
HAL Id: hal-01303331
https://hal.science/hal-01303331v2

Submitted on 1 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental demonstration of an efficient number
diagnostic for long ion chains

Marius R Kamsap, Caroline Champenois, J Pedregosa-Gutierrez, Simon
Mahler, Marie Houssin, Martina Knoop

To cite this version:
Marius R Kamsap, Caroline Champenois, J Pedregosa-Gutierrez, Simon Mahler, Marie Houssin,
et al.. Experimental demonstration of an efficient number diagnostic for long ion chains.
Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2017, 95 (013413),
pp.10.1103/PhysRevA.95.013413. �hal-01303331v2�

https://hal.science/hal-01303331v2
https://hal.archives-ouvertes.fr


Experimental demonstration of an efficient number diagnostic for long ion chains
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Aix-Marseille Université, CNRS, PIIM, UMR 7345, 13397 Marseille, France

(Dated: December 2, 2016)

Very long, one-dimensional ion chains are the basis for many applications, in particular in quantum
information processing, and reliable diagnostics are needed to quantify them. To that purpose, we
have experimentally tested Dubin’s model for very long ion chains [Phys. Rev. E 55, 4017 (1997)]
which describes the equilibrium state of a one-dimensional correlated system. For chains larger than
100 ions, this diagnostic allows us to determine the number of trapped ions with a 8%-precision in
a 95% confidence interval, without counting individual ions. This measurement is based on the
experimental determination of the ion-ion distance of the innermost particles and of the trapping
potential along the ion chain direction. The agreement of the model with experiments allows one
to determine the degree of local homogeneity of the ion crystal in the center of the chain.

PACS numbers: 64.70.kp Specific phase transition - Ionic crystals, 05.65.+b Self-organized systems, 03.67.Lx
Quantum computation architectures and implementations

I. INTRODUCTION

Trapped one-dimensional ion chains encounter increas-
ing interest in different areas of modern physics, as they
constitute controllable model systems to test fundamen-
tal questions. They are among the most attractive can-
didates in quantum information [1–3], and they serve as
model systems for the study of nano-friction [4–6], or in-
vestigations of the Kibble-Zurek mechanism [7–9].

Regarding trapped ions as support for quantum com-
putation, the key challenge now is to increase the number
of trapped ion qubits to a level where simulations that
are intractable otherwise might become possible[10]. One
strategy pursued for up-scaling is to operate with small
linear ion chains and multiplex the system by shuttling
ions between multiple chains, which requires a dedicated
electrode structure and very precise control of ion trajec-
tories [11]. Another approach is based on a long linear
trap in order to store a single ion-chain containing more
than a hundred ions [1]. One of the issues raised by this
approach is the structural stability of the chain, which
requires the aspect ratio of the trapping potential to ful-
fil a condition which depends on the number of trapped
ions [12, 13]. It then becomes mandatory to have an
efficient diagnostic of the number of trapped ions, in a
regime where simply counting them on a recorded image,
like routinely done for up to 50 ions, may not be feasi-
ble anymore. Furthermore, it would be useful to have a
global criterion linking the minimum number of ions to
the local homogeneity at the chain center, opening the
way for the implementation of dedicated quantum infor-
mation protocols [1].

In this article, we propose an efficient diagnostic for the
total number of ions in a chain in a harmonic potential,
even if only the central part of the chain can be recorded.
This diagnostic does not rely on the individual counting
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of each ion but on the measurement of the average inter-
ion distance at the center of the chain. To that purpose,
we experimentally test the model developed by Dubin in
the 1990s [12, 14], which allows the total number of ions
in the trap to be deduced with an ultimate precision of
a few percent. This measurement is also a diagnostic for
the local homogeneity of the chain.

A one-dimensional chain of identical, charged particles
can be experimentally created in a linear radiofrequency
(rf) trap. In most linear rf traps, the trapping poten-
tial along the chain axis can be very well approximated
by a harmonic potential and the equilibrium position of
each particle along the trap axis results from the balance
between the Coulomb interactions with all other parti-
cles and the restoring trapping force. In many experi-
ments, the trapped ions are laser-cooled to temperatures
below 10 mK and once crystallised in a stable structure,
they make small oscillations around their equilibrium po-
sition. They are typically separated by a distance of sev-
eral µm enabling individual detection of their fluores-
cence and/or individual addressing by a tightly focussed
laser beam. The observation of ion positions for chains
longer than a hundred particles allows one to experimen-
tally study a correlated system where the correlation en-
ergy between particles is as important as the mean-field
energy [14]. This situation is rarely met. For example, in
a 3D-system, it takes a 1/r3 interaction potential to ful-
fill this condition. The strong role of particle correlation
in the equilibrium energy makes analytical calculations
complicated. For a 1D-system, D.H.E. Dubin takes into
account these correlations through the Local Density Ap-
proximation and is able to describe the dependency of the
local density with the chain length and the total number
of particles[12, 14]. Once confirmed, these theoretical
laws can be used as an efficient diagnostic for the par-
ticle number and local homogeneity for long ion chains,
suppressing the need for individual counting of the ions.

To test these laws, we confront model predictions with
precise experimental results. Our experiments are based
on the imaging of the laser induced fluorescence of in-
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dividual ions on a intensified CCD camera. Long ion
chains are routinely created in several groups and parts
of ion chains have been observed and reported before
(e.g. [8, 15]) but they have been limited to ion numbers
below 40, mostly because of the limits of the collecting
optics set-up. Our experimental set-up allows the con-
trolled translation of the imaging optics along the trap
axis without destruction of the chain [16], in order to
record pictures at various positions along the ion string
which can be joined to build a picture of the complete
string.

In this article, we present the above cited model for
ion string structures, then describe the experimental re-
alisation of very long ion chains, followed by a discussion
of the uncertainty budget of the method.

II. SCALING LAWS FOR LONG COULOMB
CHAINS

A very prolate potential shape is needed to force a
sample of the order of 100 ions to organise as a chain.
In a trapping potential which is harmonic in the three
directions of space, the structural phase transitions of
linear Coulomb crystals are controlled by the number N
of trapped particles and by the trapping potential aspect
ratio ρ, which reduces to the ratio of the axial over radial
potential steepness ρ = ω2

z/ω
2
r in the case of a linear

trap with cylindrical symmetry [12, 13, 17, 18]. In the
following, we assume that the stability condition for a
linear chain is satisfied. In [12, 14], Dubin treats the N
ion chain as a charged fluid at zero temperature with
total charge NQ and shows that in the frame of this
approximation the local density, or number of ions per
unit length along the chain, can be chosen to be

1/a(z) =

(
3N

4L

(
1− z2

L2

))
(1)

where a(z) is the distance between closest neighbours,
z is the distance from the chain centre and 2L is the
chain’s total length. This equation reflects the increasing
inter-ion distance for larger distance to the chain center,
which is well confirmed by numerical simulations based
on potential energy minimization [14, 19] and experimen-
tal observations. According to Dubin, this trial function
(Eq. 1) slightly overestimates the chain length but its
simple form allows the comparison with experimental re-
sults. This is the main limit of the model and as an
example, the overestimation reaches 12% for a 160 ion
chain [14].

Taking into account correlations between ions, Dubin
derived the half-length L in terms of the two-body equi-
librium length scale l = (Q2/4πε0mω

2
z)1/3 by

L = l(3N)1/3(lnN + ln 6 + γe −A)1/3 (2)

with γe ≈ 0.577 the Euler constant (m is the particle
mass).

Describing the relevant physical parameters (length
and reduced density) of a chain with a (lnN)−1 power
series, Dubin obtains a value for A = 7/2, by neglecting
terms of the order of (lnN)−2 [14], improving his earlier
results [12]. Later work [18] confirmed the scaling law
L ' l(3N lnN)(1/3) for N � 1. To be consistent, the
power series description of Dubin also concerns the local
density 1/a(z). If we combine the power series of the
chain length and of the density, we obtain an expression
for the smallest inter-ion distance a0D at the chain center,

aD0 = 4l(3N)−2/3
[
(lnN + ln 6 + γe −A)−1/3 +B(lnN)−4/3

]−1

(3)
where A is 7/2 and B = −5/2 + 3 ln 2. This equation
allows the number of ions in the chain to be deduced from
the measurement of the smallest inter-ion distance a0 and
the characteristic length l, with an error of the order of
(lnN)−2 which is equivalent to ±4% for the largest chain
we could observe.

III. EXPERIMENTAL SET-UP

Our experimental set-up for trapping long ion chains
is based on a linear radio-frequency trap where the dis-
tance between the trap center and the rods polarised
by rf-voltage is r0 = 3.93 mm and the distance be-
tween the plane electrodes confining the ions along the
trap z-axis is 96 mm, justifying that we neglect the
role of image charges [14]. The Vdc = 2000 V applied
to the z-electrodes results in a harmonic potential of
ωz/2π = 3.1 ± 0.15 kHz (95% confidence interval). Ions
are created by isotope selective photo-ionisation of a neu-
tral calcium beam and are then shuttled to the part of
the trap where the long chain is formed [16] to avoid
perturbation of the potential by any calcium deposit on
the electrodes. Ions are laser-cooled by two collimated
laser beams close to resonance with the [4S1/2 − 4P1/2]-
transition, of equal power (397 nm, 2 mW on a 2 mm
1/e2 diameter), counter-propagating along the trap axis.
Once excited from the ground state, calcium ions can re-
lax to a long-lived metastable state [3D3/2] from which
they have to be re-pumped to maintain efficient laser
cooling. This re-pumping process is assured by a 866 nm
laser beam [resonant with 3D3/2 − 4P1/2] of approx-

imately 2.5 mW and 4 mm 1/e2 diameter which co-
propagates with one of the cooling lasers. The trapped
ions are observed through their laser induced fluorescence
on the cooling transition which is collected along a di-
rection perpendicular to the trap symmetry axis, and
projected onto a photomultipler (PM) and an intensi-
fied charge coupled device (CCD) camera. The camera
screen is an array of 1024× 1024 pixels with a pixel size
of 13 µm. In order to obtain a sufficient spatial resolu-
tion to distinguish ions separated by a few µm, an optical
magnification larger than 10 is required, which limits the
number of observable ions to less than 100. These values
are representative for many ion-trap experiments. In our
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FIG. 1. a) Picture of an ion chain of 155 ions composed from 5 pictures taken with a translated objective and b) picture of the
central part of the chain. Axes are in pixels whose size is 13 µm and the optical magnification is 11.58. The scale bar stands
for 100 µm. The integration time is 1s.

set-up, the magnification is 11.58, and the total length of
the longest observed chain is 4.6 mm. This observation
is made possible by the translation of the imaging optics
parallel to the trap’s symmetry axis from one end of the
chain to the other. The translation stage holding the col-
lecting objective is controlled by a micrometer screw with
graduations of 10 µm. Translations were operated always
in the same direction and result in a ±5 µm uncertainty
on the relative position of two consecutive pictures. The
comparison between pictures taken throughout the trans-
lation of the objective along the two opposite directions
gives us an estimation of the ion loss that can affect a
chain during the data acquisition. The largest loss was 4
ions and was observed for some chains containing more
than 100 ions. It can lead to an overestimation by few
units of the total number of ions deduced from the cen-
tral picture compared to the one deduced by individual
count of the ions.

The translation step of 1 mm is smaller than the
camera sensor size in the object space. Some ions are
then redundant and are recorded on two consecutive pic-
tures. The average inter-ion distance is 22 pxl which
is larger than the uncertainty associated to one trans-
lation (±5 pxl) and which results in 6 redundant ions
for each translation (4 for the last one). These num-
bers are sufficient to check precisely the consistency of
the superposition and deduce an exact number of 155
ions in the chain in Figure (1) from counting the individ-
ual ion fluorescence images. The figure shows the global
picture of the whole chain which can be composed by
several images. The variation in the fluorescence signal
may be due to spatially varying radial secular motion
or micro-motion made possible by insufficient cooling of
the radial motion by the two longitudinal laser beams.
It may also be the signature of dark ions hopping along
the chain. The total length of the chain is measured to
be 2Lm = 4620 ± 25 µm. The set of nearest neighbour
distances a(z) is extracted from the data set obtained by
vertical binning of the image, and multiple-Gaussian fit
to the resulting fluorescence profile. The thus obtained
a(z) are represented on Fig. (2).

FIG. 2. Red dots : distance between neighbouring ions a(z)
vs their position in the chain, in µm, in a 155-ion chain. Blue
line : best fit of the inverse of the distance by Eq. (1) where
z is replaced by z − z0 and N is fixed to 155. The error bar
stands for the ±5 pxls of the typical FWHM of individual ion
picture.

IV. DATA ANALYSIS

We have fitted these data with Eq. (1) fixing N to
155. The best fit finds a chain center z0 located at
the physical center of the chain and a chain length
(2Lf = 5420 ± 30 µm) which is more than 17% larger
than the measured physical length 2Lm. Like mentioned
earlier, this overestimation is expected from the simple
equation form given in Eq.(1) and also includes exper-
imental uncertainties. However, Dubin’s model allows
to be used in a form relating the inter-ion distance at
the center of the chain a0 to the ion number, without
an explicit dependence on L, as given by Eq. (3). To
demonstrate the relevance of using only the central pic-
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ture of the chain to deduce an ion number, we calculate
a0 based on the relative position of the 20 central ions.
The result is then a0 = 24.1± 1.0 µm (95% confidence).
Assuming for l the value determined from the direct mea-
surement ωz/2π = 3.1 ± 0.15 kHz, we can calculate the
number ND of ions in the chain from Eq. (3). The result
is ND = 151 ± 12 where the two major causes of un-
certainty are, in order of importance, statistics and the
uncertainty in the determination of ωz.

To reduce the experimental uncertainty of a0, and if
the optical field of view allows for it, one can average
a(z) for more central ions. The number Na of included
ions can not be extended too far as there is a quadratic
dispersion in inter-ion distance with the distance from
the center. If we use Eq. (1) around the chain center,
one can show that the dispersion in the distance to the
next neighbours behaves like

δa

a
=

(
2Na

3N

)2

. (4)

In practice, the gain of adding more ions is limited.
For the above described ion chain, the minimum of the
standard deviation is reached by averaging over Na = 80
ions, dividing the standard deviation not even by a factor
of 2. The corresponding mean value a0 is reduced by less
than 1.5%, far less than one standard deviation.

The optical magnification is measured at the chain cen-
ter, by translating the objective across the trap axis and
keeping the detector fixed. 8 successive translations of
the objective, perpendicular to the optical axis and to
the chain axis, over a total range of 1 mm, by a trans-
lation stage with a 10 µm resolution screw result in an
uncertainty which is an order of magnitude lower than
the magnification shift induced by the translation of the
objective along the trap axis. The tiny modification of
the objective-to-image distance induces a change in the
measured magnification of the order of 2 ppm, an order
of magnitude lower than the statistical dispersion of the
data around their mean.

Data analysis was carried out for several chains of dif-
ferent ion number ranging from 46 to 155. To confirm
the relevance of Dubin’s trial function, Fig. 3 plots the
local density 1/a(z) for three of them together with the
fit by Eq. (1). Although the parameter L extracted from
the fits systematically overestimates the physical length
of these chains, the local density profile is very well repre-
sented by Eq. (1). The differences between the calculated
ion numbers and the directly counted ones lie within the
above measured 8% uncertainty for chains larger than
100 ions. This difference increases for shorter chains,
reaching values up to 15%. For these smallest chains,
an alternative tool to study self-organization of ions in
a 1D potential is potential energy minimization. In [19],
James proposed an empirical law for the closest distance
aJ0 fitting its numerical results for N ≤ 50 :

aJ0 = 2.018lN−0.559. (5)
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FIG. 3. Local density 1/a(z) vs the ion position in the chain,
in µm, measured for chains containing 134 ions(red circles),
95 ions(blue squares), 47 ions(green triangle). The lines are
the best fit by Eq. (1) where z is replaced by z − z0 and N is
fixed to the counted value.

For short ion strings, and even if the law deduced from
Dubin’s work is only relevant in the limit of large N ,
it systematically agrees to the experimental observations
better than the prediction from Eq. (5) by a few percent.

In conclusion, we have experimentally tested the local
description derived for long, one-dimensional Coulomb
systems in a harmonic potential, an example of a strongly
correlated system. The derived law is useful as a diagnos-
tic to prepare chains with sufficient ions to have a mini-
mum number of equidistant particles in its central part.
The total number of ions can be derived without individ-
ually counting them, if the potential well along the chain
direction is known.With the described ion chain, we were
able to retrieve the ion number from a single picture with
a uncertainty of ±8% due to fluctuations in ion positions
and the uncertainty on the axial potential. Furthermore
the simple form of (Eq. 1) can be used to describe the
density at the center of the chain for the minimum energy
state. Without any reference to the total length L, one
can deduce from (Eq. 4) the minimum number of ions
N required to have Na nearly equidistant ions within a
chosen tolerance. Such a system could be the starting
point for explorations of quantum information protocols
as proposed in [1]. The validation of this straightfor-
ward number diagnostic which does not require fastidious
counting of individual ions, makes these systems simpler
to control, and therefore more attractive.
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E. Demler, and G. Morigi, Phys. Rev. Lett. 115, 233602
(2015).

[7] A. del Campo, G. De Chiara, G. Morigi, M. B. Plenio,
and A. Retzker, Phys. Rev. Lett. 105, 075701 (2010).

[8] K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin,
T. Burgermeister, D. M. Meier, K. Kuhlmann, A. Ret-
zker, M. B. Plenio, W. H. Zurek, A. del Campo, and
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