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Philippe LUTZ1, member, IEEE and Nicolas CHAILLET1, member, IEEE

Abstract—Self-sensing technique consists in using an actuator
as a sensor at the same time. This is possible for most of
actuators with physically reversible principle such as piezoelectric
materials. The main advantages of self-sensing are: 1) the
embeddability of the measurement technique, and 2) its low cost
as no additional sensor is required.

This paper presents a self-sensing technique for piezoelectric
actuators used in precise positioning applications like microma-
nipulation and microassembly. The main novelty is that both
displacement and force signals can be simultaneously estimated.
This allows a feedback control using one of these two signals with
a display of the other signal. To demonstrate this advantage,
a robust H∞ feedback control on displacement with real-time
display of the force is used as an application of the proposed self-
sensing technique. Along the paper, experimental results obtained
with a piezoelectric cantilever actuator validate and demonstrate
the efficiency of the proposed self-sensing.

Index Terms—Self-sensing, piezoelectric actuator, displacement
and force estimation, robust H∞ control.

I. INTRODUCTION

M Icropositioning (or precise positioning) tasks, the basis
of microassembly and micromanipulation applications,

require a very high accuracy which is in the order of mi-
crometer or even submicrometer. To reach such severe perfor-
mances, the used microrobots, micromanipulators and actuated
microsystems are often based on active and smart materials
instead of hinges and joint systems which generate imprecision
due to the mechanical clearances. Among the used active ma-
terials, piezoelectric materials are the most recognized. They
have been successfully used to develop stepper microrobots
[1] [2], Atomic Force Microscopes (AFM) [3] and continuous
microactuators such as piezocantilevers and microgrippers [4]
[5]. This recognition is mainly thanks to the high resolution (at
the nanometer level), the high bandwidth (more than the kHz)
and the relatively high force density that they offer. For all
that, piezoelectric materials (in particular piezoceramics) ex-
hibit hysteresis and creep nonlinearities. These nonlinearities
become non-negligible when the applied electrical field -and
therefore the range of deformation- are large. Hysteresis and
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creep limit the accuracy of the developed actuators. In order
to enhance the performances, several works have been devoted
to the modeling and to the control of piezoelectric actuators
within these ten last years. These works include closed-loop
control techniques [6]- [9], open-loop control techniques
[10]- [17] and the combination of both [20].

In feedback techniques, basic control schemes like PID-
structure and more advanced control laws (H∞, passivity,
interval, nonlinear control, etc.) have been successfully used.
The main advantage of feedback is the robustness: 1) the
specifications are satisfied in almost all the cases, and 2) the
effects of model uncertainties and of the external disturbances
can be rejected efficiently. However, feedback requires sensors.
This constitutes the main limitation of feedback techniques at
the micro/nano world and related applications. On the one
hand, sensors that have the required performances (accuracy,
bandwidth and low noises) are bulky and expensive: for
instance triangular optical sensors, interferometers, etc. On the
other hand, sensors that are packageable and cheap are fragile,
difficult to handle and noisy: for instance strain gages. Further,
feedforward techniques have been successfully introduced to
bypass this limitation as they do not need sensors. They
have the particularity of yielding really packaged controlled
systems. Nevertheless, feedforward techniques fail with un-
certain models and in presence of external disturbances. To
resume, finding the compromise between satisfying the desired
performances and satisfying the available space is difficult.

Promising approaches avoiding external sensors in meso
and micro systems are the so-called self-sensing methods.
They allow both actuation and sensing capabilites, and are
especially (but not necessarily) used for piezoelectric materials
based actuators and systems. Given the reversibility of the
piezoelectric effect, self-sensing does or should not influence
the actuation capabilities in terms of range or dynamics.
It could provide simultaneous quantitative information of
end-effector displacement, manipulation force, close contact
detection or even temperature evaluation. If well designed,
self-sensing approaches could combine the advantages from
feedback (robustness) and from feedforward (packageability)
for piezoelectric actuators.

The first use of "self-sensing" term goes back to 1992 when
J.J. Dosch et al [21] successfully damped the vibration of a
piezoelectric beam without using the aid of external sensors. In
their works, the voltage drop provided from a capacitive bridge
was processed in an analog circuit, amplified and returned back
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to the piezoelectric element. In that time, several independent
applications began to emerge for beam vibration control or
stack piezo devices for micropositioning. Several years later
T. Taigami et al [22] applied the method for force self-
sensing and for the control of a large size bimorph actuator by
using a half-bridge circuit, a voltage follower and a computer-
based data acquisition system. The authors experimentally
verified that the stiffness of the grasping object does not
affect the measurement; however electronic schematic limited
the applied voltage range and nonlinearities (hysteresis and
creep) were not compensated. Since, self-sensing is widely
used for vibration control of flexible structures [23] [24].
All these existing self-sensing works usually offered short-
term measurements: measurement is not available for no
more than 5 seconds in general. Moreover, very few works
refer to the use of self-sensing method for the control of
positioning. Consequently, these existing works could not be
applied to measure signals (displacement and force) and to
control systems in micropositioning tasks such as microma-
nipulation or microassembly. Indeed, such applications require
the measurement of displacement/force and the combination of
dynamic and static sensing/measurement with duration from
several tens of seconds to several minutes. This duration
corresponds to the transport of the manipulated micro-objects
where the displacement has to be controlled precisely and the
manipulated force to be known. Newly, in our previous works
[25], a new scheme of self-sensing has been proposed for

precise measurement of the displacement in its steady-state
for more than 600s. Further we have extended the proposed
scheme to include the measurement of steady-state force signal
[26]. But as the proposed scheme was for quasi-static self-

sensing, it could not be used for control application. This
paper aims to develop a scheme for static and dynamic self-
sensing in order to allow the control of piezoelectric actua-
tors used in micropositioning tasks. The proposed approach
provides a measurement and estimation of the displacement
in both steady-state and dynamics enabling the positioning
control for long term period. Furthermore, the scheme also
allows the measurement and estimation of the steady-state
force at the same time which is very useful for the user to
overlook the manipulation force applied to the object. Finally,
to demonstrate these advantages, we employ the proposed self-
sensing to a feedback control application. Experimental tests
were carried to validate the self-sensing techniques and to
validate its applicability to control applications. They clearly
demonstrate the efficiency of the proposed self-sensing.

The paper is organized as follows. In section-II we remind
the quasi-static self-sensing as in [25] and [26]. In section-III,
we present the proposed self-sensing allowing the steady-state
and dynamic displacement measurement and the steady-state
force measurement at the same time. Finally, section-IV is
devoted to a control application of micropositioning tasks.

II. REMIND OF THE QUASI-STATIC DISPLACEMENT AND
FORCE SELF-SENSING

A. The framework of micromanipulation and microassembly
Within the framework of micromanipulation and mi-

croassembly applications, microgrippers based on piezoelec-

tric actuators with cantilever structure are used. In general
two actuators are employed to constitute a microgripper. Each
actuator has a rectangular section and is usually unimorph.
Bimorph actuators are rarely used because of the difficulty
to fabricate them and to setup the electrical connection. A
unimorph piezoelectric actuator is composed of two layers
glued themselves: a piezoelectric layer (often based on lead
zirconate titanate (PZT) material) and a passive layer (often
based on copper or nickel materials) (Fig. 1-a). When a voltage
U is applied to the piezoelectric layer, it contracts or expands
following the converse principle of piezoelectric effect. As a
result, the whole cantilever bends (Fig. 1-b). The microgripper
is able to position very precisely (i.e. to pick, transport
and place very precisely) a small object if each actuator is
conveniently controlled [5] (Fig. 1-c). An essential feature of
self-sensing applied to microgripper’s actuators is the ability
to simultaneous measure and estimate the displacement at the
tip and the force applied to the object (Fig. 1-d). This is what
this paper claims to propose.

B. Quasi-static displacement self-sensing

Self-sensing, i.e. the use of an actuator as also a sensor, is
possible thanks to the reversibility of piezoelectric effect. Its
principle scheme is pictured in Fig. 2-a [25]. When a voltage
U is applied to the actuator, a bending y is obtained (actua-
tion). During this bending, an electrical charge Q appears on
the electrodes of the actuator. This charge can be amplified
by a convenient electrical circuit and transformed into an
exploitable voltage Uo. From the available signals U and Uo,
an observer calculated from the electrical circuit and from the
model of the piezoelectric actuator provides an estimate ŷs
of the displacement y at its steady-state. Both the electrical
circuit and the observer constitute the sensing/measurement
part of the self-sensing.

Fig. 2-b pictures the proposed electrical circuit. In order to
explain its principle, the equivalent electrical circuit of the
piezoelectric actuator has been introduced. This equivalent
circuit is composed of three parallel components: the internal
generator which supplies charge Qs due to internal stress
of the material when deformed, the internal piezoelectric
capacitor Cp and the leakage resistor Rfp. The total charge
Q that appears on the electrodes of the actuator is therefore
composed of the internal charge Qs (piezoelectric effect) and
the charge QU = CpU (dielectric effect): Q = Qs + CpU .

Experiments shown however that Qs is very weak relative
to QU . This will drastically decrease the accuracy of a self-
sensing measurement as the sensitivity to the internal stress,
and therefore to the deformation, is very weak. To reduce
this unwanted property, we proposed to put in parallel with
the piezoelectric actuator a reference capacitor Cr such that
Cr = Cp. By inverting the voltage applied to Cr relative
to the voltage U applied to the actuator, the charge due
to the dielectric effect (QU = CpU ) can be compensated.
Consequently, the final charge that will be amplified by the
op-amp is: Q − CrU = Qs + CpU − CrU = Qs. However,
the piezoelectric capacitor varies following the applied voltage
U [27], i.e. Cp = Cp(U). Hence the dielectric effect is
not completely compensated by the reference capacitor Cr.
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Consequently the exploitable charge becomes:

Q− CrU = Qs + Cp(U)U − CrU = Qs + ∆Q(U) (1)

where ∆Q(U) is residual charge that depends on the applied
voltage U . If ∆Q(U) = 0, the charge due to the dielectric
effect was fully compensated and the self-sensing measure-
ment technique would be highly sensitive to the deformation
of the piezoelectric material. Although ∆Q(U) 6= 0, it is still
much less than Qs making the sensitivity of the technique still
high. In Fig. 2-b, the capacitor C is used to amplify the charge
while the resistor Rdisc and the relay kdisc allow resetting the
output Uo in order to avoid any unexpected saturation issues.
Finally, the op-amp is considered to have a very high input
impedance. In the sequel, the voltage U is also called input
voltage, control voltage or driving voltage. It corresponds to
the input control signal of the actuator.
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Fig. 1: (a) and (b), principle of a unimorph piezoelectric
cantilevered actuator. (b) a microgripper with two piezoelectric
cantilevered actuators. (c) simultaneous estimation of the dis-
placement and of the manipulation force by using self-sensing.

Noticing that Q = αy, where α is the displacement-charge
coefficient, the output and exploitable voltage Uo is expressed
as follows [25]:

Uo = − 1

C

αy − CrU +
1

Rfp

t∫
0

Udt+QDA(t, U)

 (2)

where QDA(t, U) is the dielectric absorption of the equivalent
capacitor Cp in the piezoelectric actuator [28]. Dielectric
absorption is the property of a dielectric, like piezoelectric
materials, which prevents a capacitor from totally discharging,
even when short-circuited for a short period of time. The
dielectric absorption can be approximated by a linear model:

QDA(s) = kDA
(1+τDAs)

U(s) ⇔ QDA(s) = QtfDA(s)U(s)

(3)
where kDA is the static gain, τDA is the constant time and s
is the Laplace variable. Expression QtfDA(s) = kDA

(1+τDAs)
is

the transfer function of the dielectric absorption.
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Fig. 2: (a) Principle scheme of the quasi-static displacement
self-sensing. (b) the electrical circuit [25].

The observer that gives an estimate ŷs of y at its steady-state
is therefore described by (Eq. 4) [25]:

ŷs =
1

α

(CrU − CUo)−QDA(t, U)− 1

Rfp

t∫
0

Udt

 (4)

The different parameters are identified following an experi-
mental procedure or computed from the physical and geo-
metrical properties of the piezoelectric actuator and from the
parameters of the electrical circuit (see [25]).
C. Quasi-static displacement and force self-sensing

The previous self-sensing only provides the (steady-state)
displacement information. This is only utilizable when the
actuator has a free displacement and thus when no object
is manipulated. When the actuator is in contact with an
object and consequently when a manipulation force exists,
the observer defined by (Eq. 4) of the previous self-sensing
is not anymore valuable. In that case, the force and the
displacement need to be modelled at the same time. By using
an appropriate observer from this model, an observer that
estimates the real displacement y and the real force F can
again be computed. Then, the displacement and force self-
sensing is derived. Fig. 3-a shows the new principle scheme
of the quasi-static displacement and force self-sensing [26].
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We remind that the electrical scheme is still similar than that
of the quasi-static displacement self-sensing (see Fig. 2-b).
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Fig. 3: Principle scheme of the quasi-static displacement and
force self-sensing.

The observer that gives an estimate ŷs of the displacement and
an estimate F̂s of the force at their steady-state is [26]:

F̂s =
1

β

(CrU − CUo)− Fcr(t)− Fhys(t)−
1

Rfp

t∫
0

Udt


ŷfrees =

1

α

(CrU − CUo)−QDA(t, U)− 1

Rfp

t∫
0

Udt


ŷs = ŷfrees − spF̂s

(5)
where β is the force sensitivity coefficient. It relates the
electrical charge appearing on the actuator’s surface with the
applied external force. sp is the piezoelectric compliance that
relates the displacement with the applied external force. Signal
ŷfrees corresponds to the estimate steady-state displacement
when there is no external force. It corresponds to the estimate
displacement presented in (Eq. 4). Finally, signals Fcr(t) and
Fhys(t) corresponds to the effects of the creep and the hys-
teresis nonlinearities of the actuator. While the creep is often
described by a linear operator, the hysteresis is described by
a nonlinear one such as the Bouc-Wen, the Prandtl-Ishlinskii
or the Preisach operators. Their compact notations are:

Fcr(s) = Ftfcr(s)U(s) ; Fhys(s) = Γ (U) (6)

with Ftfcr(s) a transfer function that captures the creep and
Γ (U) the nonlinear operator that captures the hysteresis.

III. COMPLETE DISPLACEMENT SELF-SENSING WITH
STEADY-STATE FORCE ESTIMATION

The displacement and force self-sensing previously pre-
sented is static. It can estimate these signals at their steady-
state regime or when working at low frequency, i.e. if F (t)
and y(t) are constant we have:{

F̂s(t) = F (t) for t→∞
ŷs(t) = y(t) for t→∞

(7)

In the Laplace domain, (Eq. 7) is equivalent to:{
F̂s(s) = F (s) for s→ 0

ŷs(s) = y(s) for s→ 0
(8)

The main advantage of the quasi-static self-sensing is its
suitability for micropositioning tasks in micromanipulation

and microassembly applications. During these tasks, the object
is maintained by the microgripper for several hundreds of sec-
onds with constant force and/or displacement. However, "static
measurement" is not proper for feedback control. Dynamic
model as well as "dynamic measurement" are required. In
this section, we propose a dynamic self-sensing, called com-
plete self-sensing, able to provide steady-state and "dynamic"
signals at the same time. More precisely, the proposed self-
sensing will be able to provide the steady-state information
of the manipulation force and both the steady-state and the
"dynamic" information of the displacement which makes the
latter signal usable for feedback control.
A. Principle scheme

Fig. 4 gives the principle scheme of the proposed complete
self-sensing. It is composed of:
• an electrical circuit that amplifies and transforms the

charge Q into an exploitable voltage Uo. This electrical
circuit is similar to that presented in Fig. 2-b.

• a static displacement and force observer that furnishes
the steady-state estimates ŷs and F̂s. The static observer
is described by (Eq. 5).

• and a dynamics observer that furnishes complete infor-
mation (stead-state and dynamics) ŷ on the displacement.

Both the static observer and the dynamics observer constitute
the complete observer. The synthesis of the dynamics observer
is presented in the next parts.

y

F

Q

U

oU
ŝF

ŷ

piezoelectric
actuator

electrical
circuit static

displacement
and force
observer

dynamics
observer

complete observer
complete displacement and force self-sensing

Fig. 4: Principle scheme of the complete displacement and
force self-sensing.

B. Conditions for the complete observer
In order to have a steady-state and dynamics estimation

of the displacement, i.e. a full measurement at low and high
frequency, the following condition must be respected:

ŷ(s) = y(s); ∀s ∈ C (9)

In the temporal domain, (Eq. 9) is equivalent to:

ŷ(t) = y(t); ∀t ∈ R+ (10)

Combining the condition of complete displacement self-
sensing in (Eq. 9) and (Eq. 10) with the condition of quasi-
static force self-sensing from (Eq. 7) and (Eq. 8), we can write
the conditions of complete displacement and force self-sensing
as follows:{

F̂s(s) = F (s) for s→ 0

ŷ(s) = y(s); ∀s ∈ R+

⇔
{

F̂s(t) = F (t) for t→∞
ŷ(t) = y(t); ∀t ∈ R+

(11)
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C. Dynamics observer synthesis

The model of the piezoelectric actuator that relates the
complete information of displacement y(s) with the applied
input control U(s) and with the applied steady-state external
force Fs(s) is (see for eg. [7]):

y(s) = dpD(s)U(s)− spFs(s) (12)

where dp is the piezoelectric coefficient and D(s) is the
dynamics such that D(s = 0) = 1 (normalization of the
dynamics). In this equation, y = dpD(s)U corresponds
to the free displacement, i.e. displacement without external
force applied. The parameters dp and D(s) can be identified
experimentally from the piezoelectric actuator by using a step
response method, a harmonic method or a pseudo-random
binary sequence methods.

On the other hand, if we consider again the third equation
in (Eq. 5):

ŷs(s) = ŷfrees (s)− spF̂s(s) (13)

we observe that a dynamics we denote ∆(s) can be introduced
in the estimate steady-state model (Eq. 13) in order to have
a similar structure than (Eq. 12), and then to have a more
complete estimate model:

ŷ(s) = ∆(s)ŷfrees (s)− spF̂s(s) (14)

Notice that ∆(s) will certainly be in the dynamics observer.
If we find a dynamic observer ∆(s), the self-sensing will be
able to track any transient part of the output displacement that
is due to the electrical excitation U . However, the transient
part of the displacement as response to any applied force
F will not be estimated. In this case, only the steady-state
value will be tracked. Finally, when both electrical excitation
U and mechanical excitation F are applied to the piezoelectric
actuator, we have the following results: 1) the self-sensing will
still track and estimate the transient part and the steady-state
value of the output displacement due to the voltage U , 2) the
self-sensing will track and estimate the steady-state only of
the displacement due to the force F .

The elastic parts in (Eq. 12) and (Eq. 13) being similar, our
study can be restricted to the displacement without external
force, i.e.: {

y(s) = dpD(s)U(s)

ŷ(s) = ∆(s)ŷfrees (s)
(15)

which is equivalent to:
y(s)

U(s)
= dpD(s)

ŷ(s)

ŷfrees (s)
= ∆(s)

(16)

In order compute the dynamics observer and its gains, we
need to write the transfer ŷ(s)

U(s) between the estimate complete
information ŷ(s) and the input control U(s) such that we can
compare it with the transfer y(s)

U(s) in (Eq. 16). For that, remind
that:

ŷ(s)

U(s)
=
ŷfrees (s)

U(s)
· ŷ(s)

ŷfrees (s)
(17)

where ŷ(s)

ŷfrees (s)
= ∆(s) according to (Eq. 16).

We now need to compute the transfer ŷfrees (s)
U(s) . To this end,

we apply the Laplace transform to (Eq. 4) and use (Eq. 3), we
derive:

ŷfrees (s) =
1

α

((
Cr −

1
1
Rfp

s
−QtfDA(s)

)
U − CUo

)
(18)

We know that the relation between the input voltage U and
the exploitable voltage Uo can be approximated by a linear
transfer function H(s) such that [29]:

Uo(s) = H(s)U(s) (19)

Replacing QtfDA(s) by its model in (Eq. 3) and introducing
(Eq. 19), (Eq. 18) becomes:

ŷfrees (s)
U(s) = Cr

α −
1
α
Rfp

s −
kDA

α(1+τDAs)
− 1

αH(s); ∀s ∈ C
(20)

Based on (Eq. 20), the transfer (Eq. 17) becomes:

ŷ(s)

U(s)
=

(
Cr
α
− 1

α
Rfp

s
− kDA
α (1 + τDAs)

− 1

α
H

)
ŷ(s)

ŷfrees (s)
(21)

Let us now consider the transfer ŷ(s)

ŷfrees (s)
= ∆(s) which

is in fact the basis of the dynamics observer. Finding this
transfer function is a deconvolution problem because its input
is a steady-state information while the output is a complete
information. Remind that complete information means that it
includes the steady-state and the transient parts information.
Such problem comes back to the estimation of a transient part
after yet reaching a steady-state and is therefore equivalent
to a dynamics inversion. The inversion of dynamics have
attracted the attention in different applications. In fact, invert-
ing dynamics is delicate in the sense that some conditions
should be satisfied [30]. For instance, when using a direct
inversion of models, conditions like bi-causality, bi-stability,
minimum phase of the models, etc. should be satisfied. Several
approaches have therefore been proposed to minimize the
number of these conditions which finally limited the usable
models. In [31], Fleming and Leang propose the use of an op-
timal equivalent inverse model as an approximate feedforward
dynamics controller (compensator). In our previous works,
an inverse multiplicative structure was proposed as inverse
model for nonlinearity compensator in piezoelectric actuators
[12] [17] and for estimating signal in a compliant platform

[32]. Inverse multiplicative structure does not require specific
conditions, contrary to direct inversion of models. In addition,
no computation is required to derive the inverse model. Indeed,
as soon as the (direct) model is identified or given, the inverse
model is yielded without calculation. This is because the
inverse model uses a structure, called inverse multiplicative
structure, that contains the initial (direct) model. For these
reasons, we propose in this paper to impose the structure of the
transfer ŷ(s)

ŷfrees (s)
= ∆(s) (the dynamics observer) as inverse

multiplicative structure. Let Fig. 5 be the dynamics observer
with the proposed structure, where G1(s), G2(s) and G3(s)
are the observer gains to be synthesized. As said before, these
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gains are directly based on a direct model and no additional
computation is required to determine them.

1 ( )G s

2 ( )G s

3 ( )G s
ˆ ( )free
sy s ˆ( )y s

( )s∆

1
+
-

Fig. 5: Dynamics observer with inverse multiplicative struc-
ture.

From Fig. 5, we have:

ŷ(s)

ŷfrees (s)
=

G1(s)

G2(s) +G3(s)
(22)

Using (Eq. 21) and (Eq. 22), we yield the relation between
complete estimate information ŷ(s) and input control U :

ŷ(s)

U(s)
=

(
Cr
α
− 1

α
Rfp

s
− kDA
α (1 + τDAs)

− 1

α
H

)(
G1

G2 +G3

)
(23)

Using the first equation in (Eq. 16) and (Eq. 23), we have:

G1(s)

G2(s) +G3(s)
=

dpD(s)(
Cr
α −

1
α
Rfp

s −
kDA

α(1+τDAs)
− 1

αH(s)

)
(24)

We can therefore define the observer gains as follows:


G1(s) = dpD(s)

G2(s) = − 1
α
Rfp

s
− kDA
α (1 + τDAs)

− 1

α
H(s)

G3(s) =
Cr
α

(25)

As we can remark, there is no need of dynamics inversion in
the observer gains. The only gain to be inverted is G3 (see
Fig. 5) and this is a non-null constant (G3 = Cr

α 6= 0) and is
always invertible. Also, there is no additional computation or
algorithm (such as least-square, etc.) required for the gains.
As soon as the electrical and piezoelectric models are known
and identified, the observer is directly obtained.

D. Governing equations and block schemes of the complete
observer

Gathering the static force and displacement observer in
(Eq. 5), the dynamics observer in (Eq. 22) and the observer
gains in (Eq. 25), the governing equations of the complete

observer are:

F̂s(t) =

1

β

(CrU(t)− CUo(t))− Fcr(t)− Fhys(t)−
1

Rfp

t∫
0

Udt


ŷfrees (t) =

1

α

(CrU(t)− CUo(t))−QDA(t, U)− 1

Rfp

t∫
0

Udt



ŷ(s) =

(
G1(s)

G2(s) +G3(s)

)
ŷfrees (s)− spF̂s(s)

(26)
with (according to (Eq. 3), (Eq. 6) and (Eq. 25)):

Fcr(s) = Ftfcr(s)U(s)

Fhys(s) = Γ (U)

QDA(s) =
kDA

(1 + τDAs)
U(s) = QtfDA(s)U(s)

G1(s) = dpD(s)

G2(s) = − 1
α
Rfp

s
− kDA
α (1 + τDAs)

− 1

α
H(s)

G3(s) =
Cr
α

(27)

Fig. 6 presents the block diagram of the complete observer
defined by (Eq. 26).

In the proposed observer (Eq. 26), we choose the hysteresis
operator Γ(U) to be a Prandtl-Ishlinskii operator. The main
advantage of this hysteresis operator are: i) its high accuracy,
and ii) the fact that it is more suitable for real-time imple-
mentation.. The Prandtl-Ishlinskii hysteresis operator is based
on the superposition of several elementary hysteresis called
backlash or play-operator defined by:{

y(t) = max {u(t)− r,min {u(t) + r, y(t− Ts)}}
y(0) = y0

(28)

where r is the threshold.
A more complex hysteresis based on nh number of back-

lashes is therefore defined as: y(t) =

nh∑
i=1

wi ·max {U(t)− ri,min {U(t) + ri, yi(t− Ts)}}

y(0) = y0
(29)

where wi, ri and yi are the weighting and the threshold
parameters and the output of the ith backlash, respectively.
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Fig. 6: Block diagram of the complete observer.

The creep operator Ftfcr(s) in the observer is a transfer
function (linear operator):

Ftfcr(s) =

m∑
k=0

bks
k

n∑
l=0

alsl
(30)

where bk and al are the parameters to be identified and m and
n (m ≤ n) are the degrees of the polynomials. The operator’s
order is equal to n.

E. Experimental results and setup

The complete self-sensing was implemented and tested. The
setup used, presented in Fig. 7, is composed of:
• a unimorph piezoelectric cantilever with dimensions of

15mm × 2mm × 0.3mm, where the thickness of the
piezoelectric layer (lead zirconate titanate - PZT-5H) and
the thickness of the passive layer (Nickel) are 0.2mm
and 0.1mm respectively,

• a dSPACE-board (DS1103) and a computer material for
the data acquisition, observer implementation and control
signal. MATLAB-SIMULINK is the software used for that.
Based on the dynamics of the actuator, the sampling time
is set equal to Ts = 50µs.

• a displacement optical sensor (LC-2420 from Keyence,
[33]) to measure the deflection (displacement) at the tip
of the actuator. This sensor is set to have a resolution of
some tens of nanometers and an accuracy of 100nm,

• a force sensor (FT-S270 from femtotools [34]) to measure
the force applied by the actuator at its tip. The sensor has
a range of ±2mN , a sensitivity of 1 µNmV and a resolution
of 0.4µN .

• a custom-made electronic circuit based on Fig. 2-b. The
used op-amp (OPA111) features very low bias currents
(1pA) and a low noise,

• and a high voltage (HV) amplifier with differential output
(KH7602M from Krohn-Hite) used to amplify the input
voltage U from the dSPACE-/computer. This amplifier
can provide up to ±200V at its output.

It is noticed that the displacement and the force sensors are
used here to capture the real displacement y and the real force
F in order to compare them with the estimate ŷ and F̂ for
the validation of the proposed approach. They are also used
to identify some model parameters such as dpD(s).

The tip of the piezoelectric cantilevered actuator is po-
sitioned between the optical sensor head and the probe of
the force sensor. The force sensor is mounted on a XYZ
mechanical table which will bring it on close vicinity to
the actuator’s tip. Force may be applied either externally
by adjusting the sensor position (e.g. pushing it against the
cantilevered actuator), or through the cantilever subject to an
applied voltage, which will solely enter in contact with the
sensor, thus simulating a micromanipulation procedure. This
second method permits to have a very high dynamics force,
simulating a step micromanipulation force when applying a
step voltage to the actuator entering in contact with an object.
This paper presents the estimation of the final value of this
step force, additionally to the bending of the actuator.

To identify the hysteresis Γ(U), we choose a number of
backlashes nh = 15. Then the parameters have been identified
following the procedure proposed in [17]. The creep operator
was identified based also on the procedure in [17].

The remaining parameters in (Eq. 26) are identified follow-
ing the procedures in [25] [26]. The electrical elements are:
C = 47nF and Cr = 8.2nF . Finally for the given actuator, we
identified and calculated kDA = −0.028µm/V , τDA = 60s,
α = 273mV/µm, β = 1.03nC/mN and Rfp = 0.435TΩ.
The piezoelectric compliance sp has been identified by using
the above mentionned external force sensor and displacement
optical sensor. The force sensor is used to push the tip of the
piezoelectric cantilever until a constant force F is obtained
and the resulting steady-state displacement is measured by the
optical sensor. Different values of force ranging between 0mN
and 2mN were used. The results are given in Fig. 8 where
we can notice the linearity of the force-displacement relation.
From experimental data shown in the figure, a linear regression
allows us to identify an average of sp = 1.2858µm/mN with
a standard deviation of 0.08867µm/mN .
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electrical circuit 
and HV amplifier

force sensor and 
optical sensor

observer

computer & dSPACE board

piezoelectric actuator

optical
sensor

Fig. 7: Setup used for the experimental tests.
The identification of dp and D(s) is performed by applying a
step voltage U to the actuator without force at the tip and then
by capturing the output y thanks to the optical sensor. After
applying an ARMAX (Auto Regressive model with eXternal
input) method to the captured data with MATLAB [38], we
obtain:

dp = 0.690
µm

V
D(s) = 5.752× 10−3×(
s+ 3.06× 104

) (
s2 − 1.95× 104s+ 3.07× 108

)
(s+ 3976) (s2 + 54.37s+ 1.36× 107)

(31)

force [mN]

di
sp

la
ce

m
en

t [
µ

m
]

: linear regression
: experimental data

Fig. 8: Steady-state force-displacement characterization used
to identify the piezoelectric compliance sp.

At the same time, the output Uo was captured allowing the
identification of H(s):

H(s) =
−0.158

(
s+ 5.9× 104

)
(s+ 236) (s+ 13.7)

(s+ 5.5× 104) (s+ 224) (s+ 12.9)
(32)

The complete observer with the identified parameters has
been implemented. The first experiment consists in compar-
ing the quasi-static displacement self-sensing presented in

section. II-B with the proposed complete displacement self-
sensing in free condition F = 0. In such a way, we can
observe the efficiency of the complete self-sensing to track
high frequency or high rate evolution of the displacement. The
experiment consists in applying a step input voltage U = 20V
to the actuator and to report the resulting real displacement y
thanks to the optical sensor. At the same time, the estimate
displacement from the quasi-static displacement self-sensing
and from the proposed complete displacement self-sensing
are also reported. Then, transient parts of the displacement
step response are observed. The observation is performed
within only 200ms because of the low settling time of the
piezoelectric cantilever. Fig. 9 present the results. As we can
see, the quasi-static self-sensing does not estimate the transient
part of the real displacement (Fig. 9-a) and only estimates the
steady-state. In contrary , the complete self-sensing captures
both transient part and the steady-state value (Fig. 9-b).

The next experiment consists in applying a series of force
at the tip of the piezoelectric actuator thanks to the probe of
the force sensor and thanks to a manual positioning table used
to move the sensor towards the actuator. The reaction force of
the actuator which is F is the force to be observed/estimated
by the self-sensing. At the same time, the displacement y
(deflection of the actuator) generated by the force is also
estimated by the self-sensing. The aim of this experiment is
to validate and demonstrate the efficiency of the proposed
self-sensing to estimate both displacement and force. As the
force is estimated in a quasti-static way, the measurement
here is performed during several tens of seconds. Fig. 10
picture the results. From these figures, we remark that the
estimate F̂ derived by the sefl-sensing well captures the real
force F measured by the sensor (Fig. 10-a). Concerning the
displacement, the estimate ŷ captures enough the real displace-
ment y despite the slight inaccuracy of ∼= 200nm for 3.1µm
of range. This inaccuracy is acceptable for the considered
applications since it is very negligible (much less than the
micron). Comparing the results in Fig. 9 and in Fig. 10, we
notice that the accuracy of the proposed self-sensing is much
more better when the force F is zero. The inaccuracy obtained
when F is non-zero can be reduced by using a more precise
model of the piezoelectric compliance sp. In this paper, we
have proposed a linear model (see Fig. 8) but a high degree
polynomial could be used in order to reduce this average error
(standard deviation) and consequently to reduce the error of
estimation of the force. It is worth to notice that the force
and the displacement at the steady-state, pictured in Fig. 10-a
and b respectively, are not constant. In fact this is due to the
creep phenomenon that typifies piezoelectric ceramics based
actuators. Such a drift is observed at low frequencies or when
a constant input voltage is applied. Our experiments clearly
show that the self-sensing can efficiently track the appearance
of this creep. To summarize, the characterization demonstrates
that the proposed self-sensing well estimates both the transient
part (high frequency) and the steady-state (low frequency) of
the displacement of the piezoelectric actuator. In the steady-
state, we see that the error of displacement estimation is
less than 1%. Concerning the force estimation, which is in
the steady-state, the accuracy is slightly worse than that of
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the displacement: 6% of error over the period of observation
(100s) and for an amplitude of (3mN ). Despite this error, this
is compatible with microassembly or micromanipulation tasks
where the displacement is feedback controlled and the force
is only displayed.

IV. APPLICATION TO A ROBUST FEEDBACK CONTROL OF
THE DISPLACEMENT

In this part, we apply the proposed complete self-sensing
method in a feedback control: the estimate displacement from
the self-sensing will be used as feedback signal, the estimate
force being displayed. We use the the standard H∞ tech-
nique to calculate the controller. Such technique has already
demonstrated its efficiency to improve piezoelectric actuators
performances in previous works [7]. But, relative to these
previous works, the measurement for feedback in this paper
is from self-sensing technique, not from an external sensor.
A. The system to be controlled

Fig. 11 presents the system to be controlled. In this, the
real displacement y, which is unavailable for measurement, is
estimated by the previous self-sensing. This estimate ŷ is used
for feedback. In parallel to the control of the displacement,
the force F applied by the actuator to the environment
(manipulated object) is estimated by the same self-sensing (cf.
previous section). Therefore, during the displacement control,
the manipulation force can be displayed in real time. It is
worth to notice that the optical sensor is still used to measure
the real displacement y and to compare the latter with the
estimate during the control, and therefore for the validation.
B. Sepcifications for the closed-loop

To design the controller, we propose the following specifica-
tions. They are in accordance with the requirements in microp-
ositioning tasks during micromanipulation and microassembly.

Tracking performances - The overshoot, which was ini-
tially 64% (see the step response of the system in Fig. 9),
should be cancelled. The statical error should be negligible.
Finally the settling time should be less than 100ms.

Limitation of the input voltage U - In order to avoid
the destruction of the piezoelectric actuator by eventual over-
voltage, the input control U should be limited. We choose a
maximal ratio of Umax

ymax
= 100

20

[
V
µm

]
= 5

[
V
µm

]
where ymax

corresponds to the maximal range of use.

C. H∞ controller synthesis

One of the main advantages of the H∞ approach is the ex-
plicit consideration of the specifications. These specifications
are transcribed into weighting functions during the synthesis.
Consider in Fig. 12-a the closed-loop scheme for the controller
design, where the weighting W1(s) and W2(s) are used to
include the specified tracking performances and the specified
voltage limitation respectively. In the figure:
• yr is the reference displacement,
• ε = yr − y is the error,
• e1 and e2 are the weighted outputs used for the synthesis,
• G(s) is the system to be controlled, with G(s) = dpD(s),
• and K(s) is the controller to be synthesized.
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ŷ
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µ

m
]

(a): obtained with the quasi-static displacement self-sensing

(b): obtained with the complete displacement self-sensing

real displacement y

estimate displacement

real displacement y

estimate displacement

error of estimation

zoom

zoom

error

Fig. 9: Experimental results. (a): displacement estimation (with
force null) using the quasi-static self-sensing in [25] [26]. (b)
results using the proposed complete displacement self-sensing.

The standard scheme corresponding to Fig. 12-a is pictured
in Fig. 12-b. This is used for the standard H∞ synthesis. In
this, P (s) is called augmented system since it contains the
system G(s) augmented by the weightings W1(s) and W2(s).
The exogenous input is the reference yr and the output to be
controlled are the weighted signals e1 and e2. The standard
H∞ problem consists in finding an optimal value γ > 0 and
a controller K(s) stabilizing the closed-loop in Fig. 12-b (the
standard scheme) and guaranteeing the following inequality
[35]:

‖Fl (P (s),K(s))‖∞ < γ (33)

where Fl (P (s),K(s)) is the lower linear fractionar transfor-
mation (LFT) between P (s) and K(s) and is defined by:(

e1
e2

)
= Fl (P (s),K(s)) · yr (34)

From Fig. 12-a, we have:

e1 = W1Syr ; e2 = W2KSyr (35)

where S = (1 +KG)
−1 is the sensitivity function. Using

(Eq. 34) and (Eq. 35), we have the LFT of the standard
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scheme:
Fl (P (s),K(s)) =

(
W1S
W2KS

)
(36)

Using the condition of the H∞ standard in (Ineq. 33) and the
LFT in (Eq. 36), we infer the more detailed conditions:

‖W1S‖∞ < γ ; ‖W2KS‖∞ < γ (37)

which is also respected if we have

|W1| < γ
|W1| ; |KS| < γ

|W2| (38)

F

y

F̂

ŷ

time [s]

time [s]

fo
rc

e 
[m

N
]

di
sp

la
ce

m
en

t [
µ

m
]

(a)

(b)

Fig. 10: Experimental results. (a): force F measured by an
external force sensor and estimate force F̂ from the self-
sensing. (b): displacement y measured by an external optical
sensor and estimate displacement ŷ from the self-sensing.

To solve the problem (Ineq. 38) (or (Ineq. 37)), we use
the Glover-Doyle algorithm which is based on the Riccati
equations [36] [37].

D. Computation of the controller
The weighting functions were chosen according to the

specifications in Section. IV-B. We choose the following set:

W1(s) = 0.03s+1
s+0.001 ; W2 = 2×10−5s+1

6.25×10−5s+5
(39)

After computation, we obtain a controller of order 5:
K(s) =

163
(
s + 8× 104) (s + 3876)

(
s2 + 54s + 1.36× 107)(

s + 5× 104) (s + 4137) (s + 0.001)
(
s2 + 519s + 1.4× 107)

γoptimal = 0.2
(40)

γ being less than 1 indicates that the controller will ensure the
performances described in the specifications.

ŷ

F̂

y
F

Q
U

system to be controlled

piezoelectric
actuator

complete
displacement

and force
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Fig. 11: The system to be controlled.
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Fig. 12: (a): the closed-loop scheme augmented with the
weightings. (b): the corresponding standard scheme.

E. Experimental results

The controller K(s) in (Ineq. 40) has been implemented
in the MATLAB-SIMULINK software. The first experiment
consists in applying a series of steps for the reference input
yr to the closed-loop system. No force sensor (or object) is
in contact with the actuator in this first experiment such that
F = 0. The aim is to just validate the displacement tracking
performances. Both the estimate displacement ŷ that was used
for the feedback and the real displacement y that is measured
thanks to the optical sensor are captured. Fig. 13 pictures
the results. As we can see, the estimate displacement ŷ well
coincides with the real displacement y. On the other hand,
they well tracks the input reference yr. The specifications are
particularly respected: there is no overshoot, the statical error
tends towards zero and the settling time is less than 100ms.

In the second experiment, we apply arbitrary levels of
reference input, but still with F = 0. The objective is to
evaluate the input voltage U and the ability of the complete
self-sensing to work in long term measurement (over a period
of 200s) of displacement signal and with high voltage. Fig. 14-
a pictures the reference displacement yref , the measured dis-
placement y from the external optical sensor and the estimate
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displacement ŷ from the self-sensing. Results shown in these
figures demonstrate the efficiency of the control techniques
using the self-sensing, where it can be verified that the output
of the piezoelectric actuator well tracks the reference input
yref . Fig. 14-b shows the high input voltage U (up to 100V )
applied by the controller K(s) to the actuator. Fig. 14-c shows
a zoom on the displacement response at time between 168s
and 187s where the reference input displacement is yr = 0µm.
From this latter figure, we observe that the signal obtained
from the self-sensing technique is less noisy than that provided
by the optical sensor. Although the reference yr is null and the
output y (and its estimate ŷ) is null, we remark from Fig. 14-
c and Fig. 14-b that the corresponding driving voltage U is
non-null (about −10V ). This is due to the fact that this driving
voltage is compensating for the nonlinearities (hysteresis and
creep) of the piezoelectric actuator which demonstrates the
efficiency of the designed controller.

ry

y
ŷ

( )ˆy y−

di
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la
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m
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t [
µ

m
]

estimate displacement
real displacement

error

time [s]

reference input

Fig. 13: Step response of the closed-loop system with F = 0.

The last experiment consists in performing a reference tracking
(tracking of yr) when the actuator is in contact with the
force sensor (F 6= 0). During the experiment, the reference
displacement yr is modified slightly in order to avoid brusque
evolution that may destroy the force sensor. Fig. 15 picture the
results. In Fig. 15-a where the displacement ŷ is shown, the
values are shifted of 50µm. In Fig. 15-b where the real force
F is shown, the values are shifted of −0.3mN . The noises
arrowed on the curve are due to a slight sliding between force
sensor’s probe and the actuator. Finally in Fig. 15-c where
the estimate force F̂ is shown, the values are shifted of about
1mN . As we can see in the two latter figures, the estimate
force well estimates the real force, in particular when the
contact is reached. When the contact is off, there is a slight
drift of the estimate force (Fig. 15-c). This drift causes a shift
of the estimate force relative to the real force during contact.
This drift, which can be positive or negative, is due to the
sensitivity of the self-sensing to the environmental conditions
(temperature variation,...) but also in part due to the model of
the compliance sp. This drift can be minimized by utilizing a
controlled environment for the experimental setup. Another
approach consists in employing an environment-dependent
self-sensing technique. In this, the parameters of the self-
sensing are dependent on the evolution of the temperature.
Finally, a more precise model of the compliance sp could also
increase the accuracy of the force estimation.
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Fig. 14: Long term experiment with F = 0 and with high
input voltage U . (a): the reference displacement yref and the
output displacement measured by the optical sensor (y) and
estimated (ŷ). (b): the driving voltage U . (c): a zoom on the
displacement when the reference input yr = 0µm.

V. CONCLUSION

This paper has presented the development of a self-sensing
technique, called complete self-sensing, that is able to estimate
the force and the displacement in a piezoelectric actuators
dedicated to micropositioning tasks. While the force is esti-
mated at its steady-state (static), the displacement is estimated
at both its transient part (dynamics) and its steady-state.
The advantage is that it is possible to develop a feedback
displacement control and at the same time to display the
force applied by the actuator. Another advantage relative to
existing self-sensing techniques is that the proposed approach
can capture the two signals for long term (several hundred of
seconds). The experiments carried on a feedback control have
demonstrated these advantages.

The accuracy of self-sensing techniques depends on the
accuracy of the identified parameters. If they are badly iden-
tified, the self-sensing will provide inaccurate estimate of the
displacement or force. These parameters may also change over
the time, for instance due to thermal variation. A perspective
work at FEMTO-ST consists in developing self-adjusted self-
sensing techniques where the parameters are automatically (in
real-time) tuned according to the temperature changes.
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