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Abstract

The nonstationary nature of signals and nonlinear sys-
tems require the time-frequency representation. In
time-domain signal, frequency information is derived
from the phase of the Gabor’s analytic signal which
is practically obtained by the inverse Fourier trans-
form. This study presents time-frequency analysis by
the Fourier transform which maps the time-domain sig-
nal into the frequency-domain. In this study, we derive
the time information from the phase of the frequency-
domain signal and obtain the time-frequency repre-
sentation. In order to obtain the time information
in Fourier domain, we define the concept of ‘frequen-
taneous time’ which is frequency derivative of phase.
This is very similar to the group delay, which is also
defined as frequency derivative of phase and it provide
physical meaning only when it is positive. The frequen-
taneous time is always positive or negative depending
upon whether signal is defined for only positive or neg-
ative times, respectively. If a signal is defined for both
positive and negative times, then we divide the sig-
nal into two parts, signal for positive times and signal
for negative times. The proposed frequentaneous time
and Fourier transform based time-frequency distribu-
tion contains only those frequencies which are present
in the Fourier spectrum. Simulations and numerical re-
sults, on many simulated as well as read data, demon-
strate the efficacy of the proposed method for the time-
frequency analysis of a signal.

INTRODUCTION

The time-domain representation and the frequency-
domain representation are two classical representa-
tions of a signal. In both domains, the time (t) and
frequency (f) variables are mutually exclusive. The
time-frequency distribution (TFD) on the other hand,
provides localized signal information in time and fre-
quency domain. The TFD provides insight into the
complex structure of a signal consisting of several com-
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ponents. There exist many types of time-frequency
analysis methods such as short-time Fourier transform,
Gabor transform, Wavelet transforms, and Wigner-
Ville distribution.

The Carson and Fry (1937) introduced [1] the con-
cept of variable frequency, with application to the the-
ory of frequency modulation (FM), as a generaliza-
tion of the definition of constant frequency. More-
over, the nonstationary nature of the signals and non-
linear systems require the idea of instantaneous fre-
quency (IF). The IF is the basis of the TFD or time-
frequency-energy (TFE) analysis of a signal. The IF
is a practically important parameter of a signal which
can reveal the underlying process and provides expla-
nations for physical phenomenon in many applications
such as vibration, acoustic, speech signal analysis [19],
meteorological and atmospheric applications [7], seis-
mic [19], radar, sonar, solar physics, structural engi-
neering, communications, health monitoring, biomedi-
cal and medical applications [21], cosmological gravity
wave and financial market data analysis.

The IF is the time derivative of the instantaneous
phase that is obtained by the Gabor’s complex sig-
nal, which is well-known as the analytic signal, rep-
resentation [1–6]. The IF is well-defined only when
time derivative of phase is positive, if this derivative
is negative then IF does not provide any physical sig-
nificance [7,9–11,13,15–19,25,26]. In order to remove
this problem, recently many nonlinear and nonstation-
ary signal representation, decomposition and analysis
methods, e.g. empirical mode decomposition (EMD)
algorithms [7, 9–14], synchrosqueezed wavelet trans-
forms (SSWT) [15], variational mode decomposition
(VMD) [16], eigenvalue decomposition (EVD) [17] and
Fourier decomposition methods (FDM) [18–20,22–24],
are proposed. The main objective of all these methods
is to obtain the representation or decomposition of a
signal such that the IF is positive for all time.

Recently, Singh [8] has obtained an important en-
hancement in the definition of the IF where it is re-
defined in such that it is valid for all types of signals
such as monocomponent and multicomponent, narrow-
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band and wideband, stationary and nonstationary, lin-
ear and nonlinear signals. This has been obtained by
redefining the IF such that it is always positive by us-
ing the fact that inverse tangent is a multivalued (i.e.
one-to-many mapping) function. Thus, this definition
of IF has provided a way to obtain TFD of a signal by
decomposing into a set of desired frequency bands.

As is well-known that the Fourier theory, which
maps a time-domain signal into the frequency-domain
signal, is the only tool for spectrum analysis of a sig-
nal. The FDM [18, 19] has demonstrated that it is
also a superior tool for nonlinear and nonstationary
time series analysis. In this study, we demonstrate
that the time information, which we refer to as ‘fre-
quentaneous time’ as a dual of the ‘instantaneous fre-
quency’, can be recovered from the frequency deriva-
tive of phase of frequency domain signal. So obtained
frequentaneous time τ(f), frequency f and Fourier do-
main signal X(f) are used to obtain the three dimen-
sional time-frequency distribution of a signal.

METHODS

The Fourier series is a well-known and most important
representation of a periodic function in the mathemat-
ics, science and engineering for spectral analysis of a
physical phenomena. The discrete time Fourier trans-
form (DTFT) of a signal x[n] is defined as

X(ω) =
∞∑

n=−∞
x[n]e−jωn = Xr(ω) + jXi(ω), (1)

where Xr(ω) and Xi(ω) are real and imaginary part
of X(ω), respectively. The original signal x[n] can be
obtained from X(ω) by the inverse DTFT (IDTFT),
which is defined as

x[n] =
1

2π

∫ π

−π
X(ω)ejωn dω. (2)

One can easily observe that in (1) signal is being aver-
aged over time to obtain frequency domain signal, and
in (2) signal is being averaged over frequency to obtain
time domain signal.

Now onwards we always assume, unless otherwise
specified, that x[n] is a real-valued function, then
Xr(ω) is a even function, Xi(ω) is odd function (i.e
Xr(ω) = Xr(−ω) and Xi(ω) = −Xi(−ω)) and phase
spectrum is odd function of frequency (i.e. φ(ω) =
−φ(−ω) where φ(ω) = tan−1[Xi(ω)/Xr(ω)]). Thus,
real and imaginary part are always orthogonal, i.e.∫ π

−π
Xr(ω)Xi(ω) dω = 0, (3)

because multiplication of even and odd function is odd
function and integration of odd function in a limit
[−a, a] is always zero.

As x[n] is a real-valued function, from (2) we can
obtain analytic signal (Fourier transform vanishes for
negative frequencies)

z1[n] =
1

π

∫ π

0
X(ω)ejωn dω = z1r[n] + jz1i[n], (4)

and dual-analytic signal (Fourier transform vanishes
for positive frequencies)

z̃1[n] =
1

π

∫ 0

−π
X(ω)ejωn dω = z̃1r[n] + jz̃1i[n], (5)

such that x[n] = (z1[n] + z̃1[n])/2 and z∗1 [n] = z̃1[n],
where ∗ denotes complex conjugate operation.

An analytic signal z1[n] can be written as

z1[n] = z1r[n] + jz1i[n] = a1[n]ejφ1[n],

where a1[n] =
[
z2

1r[n] + z2
1i[n]

]1/2 ≥ 0,

and φ1[n] = tan−1 (z1i[n]/z1r[n]) .

 (6)

The IF for this analytic signal is defined in [8] as

ω1[n] =

{(
φ1[n]− φ1[n− 1]

)
if difference is ≥ 0,(

φ1[n]− φ1[n− 1]
)

+ π otherwise,

(7)
where φ1[n] is unwrapped phase, because phase un-
wrapping is necessary to ensure that all appropriate
multiples of 2π have been included in phase angle.
Phase unwrap operation corrects the radian phase an-
gles by adding multiples of ±2π when absolute jumps
between consecutive elements of a phase vector are
greater than or equal to the default jump tolerance
of π radians [27].

One can obtain the TFE distribution of a signal by
3-D plot of {n, ω1[n], a2

1[n]}. From this 3D TFE distri-
bution, we sum over the frequency (integrate over fre-
quency in case of continuous signal) and obtain a2

1[n]
which is true instantaneous energy (i.e. square of am-
plitude).

Similarly, a dual-analytic signal z̃1[n] can be written
as

z̃1[n] = z̃1r[n] + jz̃1i[n] = ã1[n]ejφ̃1[n],

where ã1[n] =
[
z̃2

1r[n] + z̃2
1i[n]

]1/2 ≥ 0,

and φ̃1[n] = tan−1 (z̃1i[n]/z̃1r[n]) .

 (8)

The IF, which is always negative, for this dual-analytic
signal we define as

ω̃1[n] =

{(
φ̃1[n]− φ̃1[n− 1]

)
if difference is ≤ 0,(

φ̃1[n]− φ̃1[n− 1]
)
− π otherwise.

(9)
It is to be noted that in the analytic signal (time-
domain signal), frequency information is encoded in
phase. In a dual way, one can observe that in the
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frequency-domain signal, time information is encoded
in phase.

In order to decompose the analytic signal into a set
of desired orthogonal frequency bands, we write (4) as

z1[n] =
1

π

∫ π

0
X(ω)ejωn dω =

M∑
i=1

ai[n]ejφi[n] (10)

where (with ω0 = 0, ωM = π)

ai[n]ejφi[n] =
1

π

∫ ωi

ωi−1

X(ω)ejωn dω, (11)

for i = 1, · · · ,M .
Now, from (1) we can obtain

X1(ω) =
∞∑
n=0

x[n]e−jωn = X1r(ω) + jX1i(ω) (12)

and

X̃1(ω) =

−1∑
n=−∞

x[n]e−jωn = X̃1r(ω) + jX̃1i(ω) (13)

such that X(ω) = X1(ω) + X̃1(ω).
The signal X1(ω) can be written as

X1(ω) = X1r(ω) + jX1i(ω) = a1(ω)ejφ1(ω),

where a1(ω) =
[
X2

1r(ω) +X2
1i(ω)

]1/2 ≥ 0,

and φ1(ω) = tan−1 [X1i(ω)/X1r(ω)] .


(14)

Here, we define frequentaneous time (frequency deriva-
tive of phase) for this signal as

τ1(ω) = − d

df
φ1(ω). (15)

It is to be noted that the frequentaneous time is even
function of frequency because phase spectrum is odd
function of frequency and differentiation of odd func-
tion is always even function.

In order to define frequentaneous time which is al-
ways positive for signal X1(ω), we consider discrete
version of this, X1[k], and define

τ1[k] =

{
−
(
φ1[k]− φ1[k − 1]

)
if difference is ≥ 0,

−
(
φ1[k]− φ1[k − 1]

)
+ π otherwise,

(16)
where φ1[k] is unwrapped phase.

Similarly, we write signal X̃1(ω) as

X̃1(ω) = X̃1r(ω) + jX̃1i(ω) = ã1(ω)ejφ̃1(ω),

where ã1(ω) =
[
X̃2

1r(ω) + X̃2
1i(ω)

]1/2
≥ 0,

and φ̃1(ω) = tan−1
(
X̃1i(ω)/X̃1r(ω)

)
,


(17)

and we define frequentaneous time which is always neg-
ative for signal X̃1(ω) by considering discrete version
of this, X̃1[k], as

τ̃1[k] =

{
−
(
φ̃1[k]− φ̃1[k − 1]

)
if difference is < 0,

−
(
φ̃1[k]− φ̃1[k − 1]

)
− π otherwise,

(18)
where φ̃1[k] is unwrapped phase. Here, we obtain
the TFE distribution of a signal by 3-D plot of
{k, τ1[k], a2

1[k]} and {k, τ̃1[k], ã2
1[k]}. From this 3D

TFE distribution, if we sum over the time (integrate
over time in case of continuous signal) then we ob-
tain marginal spectrum a2

1[k] and ã2
1[k], which is true

Fourier based power spectral density (PSD).

Discussion: Notice that the both TFE distri-
bution (1) obtained by (6) and (7) (i.e. with
{n, ω1[n], a2

1[n]} and it is well-known as Hilbert spec-
trum), and (2) obtained by this proposed method (i.e.
with {k, τ1[k], a2

1[k]} and {k, τ̃1[k], ã2
1[k]}) are using the

Fourier theory only. In order to obtain the TFE dis-
tribution of a signal, first method is using the inverse
Fourier transform to obtain the analytic representa-
tion and second one (i.e. this proposed method) is
using the forward Fourier transform. Thus, practi-
cally, both theses methods only rely on the Fourier the-
ory directly. Hence, here in this study, we refer first
method as Fourier-Hilbert spectrum (FHS) or Time-
Frequency Distribution (TFD) by ‘instantaneous fre-
quency’ (TFD-IF) and second one as TFD by ‘frequen-
taneous time’ (TFD-FT).

In all the above discussions, we have considered dis-
crete time (DT) signal processing using the DTFT and
DFT, which can be very easily generalized for con-
tinuous time (CT) signal processing using CT Fourier
transform (CT-FT) and CT Fourier series (CT-FS).

RESULTS AND DISCUSSION

In this section, we consider number of examples that
are mostly discussed in literature to validate the effi-
cacy of method under study.

Example 1: We obtain a nonstationary signal by
adding five linear chirps of frequencies [500–1500] Hz,
[1000–2000] Hz, [1500–2500] Hz, [2000–3000] Hz and
[2500–3500] Hz. Figure 1 shows the TFE analysis of
this nonstationary signal, which is sum of five linear
chirp signals, using proposed method TFD-FT (top
figure), using TFD-IF (middle figure) without decom-
position that presents average frequencies [1500–2500]
Hz, which are average of frequencies present in five
chirp signals; (bottom figure) with decomposition into
30 bands of equal frequencies. These two (top and
bottom one) figures clearly reveal the five chirp signals
present in the signal under analysis.

Example 2: Here, we consider a signal which is
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Figure 1: The TFE analysis of a nonstationary signal, which is sum
of five linear chirp signals, using TFD-FT (top figure), using TFD-IF
(middle) without decomposition, (bottom) with decomposition into 30
bands of equal frequencies.

sum of two unit sample sequences (delta functions) de-
fined as x[n] = δ[n − n0] + δ[n − n1] with n0 = 1000
and n1 = 3000. It is well-known that delta function
is a superposition of equal amplitude sinusoidal func-
tions of all frequencies [0–π). The Nyquist frequency
(Fs/2) is the highest frequency that can be present
at a given sampling rate, Fs, in a discrete-time sig-
nal. Figure 2 shows the TFE estimates of this signal
(with Fs = 100 Hz and length N = 4000) using the
TFD-FT (top figure), TFD-IF (middle figure) without
decomposition and TFD-IF (bottom figure) with de-
composition into 20 bands of equal frequencies. We
observe that the frequency present in TFD-FT plot
are true frequencies and signal is concentrated on time
and spread over all the frequencies (i.e. it follows the
uncertainty principle). However, TFD-IF plot without
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Figure 2: The TFE analysis of sum of two unit sample sequence
δ[n − n0] (with, n0 = 1000, n1 = 3000, sampling frequency Fs = 100
Hz, length N = 4000) using TFD-FT (top), TFD-IF (middle) with-
out decomposition and TFD-IF (bottom) with decomposition into 20
bands of equal frequencies.

decomposition provide a average frequency (because
delta function contains equal amplitude sinusoids of
all frequencies form 0 to Fs/2) plot where signal is
concentrated in time-frequency plane (i.e. it may not
follow the uncertainty principle but frequencies present
in plane are average frequencies and not true frequen-
cies), and TFD-IF plot with decomposition provide a
average frequency in decomposed bands.

Example 3: In this example, we consider sinusoidal
signals which are concentrated in frequency and spread
over the time. Figure 3 shows the TFE analysis of a
sinusoidal function of f = 100 Hz frequency (with sam-
pling frequency Fs = 1000 Hz, length N = 1000) using
TFD-FT (upper) and TFD-IF (lower). Due to time
averaging in the TFD-FT (upper) plot, it shows the
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Figure 3: The TFE analysis of a sinusoidal function f = 100 Hz (with
sampling frequency Fs = 1000 Hz, length N = 1000) using TFD-FT
(upper) and TFD-IF (lower).

signal under analysis is concentrated in one frequency
(100 Hz) and some time instants, whereas TFD-IF
(lower) plot provides correct representation where sig-
nal is concentrated in frequency and spread over all
the time.

Figure 4 shows the TFE analysis of sum of sinu-
soidal functions of f1 = 100 Hz and f2 = 200 Hz
frequency (with sampling frequency Fs = 1000 Hz,
length N = 1000) using TFD-FT (upper) and TFD-
IF (lower). Due to time averaging in the TFD-FT
(upper) plot, it shows the signal under analysis is con-
centrated in two frequencies (100 Hz and 200 Hz) and
some time instants, whereas TFD-IF (lower) plot pro-
vides average frequency representation where signal is
concentrated in average frequency (f = 150 Hz), due
to frequency averaging, and spread over all the time.

Example 4: An Earthquake time series signal is
a nonlinear and nonstationary data. The Elcentro
Earthquake data (sampled at Fs = 50Hz) has been
taken from [28] and is shown in Figure 5 (top one). The
critical frequency range that matter in the structural
design is less than 10Hz, and the Fourier based power
spectral density (PSD), Figure 5 (bottom one), show
that almost all the energy in this data is within 10Hz.
The TFE distributions by the proposed method TFE-
FT (top figure), using TFD-IF (middle figure) without
decomposition and with decomposition into 25 bands
of 1 Hz each are shown in Figure 6. These TFE dis-
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Figure 4: The TFE analysis of sum of two sinusoidal function f1 =
100 Hz and f2 = 200 Hz (with sampling frequency Fs = 1000 Hz,
length N = 1000) using TFD-FT (upper) and TFD-IF (lower) without
decomposition.

tribution indicate that the maximum energy concen-
tration is around 1.7Hz and 2 second. The TFE plot
provide details of how the different waves arrive from
the epical center to the recording station, e.g. the com-
pression waves of small amplitude but higher frequency
range of 10 to 20Hz, the shear and surface waves of
strongest amplitude and lower frequency range of be-
low 5Hz which does most of the damage, and other
body shear waves which are present over the full du-
ration of the data span.

Discussion: From Example 2 and Example 3, it is
clear that if signal is concentrated in time then the pro-
posed TFD-FT is performing better than TFD-IF, on
the other hand, if signal is concentrated in frequency
then performance of TFD-IF is better than TFD-FT.
The propose TFD-FT contains true frequencies, i.e.
those frequencies which are present in the Fourier spec-
trum. Whereas, TFD-IF contains average frequen-
cies present in signal. Thus, when we sum over the
time then we obtain marginal spectrum which is true
Fourier based PSD, which is one of the major advan-
tage of the propose TFD-FT as compared to TFD-IF.

CONCLUSION

The instantaneous frequency (IF) is the time deriva-
tive of the instantaneous phase and it is an impor-
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Figure 5: The Elcentro Earthquake May 18, 1940 North-South Compo-
nent data (top), Fourier based power spectral density (PSD) (bottom).

tant parameter for the analysis of nonstationary sig-
nals and nonlinear systems. It is the basis of the time-
frequency-energy (TFE) analysis of a signal via the
inverse Fourier transform termed as Fourier-Hilbert
spectrum (FHS). Dual to IF, we define the concept
of ‘frequentaneous time’ (FT) by the frequency deriva-
tive of phase which is the fundamental and important
conceptual innovation of the this study. The frequen-
taneous time is the basis of the TFE analysis of a signal
via the Fourier transform. The proposed TFD-FT con-
tains only those frequencies which are present in the
Fourier spectrum. The proposed frequentaneous time
is valid for all types of signals such as monocompo-
nent and multicomponent, narrowband and wideband,
stationary and nonstationary, linear and nonlinear sig-
nals.

Simulations and numerical results demonstrate the
efficacy, validity and superiority of the proposed ‘fre-
quentaneous time’ based TFD-FT for the TFE analysis
of a signal via the Fourier transform as compared to
IF and inverse Fourier transform based FHS method.
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