K(ξ) : ε(v) dΩ, (20)

b(v; ξ) =

∫
Ω
v.b(ξ) dΩ +

∫
ΓN

v.T(ξ) dΓ. (21)

In these expressions, K(ξ) is the random fourth order Hooke tensor, b(ξ) are the random
body forces and T(ξ) are the random prescribed tractions on ΓN ∈ ∂Ω. Under suitable
regularity assumptions on the random parameters, the solution of (19) is searched in
L2(Θ,B, Pξ;V) the space of real value square integrable functions defined on the proba-
bility space (Θ,B, Pξ) with values in V = H1(Ω). Note that this space can be identified
with the tensor product space V ⊗ S, with S = L2(Θ,B, Pξ) the space of real value
second order random variables. A finite element approximation of the solution can then
be obtained by introducing a finite dimensional space VN ⊂ V such that:

u(x, ξ) ≈ uh,p(x, ξ) =

N∑
α=1

uα(ξ)Nα(x) (22)

where {Nα}Nα=1 is the basis of functions of the approximation space VN and uα are the
N random degrees of freedom (dofs). Spectral stochastic methods consist in looking for
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an approximation of the dofs uα(ξ) under the expansion:

uα(ξ) ≈
P∑
k=1

uαkHk(ξ) (23)

where {Hk(ξ)}Pk=1 is a multidimensional basis of r parameters (ξ1, · · · ξr) of an approxi-
mation space SP ⊂ S (e.g. the polynomial chaos [50, 66], piecewise polynoms, wavelets
[68, 69, 70]). The coefficients of the expansion can be determined using the weak stochas-
tic formulation of (19): Find uh,p(x, ξ) ∈ VN ⊗ SP such that:

A(uh,p,v) = B(v) ∀v ∈ VN ⊗ SP (24)

where:

A(u,v) =Exp (a(u(ξ),v(ξ); ξ)) , (25)

B(v) =Exp (b(v(ξ); ξ)) , (26)

where Exp(•) =
∫

Θ •dPξ is the mathematical expectation. The corresponding linear
system contains N × P equations, where N = dim(VN ) and P = dim(SP ) may both be
large. This makes stochastic finite elements a computationally intensive method. For
large deterministic models like those classically encountered in image-based analysis,
such an approach would require large computer resources. This difficulty is also known
as the “curse of the dimensionality”, which motivates the use of a model reduction
method for solving the stochastic equations.

2.4. PGD spectral model reduction

The Proper Generalized Decomposition [53, 54, 55] is presented in this section for the
resolution of problem (24)2. This method was initially called Generalized Spectral De-
composition (GSD) [73] in the stochastic framework. The idea is to exploit the tensor
structure of the solution, and look for an optimal separated representation of u under
the form:

um(x, ξ) =
m∑
i=1

wi(x)λi(ξ) (27)

where wi(x) ∈ VN are deterministic modes, λi ∈ SP are stochastic functions and m is the
rank which is supposed to be small. This separated representation is constructed without
knowing the solution of (24). More recently, it was extended to the full tensorisation of
SP for independent random variables (ξ1, · · · , ξr) with Θ = Θ1 × · · · × Θr and dPξ =
dPξ1 · · · dPξr : SP = SP1 ⊗ SP2 · · · ⊗ SPr and:

um(x, ξ) =
m∑
i=1

wi(x)φ1
i (ξ1) · · ·φri (ξr). (28)

2Note that the method itself has already been applied to the resolution of image-based problems, see
for instance [71] and [72]
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This full tensorisation will make possible the use of very fine stochastic discretization
for each random variable ξj at low cost. This decomposition can be built a priori by
recasting problem (24) as the minimization of the functional J(v) = 1

2A(v,v)−B(v):

u(x, ξ) = arg min
v∈VN⊗SP1⊗···⊗SPr

J(v). (29)

The decomposition is built progressively by successive addition of rank-one elements
w(x)φ1(ξ1) · · ·φr(ξr) to a previously computed decomposition um−1 as:

um = um−1 + w(x)φ1(ξ1) · · ·φr(ξr) (30)

The additional term is obtained by finding the best additional term defined as:

w(x)φ1(ξ1) · · ·φr(ξr) = arg min
y(x)χ1(ξ1)···χr(ξr)∈
VN⊗SP1⊗···⊗SPr

J(um−1 + y(x)χ1(ξ1) · · ·χr(ξr)) (31)

This nonlinear minimization problem is solved using a simple fixed-point algorithm along
each components of w(x)φ1(ξ1) · · ·φr(ξr). This fixed point algorithm requires the reso-
lution of r 1D stochastic problems and one 3D deterministic problem at each iteration.
Usually, 4 to 5 iterations are sufficient to reach stagnation, which makes this algorithm
attractive. In this paper, r = 2, as the two random variables parametrize respectively
Young’s modulus and Poisson’s ratio. The fixed point algorithm consists in solving
alternatively three problems:

1. Finding w(x) with φ1(ξ1) and φ2(ξ2) considered as known: this problem has size
dim(VN ).

2. Finding φ1(ξ1) with w(x) and φ2(ξ2) considered as known: this problem has size
dim(SP1).

3. Finding φ2(ξ2) with w(x) and φ1(ξ1) considered as known: this problem has size
dim(SP2).

Thus, a collection of moderate size problems has to be solved (4 ×m problems of size
dim(VN ), 4 × m problems of size P1 = dim(SP1) and 4 × m problems of size P2 =
dim(SP2)), rather than one problem (24) of size dim(VN ⊗SP ) = N×P . The derivation
of these problems is presented in appendix A. Note however that the efficiency of the
method relies on the low rank separated representations of the operator A and right-
hand-side B of the weak formulation, these separated representations are precised in
the appendix. It was shown that such an algorithm was very robust and converging
very fast when efficient update strategies are considered [73]. In order to improve the
efficiency of the method, an adaptive stochastic model could be defined at this level. It
is not considered here as the model reduction method makes the cost of the stochastic
dimensions negligible compared to the deterministic problem (set of 1D problems).
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3. 2D numerical verifications

First, 2D numerical verifications are conducted in order to assess the accuracy of the
method and highlight its features for both stochastic and deterministic problems. Con-
sider the porous unit-cell of size 1 mm × 1 mm presented in figure 2. It is composed
of a linear elastic material whose Young’s modulus is 1 Mpa and Poisson’s ratio 0.3.
The geometry of the hole’s interface is represented by the iso-zero of a linear level-set
function interpolated on an adapted mesh whose level of recursion is 12 (i.e. elements
of size 2.4 10−4mm, see figure 2). Note that the geometrical accuracy is fixed for all
the following computations. The approximation of the mechanical fields is defined on
regular meshes composed of n × n linear elements along each side for h computations
(n = 2, 4, · · · , 256), or alternatively 4 × 4 elements along each side for p computations.
Let introduce the relative error on the 2-norm:

ε(Ch,p, C) =
‖Ch,p‖2 − ‖C‖2

‖C‖2
(32)

where ‖·‖2 denotes the 2-norm. The reference error ε(Ch,p, Cref ) is computed with respect
to an overkill solution Cref of the problem (645 293 quadratic quadrangular elements,
1 941 643 nodes, 3 868 233 dofs). We begin with deterministic verifications, then continue
with stochastic ones.

0.4

0.55

0.3

1

1

Figure 2: Definition of the unit cell of interest for the 2D verifications.

3.1. h convergence

h-convergence is first considered in order to study the evolution of the different compo-
nents of the homogenized tensor C. As stated above, the geometrical accuracy is fixed
during the convergence, which contrasts with usual low-order finite elements where geo-
metrical accuracy and mechanical accuracy are linked together. The results of the study
are presented in figure 3(a) for the reference error on the tensor ε(Ch,p, Cref ) or the com-

ponent wise reference error ε(Ch,pij , C
ref
ij ), and 3(b) for the estimated errors ε(Ch,p, Cest) or

ε(Ch,pij , Cestij ) based on the extrapolation estimator presented in section 2.1 where Cestij is
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solution of the nonlinear equation (18). Figure 3(a) shows that all the components of the
homogenized tensor converge at the expected algebraic rate (O(N), see section 2.1). The

estimated error ε(Ch,pij , Cestij ) also converges at the expected rate, but the effectivity of the
estimator depends on the component of interest (see figures 3(b) and 4). It is very good
for the diagonal components of C (and also C12), even for a moderate number of dofs. On
the contrary, the estimated error exhibits large oscillations for off-diagonal components.
This can be explained by the behaviour of the reference error in figure 3(a): a large
number of dofs is required in order to enter the asymptotic range of the convergence.
These oscillations prevent the estimator to give reliable results until they stabilize for at
least three consecutive computations. This behaviour can be explained as the Galerkin
method gives the solution with the lowest error in the energy norm, which is the lowest
error in the diagonal terms of C: Off-diagonal terms are not of primary interest. It is
worth noting that in this example the components which exhibit these oscillations have
small values (400 times smaller than the other ones). Still, they are not zero (because
of the geometry of the problem of interest) and even the absolute error exhibits such
oscillations. If rather than working component per component we focus on ε(Ch,p, C)
, the error on the 2-norm of C, then the influence of these components is discarded and
the estimator gives very reliable results, as depicted in figures 3 and 4.
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Figure 3: 2D example: (a) reference errors ε(Ch,p, Cref ) and ε(Ch,pij , C
ref
ij ) and (b) esti-

mated errors ε(Ch,p, Cest) and ε(Ch,pij , Cestij ) of the homogenized tensor C and its

components (h convergence).

3.2. p convergence

The problem is solved by means of p refinement. The computational mesh is highlighted
in blue in figure 2), and the spatial polynomial order p ranges from 1 to 7. The con-
vergence of the components of C are shown in figure 5(a) and (b) for the reference and
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Figure 4: 2D example: Evolution of the effectivity of the estimators
ε(Ch,pij ,Cestij )

ε(Ch,pij ,Crefij )
and

ε(Ch,p,Cest)
ε(Ch,p,Cref )

(h convergence).

estimated errors. As expected, the convergence is exponential for all the components.
This exponential convergence is smoother for the diagonal coefficients, and is oscillatory
for C13 and C23. For the same reasons as in the last section, the estimated error is not
able to give reliable results for these two components. Still, working with the 2-norm
of C allows to obtain an accurate estimation of the error of this quantity (see figures 5
and 6). The worse performance of the estimator for p-convergence with respect to h
convergence which is highlighted in figure 6 may also be related to the small number of
dofs for this computation (1400 dofs compared to 100 000 dofs for h convergence). If the
range of figure 4 is restricted to the same range of dofs for both h and p approximations,
then the behaviour is similar but a little better for h convergence. Besides, the error
level for p-convergence is three orders of magnitude smaller than h computations so that
the effectivity becomes very sensitive for p computations, even for this low number of
dofs. These numerical experiments also allow us to draw some partial conclusions:

• All the components of the homogenized tensor converge exponentially to their limit
value.

• For low number of dofs, the convergence is monotonous only for the diagonal
terms of C. This is why the extrapolation error estimator is not robust for the
other components. More robust error estimators could be considered, see [74] for
a review, or [52, 38] for homogenization applications.

• If the norm of the effective tensor is of interest, then the estimator was shown to
be robust and can be used as a convergence criterion for the feedback procedure
(note that there is no guaranty that this observation is true for other materials as it
relies on the influence of the off-diagonal terms on the norm). In the following, we
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will consider the most unfavourable case as we will assume that we are interested
in the value of all the components of C individually.

• As the estimator is not reliable in this case, a simple stagnation criterion will
be used in the subsequent numerical experiments, as it is known to be a robust
indicator (p-p−1 error indicator). The convergence of C will be monitored through
the convergence of its individual components (i.e. C is considered as converged
if the stagnation criterion is met for all of them). Two stagnation criteria are
considered: absolute and relative stagnations. Absolute stagnation is met if the
variation of Cij between the two last computations is small with respect to the

max-norm of C :
Ch,p

ij −C
h,p−1
ij

‖Ch,p−1‖max
< εa. Relative stagnation is met if ε(Ch,pij , C

h,p−1
ij ) =

Ch,p
ij −C

h,p−1
ij

Ch,p−1
ij

< εr.
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Figure 5: 2D example: (a) reference errors ε(Ch,p, Cref ) and ε(Ch,pij , C
ref
ij ) and (b) esti-

mated errors ε(Ch,p, Cest) and ε(Ch,pij , Cestij ) of the homogenized tensor C and its

components (p convergence).

3.3. Deterministic Feedback

Based on the conclusions of the last section, the adaptive determination of the homog-
enized tensor C is now considered. A non-conforming p extension is used to make the
overall properties converge. The convergence is monitored trough the stagnation of the
components of C. In this numerical example, the computational mesh contains 4 × 4
elements per side and the approximation can range from p = 1 to p = 7. The geo-
metrical mesh is unchanged with respect to the previous section. Finally, the material
properties are still considered as deterministic. The process is considered as converged
if the relative stagnation of the components of C is lower than εr = 10−2 or 5 10−2, and
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Figure 6: 2D example: Evolution of the effectivity of the estimators
ε(Ch,pij ,Cestij )

ε(Ch,pij ,Crefij )
and

ε(Ch,p,Cest)
ε(Ch,p,Cref )

(p convergence).

the absolute one lower than εa = 10−5. The evolution of the components of C during the
procedure are depicted in figure 7 for these two different stagnation thresholds. It can
be seen that the converged quantities can be obtained respectively for p = 5 and p = 3.

3.4. Stochastic convergence

The case of stochastic material properties is now considered. We first focus on the con-
vergence of the stochastic homogenized quantities during p refinement. The same porous
problem is still considered, but now Young’s modulus and Poisson’s ratio are random. E
ranges from 1/2 to 1.5, and ν from 0.15 to 0.45 both following a uniform probability dis-
tribution. Note that more complex probability distributions could be considered without
any loss of generality, except unbounded distributions (like the Gaussian distribution).
Indeed, negative values (for E and ν) and infinite (for E) or greater than 1/2 values (for
ν) can occur with these probability distributions. A reference solution Cref is obtained
by considering an overkill solution, both in the deterministic and stochastic spaces. The
deterministic overkill discretization is obtained by selecting 256 elements per side with
quadratic elements and the stochastic one by means of two degree 10 polynomial chaos
(Legendre polynomials) 3 for SP1 and SP2 . The final reference solution was obtained
using 40 PGD modes. The p convergence was conducted on a 4× 4 elements mesh with
p from 1 to 7, and two quartic Legendre polynomial chaos for E and ν. At each step
of the procedure, the reduced model approximates a spectral stochastic solution which
should converge exponentially provided that the solution is smooth [75] in both space
and stochastic spaces. This is consistent with the convergence results for the expecta-
tion and standard deviation of C shown in figure 8. All the components of Exp(C) and

3Note that high order approximations are used both in the deterministic and stochastic space.
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Figure 7: 2D example: Feedback history of the homogenized tensor C. The thin vertical
line indicates the fulfilment of the convergence criterion in the case of a 5 10−2

relative stagnation criterion.

Std(C) converge exponentially, which is also the case for the 2-norm of these tensors. As
shown in the last section, the extrapolation error estimate cannot be used to drive the
adaptation process if the accuracy of the individual components is mandatory. However,
figure 9 shows that the robust deterministic behaviour of the estimator for the two-norm
of C extends to the stochastic framework. It is important to note here that although
Exp(E) and Exp(ν) are equal to their deterministic counterparts, the expectation of
the stochastic effective tensor is not equal to the deterministic one when mean values
are used for both E and ν. This stems from the fact that the solution is nonlinear in ν.
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Figure 9: 2D example: (a) comparison between reference and estimated errors on Exp(C)
and Std(C) (ε(Exp(Ch,p), Exp(Cref )) and ε(Std(Ch,p), Std(Cref ))) ; (b) effec-
tivity index.

3.5. Stochastic Feedback

Based on the verification of the convergence of the method, it is now possible to evaluate
adaptively the expectation and standard deviation of C. In this section, a εr = 10−2

threshold is considered for the relative stagnation, and εa = 10−5 for the absolute stag-
nation of both Exp(C) and Std(C). The evolution of the 2-norm of the expectation and
standard deviation of the C are represented in figure 10. It can be seen that a p = 4
spatial discretization and 13 PGD modes are sufficient to fall into this range of accuracy.
Individual components are not presented here, but their evolution is similar to the one
of the norm, even for the off-diagonal components. Next, the accuracy of the stochastic
model is assessed. Indeed, this model allows to obtain the homogenized properties of
the porous material for any value of E and ν in their range of evolution. Thus, 10 000
random evaluations of E and ν are considered. From these random evaluations, C can
be obtained either by using the reduced order model (CPGD with m = 13 modes) or by
a direct computation of the overall properties (CMC for the same h and p). The former
approach is almost costless once the reduced order model has been computed while the
second (Monte Carlo) is computationally demanding. The relative 2-norm error between
these two tensors ε(CPGD, CMC) is evaluated for each sample and studied. The distri-
bution of the error levels is then presented in figure 11. It can be seen that the error
is smaller than 6 10−3, which is very accurate. Note also that the majority of the error
levels are lower than 2 10−3. Finally, the reduced order model can be used to build the
empirical probability density functions (pdf) of the components of C. The pdf of se-
lected components of C are compared to those obtained from 10 000 direct Monte-Carlo
simulations in figure 12. It can be seen that there is a perfect accordance between these
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curves4, which highlights the accuracy if the proposed approach. Now that the method
has been validated for simple problems, we consider its application to biomechanics.
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Figure 10: 2D example: Evolution of Exp(C) and Std(C) during the feedback procedure.
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Figure 11: 2D example: Distribution of the error ε(CPGD, CMC) for 10000 random
evaluations.

4. Application to a real 3D bone micro-structure

The method is now applied to a real bone micro-structure (see figure 13) whose volumic
fraction is 0.1382. The geometry was obtained by segmenting a bone CT scan following
the procedure proposed in [40]. This raw CT scan is available on the Internet through
the BEL Repository managed by the Istituti Ortopedici Rizzoli, Bologna, Italy. The

4It is also the case for the 3 other components that are not presented here.
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Figure 12: 2D example: Empirical pdf of the components of C: left, reduced model;
right, Monte Carlo simulations (x-axis in MPa)

objective is to apply the proposed approach in order to compute the effective properties
of this micro-structure. The material is considered as linear-elastic with typical material
properties: 10 000 MPa Young’s modulus and 0.4 Poisson’s ratio. The resolution of
the volume is 1293 voxels, which corresponds to a level 7 octree. Kinematic uniform
boundary conditions are still used here in order to extract the homogenized behaviour of
the bone. Note that this choice is known to lead to over-estimated values of the effective
properties [47].

4.1. Deterministic feedback

The feedback method is first considered in order to evaluate the deterministic homoge-
nized tensor C. The computational mesh is made from a regular grid of 16 elements along
each side of the cube, and the spatial approximation order ranges from p = 1 to p = 8.
The following criteria are considered for stopping the refinement process: εr = 5% for
relative stagnation and εa = 5 10−4 for absolute stagnation. It can be seen in figure 16
that these conditions are met for p = 5, and that the method is able to evaluate efficiently
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Figure 13: Bone geometry.

the effective properties of the material. Some corresponding micro-modes are presented
in figures 14 and 15 for illustration. The results are consistent with the literature, as we
found C33 = 727 Mpa, which is in agreement with the experimental results given in [2]
(scattering between 200 and 900 Mpa for this bone density).

4.2. Stochastic feedback

Finally, the evaluation of the stochastic effective properties of the bone is presented.
Similarly to the 2D numerical examples, uniform probability distributions are consid-
ered. A large scattering is chosen for the material properties in order to highlight the
accuracy of the method. Young’s modulus thus ranges from 5000 MPa to 15 000 Mpa,
and Poisson’s ratio from 0.32 to 0.48. Note that such a high Poisson’s ratio would lead
to some volumetric locking with low-order finite elements, which is not the case with
high-order finite elements (see [31]). The convergence is attained when relative and ab-
solute stagnation respectively falls below εr = 5% and εa = 5 10−4 for both expectation
and standard deviation. This target accuracy is attained for p = 6 and m = 13 PGD
modes. The evolution of the 2-norm of C and some of its components during the p re-
finement process are depicted in figure 18. It can be observed that the largest dispersion
is obtained for the diagonal part of the effective tensor. The expectation of C33 (729
Mpa) is very similar to the one obtained in the deterministic case. The corresponding
standard deviation (211 Mpa) is smaller than the one highlighted in [2], as the range of
variation of the parameters was not fitted with any experimental data. Note also that
any comparison with [2] is difficult since the results are based on multiple donors whose
age can have a large influence [76], and also because this study also includes experimen-
tal bias [77] that are out of the scope of this study.
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Mode 1 Mode 4

Figure 14: Micro-modes 1 (left) and 4 (right): displacement field

The accuracy of the reduced model is now assessed through 100 samplings of the
material properties. The reduced order model is particularized for these 100 samplings,
and the results are compared with the corresponding direct calculations. The error
distribution ε(CPGD, CMC) is plotted in figure 19: it can be seen that it is smaller than
1.5 10−3, which highlights the accuracy of the reduced model. For a finer comparison
between direct and reduced solutions, we now consider the mechanical fields associated
to a given sample. The local relative error on the von-mises stress between direct and
reduced solutions is presented in figure 17 where it can be seen that this local error is
very small.

Finally, the reduced model is used to build an empirical probability density function:
10 000 samples are generated at no additional cost. The empirical pdf of the different
components of the tensor are presented in figure 20.
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Mode 1 Mode 4

Figure 15: Micro-modes 1 (left) and 4 (right): Von-Mises stress field
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Figure 16: 3D example: Evolution of some components of C during the feedback
procedure.
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Figure 17: 3D example: Local relative error between direct and reduced solution for a
given sample.
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Figure 18: 3D example: Evolution of some of the components of Exp(C) and associated
dispersion during the feedback procedure.
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Figure 19: 3D example: Distribution of the error ε(CPGD, CMC) for 100 random
evaluations.
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Figure 20: 3D example: Empirical pdf of the components of C (x-axis in MPa).
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5. Conclusion

An innovative numerical strategy has been proposed in order to compute adaptively the
effective properties of complex micro-structures with uncertain material properties. The
method relies on two main ingredients: (i) a high-order fictitious domain method ap-
proximation which enables to avoid the meshing burden with such complex geometries,
and (ii) a model reduction technique based on the Proper Generalized Decomposition of
the spectral stochastic representation of uncertainties (Linear Elasticity was considered
here, with random Young’s modulus and Poisson’s ratio). The accuracy of the output
was ensured even with large uncertainties on the material properties thanks to a feed-
back method which is used to monitor the convergence of the effective properties. The
method has been verified on a simple 2D example which has shown that error estimates
based on extensions were not sufficiently reliable for this type of application. However,
it was seen that the use of a stagnation criterion allowed to obtain very accurate results
as both expectation and standard deviation errors converge exponentially upon p refine-
ment. The resulting stochastic effective tensor was seen to match Monte-Carlo’s results
with only a fraction of the computational cost. The method was finally applied to a real
bone micro-structure whose stochastic effective properties could be obtained very effi-
ciently. In order to improve the proposed strategy, goal oriented error estimation could
be considered, as in [52, 38] for the deterministic side, but also on the stochastic side.
Note however that the influence of the stochastic discretization on the computational
cost is very low thanks to the model reduction approach. Finally, multi-material and/or
nonlinear materials could be considered, as well as the influence of a possible geometrical
randomness.

Acknowledgements: G.Legrain and N. Takano would like to acknowledge partial sup-
port of the Erasmus Mundus BEAM program.

A. Derivation of the reduced model

Recall the minimization problem (29). Two independent random variables are consid-
ered: ξ1 for Young’s modulus and ξ2 for Poisson’s ratio. Using a progressive definition
of the PGD, we look for a solution in the form: um = um−1 + w(x)φ1(ξ1)φ2(ξ2) where
an element w(x)φ1(ξ1)φ2(ξ2) is solution of problem (31). Functional J(um−1 +w φ1φ2)
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can be expanded into:

J(um−1 + w φ1φ2) =
1

2
A
(
um−1 + wφ1φ2,um−1 + wφ1φ2

)
−B

(
wφ1φ2

)
=

1

2

∫
θ1

∫
θ2

∫
Ω
ε
(
wφ1φ2

)
K(x, ξ1, ξ2) ε

(
wφ1φ2

)
dΩ dPξ2 dPξ1

−
(∫

θ1

∫
θ2

∫
Ω
b(x)w(x)φ1φ2 dΩ dPξ2 dPξ1 (33)

−1

2
A(um−1,um−1)−A(um−1,wφ

1φ2)

)
where the last terms in parenthesis are denoted as R(um−1,b(x),w(x)φ1φ2).

In addition, we can write:

ε
(
w(x)φ1(ξ1)φ2(ξ2)

)
= φ1(ξ1)φ2(ξ2)ε (w(x)) . (34)

In our case, the Hooke tensor can be separated as:

K(x, ξ1, ξ2) = λ(ξ1, ξ2)Kλ(x) + µ(ξ1, ξ2)Kµ(x) (35)

with:

λ(ξ1, ξ2) =
ξ1ξ2

(1 + ξ2)(1− 2ξ2)
, (36)

µ(ξ1, ξ2) =
ξ1

2(1 + ξ2)
. (37)

where ξ1 = E and ξ2 = ν. Thus, we have:

K(x, ξ1, ξ2) = ξ1
ξ2

(1 + ξ2)(1− 2ξ2)
Kλ(x) + ξ1

1

2(1 + ξ2)
Kµ(x) (38)

= K1
1(ξ1)K2

1(ξ2)Kx1(x) +K1
2(ξ1)K2

2(ξ2)Kx2(x) (39)

All the integrals can be separated, leading to the following functional:

J(um−1 + w φ1φ2) =

=
1

2

∫
θ1

φ1(ξ1)K1
1(ξ1)φ1(ξ1) dPξ1

∫
θ2

φ1(ξ1)K2
1(ξ2)φ2(ξ2) dPξ2

∫
Ω
ε(w(x))Kx1(x)ε(w(x)) dΩ+

1

2

∫
θ1

φ1(ξ1)K1
2(ξ1)φ1(ξ1) dPξ1

∫
θ2

φ1(ξ1)K2
2(ξ2)φ2(ξ2) dPξ2

∫
Ω
ε(w(x))Kx2(x)ε(w(x)) dΩ

−R(um−1,b(x),w(x)φ1(ξ1)φ2(ξ2))
(40)

The expression of R is not given here, but can be obtained following the same rationale.
Necessary conditions of optimality for a triplet (w, φ1, φ2) are the three Galerkin criteria:

φ1 = arg min
χ1∈SN1

J(um−1 + wχ1φ2) (41)

φ2 = arg min
χ2∈SN2

J(um−1 + w φ1χ2) (42)

w = arg min
Y∈VN

J(um−1 + Y φ1φ2) (43)

26



Thus, the nonlinear equation is solved by means of a fixed point algorithm which reduces
in the following three linear problems:

P1: φ2 and w are known. φ1 is solution of problem (41). Stochastic problem of dimension
dim(SN1);

P2: φ1 and w are known. φ2 is solution of problem (42). Stochastic problem of dimension
dim(SN2);

P3: φ1 and φ2 are known. w is solution of problem (43). Stochastic problem of dimension
dim(VN );

Additional update strategies can be considered in order to improve the efficiency of the
algorithm, the interested reader can refer to [73, 67, 55].
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[35] Alexander Düster, Hans-Georg Sehlhorst, and Ernst Rank. Numerical homoge-
nization of heterogeneous and cellular materials utilizing the finite cell method.
Computational Mechanics, 50(4):413–431, jan 2012.

[36] Stephan Heinze, Meysam Joulaian, and Alexander Düster. Numerical homogeniza-
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tured extended finite element methods for solids defined by implicit surfaces. Inter-
national Journal for Numerical Methods in Engineering, 56(4):609–635, jan 2003.

[40] Grégory Legrain, Patrice Cartraud, I Perreard, and Nicolas Moës. An X-FEM and
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[75] Ivo Babuška, R Tempone, and Ge Zouraris. Galerkin finite element approximations
of stochastic elliptic partial differential equations. SIAM Journal on Numerical
Analysis, 42(2):800–825, 2004.

[76] a J Ladd, J H Kinney, D L Haupt, and S a Goldstein. Finite-element modeling of
trabecular bone: comparison with mechanical testing and determination of tissue
modulus. Journal of orthopaedic research : official publication of the Orthopaedic
Research Society, 16(5):622–8, sep 1998.

[77] Benedikt Helgason, Egon Perilli, Enrico Schileo, Fulvia Taddei, Sigurdur
Brynjólfsson, and Marco Viceconti. Mathematical relationships between bone den-
sity and mechanical properties: a literature review. Clinical biomechanics (Bristol,
Avon), 23(2):135–46, feb 2008.

33


	1 Introduction
	2 Numerical strategy
	2.1 High order fictitious domain method
	2.2 Numerical homogenization
	2.3 Stochastic Finite Elements
	2.4 PGD spectral model reduction

	3 2D numerical verifications
	3.1 h convergence
	3.2 p convergence
	3.3 Deterministic Feedback
	3.4 Stochastic convergence
	3.5 Stochastic Feedback

	4 Application to a real 3D bone micro-structure
	4.1 Deterministic feedback
	4.2 Stochastic feedback

	5 Conclusion
	A Derivation of the reduced model

