
HAL Id: hal-01303327
https://hal.science/hal-01303327

Submitted on 18 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Displacement dependent pressure load for finite
deflection of doubly-curved thick shells and plates

Marco Amabili, Ivan Breslavsky

To cite this version:
Marco Amabili, Ivan Breslavsky. Displacement dependent pressure load for finite deflection of doubly-
curved thick shells and plates. International Journal of Non-Linear Mechanics, 2015, 77, pp.265-273.
�10.1016/j.ijnonlinmec.2015.09.007�. �hal-01303327�

https://hal.science/hal-01303327
https://hal.archives-ouvertes.fr


dies. T
mainly
ticular
hypere
depen
very la
ved 
Displacement dependent pressure load for finite deflection of doubly-cur
thick shells and plates

Marco Amabili, Ivan D. Breslavsky
Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Canada H3A 0C3
ent pres

epende
and any
l and i
. The ex
 and co
ns to ci
ndent p
small d
Pressure, Shells, Plates, Displacement depend

The formulation of the displacement d
coordinates without any approximation 
surface, and then for load on the externa
significant improvement for thick shells
approximate for-mulation is also derived
widely used in the literature. Applicatio
exact formulation for displacement depe
pressure load can be used only in case of 
his approximation can lead to differe
to the large or small deformation o

, for shells and plates made of soft ma
lastic materials, like rubbers or biom
dent pressure load must be used sinc
rge deformations.
sure Large deformations

nt pressure load for shells of generic shape and plates is derived in the present study in curvilinear 
 hypothesis on material properties. Derivation is initially carried out for pressure load on the middle shell 
nternal surfaces by making use of a third-order shear and thickness deformation shell theory, which is a 
plicit formulation in curvilinear coordinates allows immediate implementation in numerical codes. An 
mpared to (i) the exact formulation and to (ii) the displacement inde-pendent pressure load which is still 
rcular cylindrical shells and rectangular plates are presented. Comparison of results show that only the 
ressure load can be used for large deformations of shells and plates, while the displacement independent 
isplacements of the middle surface (or middle plane).
1. Introduction

Pressure is commonly used to represent load by pressurized
gas, liquid and wind just to cite a few cases. By definition it is
displacement dependent in the sense that this load changes with
the deformation of the structures. In fact, pressure is orthogonal to
the surface on which it is applied, so its local direction changes
with the deformation of the surface. At the same time the surface
is stretched or shrunk, so the resulting area on which the pressure
is applied changes.

Displacement dependent pressure complicates the analysis, so
it is sometimes replaced with constant direction distributed load
in Lagrangian description (strains and stresses evaluated in the
original undeformed configuration), especially in analytical stu-
nt type of accuracy, due
f the structure. In par-
terials (linear elastic or
aterials), displacement
e they usually undergo
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The literature approaching the problem of displacement
dependent loads is not that vast, considering the importance of
the problem. Almost all studies deal with finite element for-
mulation and they use tensor notation and introduce at some
point approximations. Koiter [1] derived the virtual work done by
pressure for closed thin shells by using the principle that this is
given by the product of the external pressure and the volume
variation of the region of space enclosed by the middle surface of
the shell. He kept the quadratic and cubic geometrically nonlinear
terms in the calculation of the volume variation. The same
approach was followed by Libai and Simmonds [2] that applied the
formulation to closed shells and membranes, specifying the for-
mulation for toroidal shells.

A general investigation of the mathematical properties of
configuration-dependent loading is described by Sewell [3]. This
study is not applied to shells and plates or uses shell theories.

Mang [4] derived the displacement dependent pressure stiff-
ness matrices for shells in approximated way for finite element
implementation. Argyris and Symeonidis [5] approached the
problem of nonconservative (follower) forces by finite element
formulation. In particular, the load correction stiffness matrix that
represents the nonsymmetric contribution of the configuration-
dependent nonconservative loading to the tangent stiffness matrix
of the element was derived. Chang and Sawamiphakdi [6] were
able to study load due to follower forces by using a finite element
incremental scheme. Schweizerhof and Ramm [7] derived the
expression of the virtual work done by displacement dependent
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Fig. 1. Displacements of the middle surface of the shell and coordinate system.
pressure for finite element incremental loading algorithm. The
solution is obtained by incremental decomposition omitting
nonlinear terms in the displacement increment.

Cheung and Zhu [8], while studying the postbuckling analysis of
circular cylindrical shells under external pressure, derived the exact
expression of the external virtual work done by displacement
dependent pressure for finite element formulation. They expressed
their formulation also in curvilinear coordinates for circular cylind-
rical shells, but not for shells with variable curvature. Zhu and
Cheung [9] extended their study to postbuckling analysis of circular
cylindrical shells under combined load, reporting the same deriva-
tion of the external virtual work done by displacement dependent
pressure in curvilinear coordinates. The final expression (13) in [9]
differs in one term with respect to their previous formulation,
probably due to a typing error in Eq. (43) in [8].

Even in recent years most of the literature that is not based on
finite element formulation still uses displacement independent
pressure load, see e.g. [10]. Even if derivations for displacement
dependent pressure load for shells are present in the literature, it
seems that an exact formulation for doubly curved shells is not
present as well as for thick shells with pressure applied on the
internal or external surface.

The formulation of the displacement dependent pressure load
for shells of generic shape is derived in the present study in cur-
vilinear coordinates without any approximation and any hypoth-
esis on material properties (i.e. it is valid also for hyperplastic
materials). This allows immediate implementation in numerical
codes. The derivation, not being based on the variation of the
enclosed volume, is valid also for open shells and plates. A for-
mulation for pressure applied on the external or internal shell
surface instead of the middle plane is also obtained, which is a
significant improvement for thick shells. An approximate expres-
sion is also derived and compared to (i) the exact formulation and
to (ii) the displacement independent pressure load which is still
widely used in the literature. Applications to circular cylindrical
shells and rectangular plates are presented. Comparison of results
show that only the exact formulation for displacement dependent
pressure load can be used for large deformations of shells and
plates, while the displacement independent pressure load can be
used only in case of small displacements of the middle surface (or
middle plane).
2. Virtual work by displacement dependent pressure

Pressure is a specific type of load that depends on the defor-
mation of the shell in Lagrangian description. Here for simplicity
the pressure is assumed to be applied to the middle surface of the
shell. In the next section, the pressure is considered applied to the
external or internal shell surface.

A shell of arbitrary shape and material is considered; the theory
is valid for shells made of isotropic, laminated composite or
functionally graded materials, as well as hyperelastic materials.
The shell principal curvilinear coordinates are (α1, α2). The dis-
placements of an arbitrary point of coordinates (α1, α2) taken on
the middle surface of the shell are denoted by u, v and w, in the α1,
α2 and z directions, respectively; these displacements do not have
to be small. The normal displacement w is taken positive outward
from the center of the smallest radius of curvature as shown in
Fig. 1. In the figure R1 and R2 (functions of the coordinates α1 and
α2) are the principal radii of curvature in α1 and α2 directions,
respectively.

Initial geometric imperfections of the shell associated with zero
initial tension are denoted by displacement w0 in z direction, also
taken positive outward and measured from the ideal middle
2

surface. Imperfections other than in normal directions are not
considered and an initial stress-free state is assumed.

The thickness h of the shell is assumed to be small compared to
the principal radii of curvature of the shell, but not very small, so
that moderately thick shells can be considered with accuracy.

Using the curvilinear coordinates, the middle surface of the
shell can be described by the vector equation

r¼ r α1;α2ð Þ ð1Þ
After deformation, the middle surface is given by [11]

r0 ¼ r0 α1;α2ð Þ ¼ r α1;α2ð Þþue1þve2þwen; ð2Þ
where e1, e2, en are the three unit vectors of the undeformed shell
surface in directions α1, α2 and z, respectively. The three unit
vectors of the undeformed surface are defined as [11,12]

e1 ¼
1
A1

∂r
∂α1

; e2 ¼
1
A2

∂r
∂α2

; en ¼ e14e2 ð3Þ

where A1 and A2 are the Lamé parameters. Similarly, after defor-
mation, the unit vectors become

e01 ¼
1
A0
1

∂r0

∂α1
; ð4aÞ

e02 ¼
1
A0
2

∂r0

∂α2
; ð4bÞ

e0n ¼ e014e02 ð4cÞ
where A0

1 and A0
2 are the Lamé parameters after shell deformation.

The following two relationships follow [11]

1
A1

∂r0

∂α1
¼ 1þε1ð Þe1þω1e2�Θen ð5aÞ

1
A2

∂r0

∂α2
¼ω2e1þ 1þε2ð Þe2�Ψen ð5bÞ

where ε1, ε2, ω1, ω2, Θ, and Ψ are defined by [11]

ε1 ¼
1
A1

∂u
∂α1

þ 1
A1A2

∂A1

∂α2
vþw

R1

� �
; ð6aÞ

ε2 ¼
1
A2

∂v
∂α2

þ 1
A1A2

∂A2

∂α1
uþw

R2

� �
; ð6bÞ

ω1 ¼
1
A1

∂v
∂α1

� 1
A1A2

∂A1

∂α2
u

� �
; ð6cÞ

ω2 ¼
1
A2

∂u
∂α2

� 1
A1A2

∂A2

∂α1
v

� �
; ð6dÞ

Θ¼ � 1
A1

∂w
∂α1

þ u
R1

� �
; ð6eÞ

Ψ ¼ � 1
A2

∂w
∂α2

þ v
R2

� �
: ð6fÞ



The Lamé parameters after deformation are calculated as

A0
1 ¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þε1ð Þ2þω2

1þΘ
2

q
; ð7aÞ

A0
2 ¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þε2ð Þ2þω2

2þΨ
2

q
: ð7bÞ

The unit vectors of the deformed surface are directly related to
those of the original surface

e01 ¼
A1

A0
1

1þε1ð Þe1þω1e2�Θen
h i

; ð8Þ

e02 ¼
A2

A0
2
ω2e1þ 1þε2ð Þe2�Ψen
h i

: ð9Þ

Using the expressions (8) and (9), the following equation is
obtained

e0n ¼ e014e02 ¼
A1A2

A0
1A

0
2

1þε1ð Þ 1þε2ð Þ�ω1ω2½ �enþ 1þε2ð ÞΘ�ω1Ψ
h i

e1
n

þ 1þε1ð ÞΨ �ω2Θ
h i

e2
o
: ð10Þ

The virtual work done by pressure becomes

W ¼∬Ωp ue1þve2þwenð ÞUe0nA0
1A

0
2 dα1 dα2

¼∬Ωp w 1þϵ1ð Þ 1þϵ2ð Þ�ω1ω2½ �þu 1þϵ2ð ÞΘ�ω1Ψ
h in

þv 1þϵ1ð ÞΨ �ω2Θ
h io

A1A2 dα1 dα2 ; ð11Þ

where Ω is the undeformed middle surface of the shell. Elim-
inating higher-order terms in Eq. (11) gives the following
approximate expression

WC∬Ωp w 1þϵ1þϵ2ð ÞþuΘþv Ψ
h i

A1A2 dα1 dα2: ð12Þ

In the numerical result section, calculations by using Eqs. (11)
and (12) are presented for shells and plates, and compared to
results obtained keeping only the linear term pw in these
equations.

Eq. (11) specified for a circular cylindrical shell gives

W ¼
Z L

0

Z 2π

0
p w 1þ∂u

∂x

� �
1þ ∂v

R ∂θ
þw
R

� �
� ∂v

∂x
∂u
R ∂θ

� ��

þu � 1þ ∂v
R ∂θ

þw
R

� �
∂w
∂x

� ∂v
∂x

� ∂w
R ∂θ

þv
R

� �� �

þv 1þ∂u
∂x

� �
� ∂w
R ∂θ

þv
R

� �
þ ∂u
R ∂θ

∂w
∂x

� ��
dxR dθ : ð13Þ

Eq. (13) is analogous to the expression obtained for the external
virtual work done by displacement dependent pressure in refer-
ence [9], while there is a difference in the last term in square
parenthesis with respect to reference [8], that seems therefore
incorrect (probably there is a typing error in Eq. (44) in [8]).

Eq. (12) specified for a circular cylindrical shell gives

WCp
Z L

0

Z 2π

0
w 1þ∂u

∂x
þ ∂v
R∂θ

þw
R

� �
�u

∂w
∂x

�v
∂w
R∂θ

� �
dxR dθ : ð14Þ

Eq. (11) specified for a rectangular plate gives

W ¼
Z a

0

Z b

0
p w 1þ∂u

∂x
þ∂v
∂y

þ∂u
∂x

∂v
∂y

� ∂v
∂x

∂u
∂y

� ��

þu �∂w
∂x

�∂w
∂x

∂v
∂y

þ∂w
∂y

∂v
∂x

� �
þv �∂w

∂y
�∂w

∂y
∂u
∂x

þ∂w
∂x

∂u
∂y

� ��
dx dy :

ð15Þ
Eq. (12) specified for a rectangular plate shell gives

WCp
Z a

0

Z b

0
w 1þ∂u

∂x
þ∂v
∂y

� �
�u

∂w
∂x

�v
∂w
∂y

� �
dx dy : ð16Þ
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3. Pressure applied to the shell surface

In this section, the simplification of applying the displacement
dependent pressure to the shell middle surface is removed and the
pressure is directly applied to the external or internal shell surface.

A shell theory that retains shear and thickness deformation and
rotary inertia is used. The literature review on shell theories with
thickness deformation is not wide. An accurate linear shell theory
that takes into account thickness stretching has been developed by
Carrera et al. [13] and Ferreira et al. [14]. Büchter et al. [15] and
Bischoff and Ramm [16,17] elaborated seven-parameter shell
theories that introduce a linear and a quadratic term to describe
the stretching of the shell thickness. Also Parisch [18], Sansour [19]
and Sansour et al. [20] have been developed independently shell
theories that introduce quadratic assumption of the transverse
shell displacement over the shell thickness for finite element
implementation. A first-order shear deformation shell theory with
seven parameters and exact nonlinear deformations, under the
framework of the Lagrangian description, has been derived in
tensor notation by Arciniega and Reddy [21,22] and Payette and
Reddy [23] for laminated and functionally graded shells. Amabili
[24] introduced a first-order thickness stretching theory with
higher-order shear deformation that uses 6 independent para-
meters. Amabili [25] introduced a geometrically non-linear shell
theory allowing for third-order thickness stretching, higher-order
shear deformation and rotary inertia by using eight parameters.
Alijani and Amabili [26] introduced a second-order thickness
stretching theory that uses 7 parameters to describe the defor-
mation of plates and, possibly for the first time, retains full non-
linear terms for displacements, rotations and thickness deforma-
tion. Finally Amabili [27] introduced the full nonlinear terms in the
8 parameter theory for shells.

Using the curvilinear coordinates, the shell surface at distance z
from the middle surface can be described by the vector equation

r¼ r α1;α2; zð Þ: ð17Þ

The position of a point of the shell at distance z from the
middle surface is given, after deformation, by

r0 ¼ r0 α1;α2; zð Þ ¼ r α1;α2; zð Þþu1e1þu2e2þu3en; ð18Þ

where e1, e2, en are the three unit vectors of the undeformed shell
surface at distance z from the middle surface in directions α1, α2

and z, respectively and u1, u2, and u3 are the displacements of a
point (at distance z from the middle shell surface) in α1, α2 and z
directions, respectively, which are given by [27]

u1 ¼ 1þðz=R1Þ
	 


uþzϕ1þz2ψ1þz3γ1; ð19aÞ

u2 ¼ 1þðz=R2Þ
	 


vþzϕ2þz2ψ2þz3γ2; ð19bÞ

u3 ¼wþw0þz χ1þz2χ2þz3χ3; ð19cÞ

R1 and R2 are the principal radii of curvature referred to the
middle surface of the shell. In Eq. (19a)–(19c)u, v and w are the
displacements of a point on the shell middle surface in α1, α2 and z
directions, respectively, ϕ1 and ϕ2 are the rotations of the trans-
verse normal at z¼0 (i.e. referred to the middle surface) due to
bending (but not shear deformation) about the α2 and α1 axes,
respectively, and χ1, χ2 and χ3 are three parameters linked to the
thickness deformation per unit thickness. Then ψ1, ψ2, γ1 and γ2,
are functions to be determined in terms of u, v, w, ϕ1, ϕ2, χ1, χ2
and χ3 which are the eight parameters describing the shell
deformation. By using the condition of vanishing of the shear
stresses τ13 and τ23 at the top and the bottom surfaces of the shell,



the following expressions are obtained [27]:

ψ1 ¼
1

3R1
ϕ1þ

1
3R1

∂ðwþw0Þ
A1∂α1

�1
2

∂χ1

A1∂α1
þ h2

12R1

∂χ2

A1∂α1
�h2

8
∂χ3

A1∂α1
;

ð20aÞ

γ1 ¼ � 4

3h2
∂ðwþw0Þ
A1∂α1

þϕ1

� �
þ 1
2R1

∂ χ1

A1∂α1
�1
3

∂ χ2

A1∂α1
þ h2

24R1

∂ χ3

A1∂α1
;

ð20bÞ

ψ2 ¼
1

3R2
ϕ2þ

1
3R2

∂ðwþw0Þ
A2∂α2

�1
2

∂χ1

A2∂α2
þ h2

12R2

∂χ2

A2∂α2
�h2

8
∂χ3

A2∂α2
;

ð20cÞ

γ2 ¼ � 4

3h2
∂ðwþw0Þ
A2∂α2

þϕ2

� �
þ 1
2R2

∂ χ1

A2∂α2
�1
3

∂ χ2

A2∂α2
þ h2

24R2

∂ χ3

A2∂α2
;

ð20dÞ
where the Lamé parameters A1 and A2 are referred to the middle
surface of the shell. Eqs. (19) and (20) are for a 3rd order shear
deformation theory of shells with 3rd order thickness deforma-
tion. They can be reduced to simpler shell theories setting to zero
some of the 8 parameters (e.g. setting to zero the 3 parameters χ1,
χ2 and χ3 related to the thickness deformation and reducing to just
3rd order shear deformation theory). In case of classical Novoz-
hilov shell theory, it is necessary to set ψ1¼ψ2¼γ1¼γ2¼
χ1¼χ2¼χ3¼0 and, after neglecting nonlinear terms, to set

φ1C� ∂w
A1∂α1

; φ2C� ∂w
A2∂α2

;

The three unit vectors of the undeformed surface at distance z
from the middle surface are defined as [11,12]

e1 ¼
1

A1ðzÞ
∂r
∂α1

; ð21aÞ

e2 ¼
1

A2ðzÞ
∂r
∂α2

ð21bÞ

en ¼ e14e2; ð21cÞ
where

A1ðzÞ ¼ A1ð1þz=R1Þ; ð21dÞ

A2ðzÞ ¼ A2ð1þz=R2Þ; ð21eÞ
are the Lamé parameters of the surface at distance z.

Similarly, after deformation, the unit vectors become

e01 ¼
1

A0
1ðzÞ

∂r0

∂α1
; ð22aÞ

e02 ¼
1

A0
2ðzÞ

∂r0

∂α2
ð22bÞ

e0n ¼ e014e02; ð22cÞ
where A0

1ðzÞ and A0
2ðzÞ are the Lamé parameters of the surface at

distance z after shell deformation. The following two relationships
follow [11]

1
A1ðzÞ

∂0

∂α1
¼ 1þε1ð Þe1þω1e2�Θen; ð23aÞ

1
A2ðzÞ

∂r0

∂α2
¼ω2e1þ 1þε2ð Þe2�Ψen; ð23bÞ

where ε1, ε2, ω1, ω2, Θ, and Ψ are defined by [11,28]

ε1 ¼
1

1þðz=R1Þ
1
A1

∂u1

∂α1
þ 1
A1A2

∂A1

∂α2
u2þ

u3

R1

� �
; ð24aÞ
4

ε2 ¼
1

1þðz=R2Þ
1
A2

∂u2

∂α2
þ 1
A1A2

∂A2

∂α1
u1þ

u3

R2

� �
; ð24bÞ

ω1 ¼
1

1þðz=R1Þ
1
A1

∂u2

∂α1
� 1
A1A2

∂A1

∂α2
u1

� �
; ð24cÞ

ω2 ¼
1

1þðz=R2Þ
1
A2

∂u1

∂α2
� 1
A1A2

∂A2

∂α1
u2

� �
; ð24dÞ

Θ¼ 1
1þðz=R1Þ

� 1
A1

∂u3

∂α1
þu1

R1

� �
; ð24eÞ

Ψ ¼ 1
1þðz=R2Þ

� 1
A2

∂u3

∂α2
þu2

R2

� �
: ð24fÞ

The Lamé parameters after deformation are calculated as

A0
1ðzÞ ¼ A1ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þε1ð Þ2þω2

1þΘ2
q

; ð25aÞ

A0
2ðzÞ ¼ A1ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þε2ð Þ2þω2

2þΨ 2
q

: ð25bÞ

The unit vectors of the deformed surface are directly related to
those of the original surface

e01 ¼
A1ðzÞ
A0
1ðzÞ

1þε1ð Þe1þω1e2�Θen
	 


; ð26Þ

e02 ¼
A2ðzÞ
A0
2ðzÞ

ω2e1þ 1þε2ð Þe2�Ψen
	 


: ð27Þ

Using the expressions (26) and (27), the following equation is
obtained

e0n ¼ e014e02 ¼
A1ðzÞA2ðzÞ
A0
1ðzÞA0

2ðzÞ
1þε1ð Þ 1þε2ð Þ�ω1ω2½ �en

�
þ 1þε2ð ÞΘ�ω1Ψ
	 


e1
þ 1þε1ð ÞΨ �ω2Θ
	 


e2
�
: ð28Þ

The virtual work done by pressure becomes

W ¼ ∬Ωp u1e1þu2e2þu3enð ÞUe0nA0
1ðzÞA0

2ðzÞdα1dα2
	 


z ¼ 7h=2

¼ ∬Ωp u3 1þε1ð Þ 1þε2ð Þ�ω1ω2½ �þu1 1þε2ð ÞΘ�ω1Ψ
	 
�	

þu2 1þε1ð ÞΨ �ω2Θ
	 
gA1ð1þz=R1ÞA2ð1þz=R2Þ dα1dα2



z ¼ 7h=2;

ð29Þ
where Ω is the undeformed surface of the shell where the pres-
sure is applied and z¼h/2 for external pressure and z¼�h/2 for
internal pressure. In general, p can be a time-dependent or con-
stant pressure.

The following approximation can be introduced

1
1þðz=RÞC1� z

R
þ z2

R2�
z3

R3: ð30Þ

Eq. (29) specified for a complete circular cylindrical shell of
radius R (measured on the middle surface), length L and keeping
only linear terms in the thickness h (i.e. terms multiplied by h2, h3,
… are neglected) gives

W ¼
Z L

0

Z 2π

0
p wþzχ1Þ 1þ∂u

∂x

� �
1þ ∂v

R ∂θ
þw
R

� �
� ∂v

∂x
∂u
R ∂θ

� ���

þðuþzϕ1Þ � 1þ ∂v
R ∂θ

þw
R

� �
∂w
∂x

� ∂v
∂x

� ∂w
R ∂θ

þv
R

� �� �

þðvþzϕ2þz
v
R
Þ 1þ∂u

∂x

� �
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In case of classical Novozhilov shell theory, Eq. (31) reduces to
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Eq. (13) is obtained if h is neglected in Eqs. (31) and (32).
Eq. (29) specified for a rectangular plate of in-plane dimensions

a, b, and keeping only linear terms in the thickness h gives
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In case of classical Novozhilov shell theory, Eq. (33) reduces to
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ð34Þ
Eqs. (33) and (34) reduce to Eq. (15) if h is neglected.
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4. Discretization and Lagrange Equations

The displacements of the shell middle surface u, v and w are
expanded by using the following expressions, which satisfy iden-
tically the geometric boundary conditions:

uðα1;α2; tÞ ¼
XM
m ¼ 1

XN
n ¼ 0

um;nðtÞ f 1ðm;α1Þg1ðn;α2Þ; ð35aÞ

vðα1;α2; tÞ ¼
XM
m ¼ 1

XN
n ¼ 0

vm;nðtÞ f 2ðm;α1Þg2ðn;α2Þ; ð35bÞ

wðα1;α2; tÞ ¼
XM
m ¼ 1

XN
n ¼ 0

wm;nðtÞ f 3ðm;α1Þg3ðn;α2Þ; ð35cÞ

where the variables have been separated [28,29]. In the case that a
shell theory with shear and thickness deformation and rotary inertia
is used, the following rotations of the transverse normal at z¼0 (i.e.
referred to the middle surface) due to bending (but not shear defor-
mation) about the α2 and α1 axes, respectively, are also introduced

ϕ1ðα1;α2; tÞ ¼
XM
m ¼ 1

XN
n ¼ 0

ϕ1m;n
ðtÞ f 4ðm;α1Þg4ðn;α2Þ; ð35dÞ

ϕ2ðα1;α2; tÞ ¼
XM
m ¼ 1

XN
n ¼ 0

ϕ2m;n
ðtÞ f 5ðm;α1Þg5ðn;α2Þ: ð35eÞ

The following three expansions are used for the thickness
deformation variables:

χ1ðα1;α2; tÞ ¼
XM
m ¼ 1

XN
n ¼ 0

χ1m;n
ðtÞ f 6ðm;α1Þg6ðn;α2Þ; ð35fÞ

χ2ðα1;α2; tÞ ¼
XM
m ¼ 1

XN
n ¼ 0

χ2m;n
ðtÞ f 7ðm;α1Þg7ðn;α2Þ; ð35gÞ

χ3ðα1;α2; tÞ ¼
XM
m ¼ 1

XN
n ¼ 0

χ3m;n
ðtÞ f 8ðm;α1Þg8ðn;α2Þ: ð35hÞ

For example, in case of a circular cylindrical shell that is simply
supported at both ends and with zero thickness deformation at the
ends, the geometric boundary conditions are w¼0, v¼0, ϕ2 ¼ 0,
χ1 ¼ χ2 ¼ χ3 ¼ 0. The natural boundary conditions in that case are
Nα1 ¼ 0, Mα1 ¼ 0 at the shell ends α1¼0, L, where Nα1 is the axial
stress resultant per unit length and Mα1 is the axial stress moment
resultant per unit length.

The following vectorial notation is introduced:

q¼ um;n=h; vm;n=h;wm;n=h;φ1m;n
;φ2m;n

; χ1m;n
; χ2m;n

h;χ3m;n
h2

n oT
;

m¼ 1;…;M and n¼ 0;…;N ð36Þ
A non-dimensionalization of the time variables with respect to

the shell thickness h has been introduced in Eq. (36). The generic
element (generalized coordinate) of the time-dependent vector q
is referred to as qj. The dimension of q is N, which is the number of
degrees of freedom (dofs) used in the mode expansion.

The generalized forces Qj are obtained by differentiation of the
virtual work done by external forces [28]:

Qj ¼
∂ W
∂ qj

: ð37Þ

The Lagrange equations of motion are [28]

d
dt

∂ TS

∂ qj

!
�∂ TS

∂ qj
þ∂ US

∂ qj
¼Qj; j¼ 1;…;N ð38Þ

where TS and US are the kinetic energy and potential elastic energy
of the shell (see reference [28–30] for details), respectively, and



∂ TS=∂ qj ¼ 0. US is derived taking care of geometric non-linearity
and, eventually, of material non-linearity. The term derived from
the maximum potential energy of the shell giving quadratic and
cubic non-linearities, can be written in the form

∂ US

∂ qj
¼
XN
i ¼ 1

kj;i qiþ
XN
i;k ¼ 1

sj;i;k qi qkþ
XN

i;k;l ¼ 1

rj;i;k;l qi qk ql; j¼ 1;…;N

ð39Þ
where the linear coefficients kj,i, quadratic coefficients sj,i,k and
cubic coefficients rj,i,k,l have long expressions that include also
geometric imperfections.

Eq. (38) can be written in the following matrix form:

M €qþC _qþ½KþN2ðqÞþN3ðq;qÞ�q¼ p0ðq; tÞ; ð40Þ
whereM is the non-diagonal mass matrix of dimension N � N; C is
the viscous damping matrix, which is added to the equations of
motion to describe dissipation that is always present in dynamics
(no dissipation is used for static problems); K is the linear stiffness
matrix with elements kj,i, N2 gives the quadratic non-linear stiff-
ness terms, N3 denotes the cubic non-linear terms, and p0 is the
vector representing the displacement dependent pressure load,
which are obtained by using Eqs. (11) and (37). The pressure load
p0, obtained by differentiating the virtual work W, is assumed in
general to be also time dependant, which is the case in dynamics;
in static problems the time dependence can be dropped. p0 con-
tains constant terms, linear and quadratic terms in the generalized
coordinates.

In particular, by using Eq. (39), the generic elements n2j; i
and

n3j; i
of the matrices N2 and N3, respectively, are given by

n2j;i ðqÞ ¼
XN
k ¼ 1

Sj;i;kqk ð41aÞ

n3j; i
ðq;qÞ ¼

XN
k;l ¼ 1

rj;i;k;l qk ql; ð41bÞ

In order to obtain the equations of motion in a suitable form for
numerical implementation, the system Eq. (40) is multiplied by
the inverse of mass matrix and then is written in the state-space
form as follows

_q¼ y;

_y¼ �M�1C _q� ½M�1KþM�1N2ðqÞþM�1N3ðq;qÞ�qþM�1p0ðq; tÞ ;
ð42Þ

where y is the vector of the generalized velocities. In particular,
the dissipation term is given by

M�1C¼
2ω1 ζ1 ::: 0

⋮ ⋱ ⋮
0 ::: 2ωN ζN

2
64

3
75: ð43Þ

In Eq. (44)ωi are the natural frequencies and ζi the corre-
sponding modal damping ratios of each generalized coordinate.
Matrix (44) is assumed to be diagonal in order to use modal
damping.
5. Numerical results

Numerical results are obtained by solving Eq. (43) for large
deflection with the computer program AUTO [31] for continuation
and bifurcation analysis of ordinary differential equations and non-
linear algebraic equations starting from the trivial undeformed con-
figuration. Calculations are performed for a circular cylindrical shell
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and a square plate made of isotropic and linearly elastic materials but
in case of static large deformations.

5.1. Circular cylindrical shell

A simply supported circular cylindrical shell is investigated by
using the classical geometrically nonlinear Novozhilov shell theory
[28,29,32] with the following boundary conditions: w¼0, v¼0,
Nx¼0, Mx ¼ 0, at x¼0, L, where Nx is the axial stress resultant per
unit length and Mx is the axial stress moment resultant per unit
length. No geometric imperfections are included; shear and thickness
deformations are neglected as well as rotary inertia. The dimensions
and material properties are: radius R¼0.15 m, length L¼0.52 m,
thickness h¼0.03 m, Young’s modulus E¼198�109 Pa, Poisson ratio
ν ¼0.3 and mass density ρ¼7800 kg/m3. The pressure is considered
applied to the middle surface if not specified. The functions used in
Eq. (35a)–(35c) for variable separation are [28,29]

f 1ðm;α1Þ ¼ cos ðm π α1=LÞ; ð44aÞ

f 2ðm;α1Þ ¼ f 3ðm;α1Þ ¼ sin ðm π α1=LÞ; ð44bÞ

g1ðn;α2Þ ¼ g3ðn;α2Þ ¼ cos ðn α2Þ; ð44cÞ

g2ðn;α2Þ ¼ sin ðn α2Þ; ð44dÞ
with the in-plane axial and circumferential coordinates 0rα1r L
and 0rα2r2π, respectively. Introducing traditional notation, α1 ¼
x and α2 ¼ θ. In expansion (35a–35c) only the following terms in the
summatories are considered different from zero: w1,0, w3,0, w5,0, w7,0,
w9,0, w11,0, w1,2, w3,2, w5,2, u1,0, u3,0, u5,0, u7,0, u9,0, u11,0, u1,2, u3,2, u5,2,
v1,2, v3,2, v5,2, v1,4, v3,4, v5,4. The expansion used has N¼ 24 dofs. It
allows to study with accuracy the axisymmetric deformation due to
pressure load and postbuckling of the mode with 2 circumferential
waves (n¼2); this is the first buckling mode for the studied shell. The
shell theory and the approach have been validated in references
[28,29] for static and dynamic problems of thin shells, but without
considering displacement dependent pressure.

The normalized (with respect to the thickness h) displacements
of the shell versus pressure for different expressions of the pres-
sure load are presented in Fig. 2. The exact formulation (13) is
presented in continuous line and it is quite different from the
solution obtained by displacement independent pressure (virtual
work W¼pw) for large deformation (since the shell is thick, a
displacement of the order of the shell thickness h is very large).
The approximate solution (14) lies in between the other two in
Fig. 2(a), which presents the radial displacement w at mid-length,
while it is close enough to the exact solution for the axial dis-
placement u at the edge x¼0 in Fig. 2(b). It must be observed that
Fig. 2 has been obtained removing the possibility to the shell to
buckle in case of negative (i.e. external) pressure.

The case when buckling is allowed is presented in Fig. 3. A
pitchfork bifurcation appears in Fig. 3(a) for negative pressures on
the same branch of the solution presented in Fig. 2(a). A new branch
of the static solution appears after the pitchfork bifurcation and
corresponds to the post-buckling configuration of the shell. The
buckling pressure (i.e. the pressure at which the pitchfork bifurcation
appears) is �7.15�108 Pa for the displacement dependent pressure
and �9.74�108 Pa for the displacement independent pressure.
While Fig. 3(a) shows the axisymmetric radial displacement, the
generalized coordinatew1,2, corresponding to the buckled shape with
n¼2 circumferential waves, is presented in Fig. 3(b). Results show
that the new branch after the pitchfork bifurcation is initially
unstable, becoming stable after a folding; this indicates a subcritical
buckling, which is more dangerous than supercritical buckling and
introduces dynamics with a quick collapse. The axisymmetric axial
generalized coordinate u1,0 is shown in Fig. 3(c) and the generalized



Fig. 2. Displacements of the shell versus pressure for different expressions of the pressure load; ——, load by pressure evaluated by the exact displacement dependent Eq.
(13); - -, load by pressure evaluated by the approximated Eq. (14); ⋯, load by displacement independent pressure. (a) Normalized radial displacement w/h at shell middle
length x¼L/2 versus pressure load; (b) normalized axial displacement u/h at the shell edge x¼0.

Fig. 3. Postbuckling of the shell versus pressure for different expressions of the pressure load; thick blue line, load by pressure evaluated by the exact displacement
dependent Eq. (13); thin red line, load by displacement independent pressure; ——, stable solution; - -, unstable solution. (a) Normalized radial axisymmetric displacement
w/h at shell middle length x¼L/2 versus pressure load; (b) generalized coordinate w1,2/h; (c) generalized coordinate u1,0/h; (d) generalized coordinate u1,2/h.
axial coordinate u1,2 corresponding to the shape with two cir-
cumferential waves is shown in Fig. 3(d). Both stable (continuous
line) and unstable (dashed line) solutions are plotted; in thick line
the displacement dependent pressure solution is presented while the
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pressure independent solution is shown with a thin line. It is useful
to comment that the difference between the two formulations of
pressure is here very significant due to the large deformations
associated to buckling of a thick shell. For thin shell differences are



Fig. 4. Displacements of the shell versus pressure, evaluated by the exact displacement dependent equation, applied to the external and internal surfaces versus pressure
applied to the middle surface; ——, pressure applied to the external or internal surface; - -, pressure applied to the middle surface. (a) Normalized radial displacement w/h at
shell middle length x¼L/2 versus pressure; (b) normalized axial displacement u/h at the shell edge x¼0.
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Fig. 5. Deformation of the plate versus pressure for different expressions of the
pressure load; ——, load by pressure evaluated by the exact displacement depen-
dent Eq. (15); - -, load by displacement independent pressure. (a) Normalized
normal displacement w/h at center of the plate versus pressure load; (b) cross-
section of the deformed shape of the plate for pressure 1.5�109 Pa; (c) cross-
section of the deformed shape of the plate for central deflection of 80h.
smaller since the amplitude of the deformation w/R is smaller for the
same order of normalized displacement w/h.

Fig. 4 compares the results for pressure applied to the middle
surface, as in Figs. 2 and 3, to pressure applied to the internal
surface for positive pressure and to external surface for negative
pressure. Eq. (32) is used for the pressure applied to the external
or internal surface while Eq. (13) is used for the pressure applied
to the middle surface. Fig. 4(a) shows the central deflection in
normal direction at mid-length. The difference is modest except
for very large pressures even if the present shell is quite thick (R/
h¼5). It is interesting to observe that a slightly different slope of
the curve is obtained at p¼0 when moving toward positive or
negative pressures, due to the switch from internal (smaller area)
to external surface (larger area). The axial displacements at the
edge x¼0 are compared in Fig. 4(b).

5.2. Square plate

Calculations are done here for a thin simply supported immo-
vable square plate, i.e. with the following boundary conditions:
u¼v¼w¼Mx¼0 at α1 ¼ 0, a, and u¼v¼w¼My¼0 at α2 ¼ 0, b.
The geometrically nonlinear Novozhilov shell theory is used
[28,29,32,33], reduced to plate with zero initial curvature. The
plate has the following dimensions and material properties: in-
plane dimensions a¼0.1 m, b¼0.1 m, thickness h¼0.005 m,
Young’s modulus E¼2.1�1011 Pa, Poisson ratio ν¼0.3 (steel).
Since the plate is very thin, the pressure is assumed to be applied
to middle plane. The expansion used has N¼12 dofs. In particular,
in Eqs. (35a)–(35c), [28]

f 1ðm;α1Þ ¼ f 2ðm;α1Þ ¼ f 3ðm;α1Þ ¼ sin ðm π α1=aÞ; ð45aÞ

g1ðn;α2Þ ¼ g2ðn;α2Þ ¼ g3ðn;α2Þ ¼ sin ðn π α2=bÞ: ð45bÞ
In expansion (35a)–(35c) only the following 12 terms in the

summatories are considered different from zero: w1,1, w1,3, w3,1,
w3,3, u2,1, u2,3, u4,2, u4,3, v1,2, v1,4, v3,2, v3,4.

The deflection of the plate versus pressure for different
expressions of the pressure load is presented in Fig. 5(a); the
continuous line shows the solution for displacement dependent
pressure, while the dashed line is obtained for displacement
independent pressure. Since the plate is thin, significant differ-
ences between the two formulations are observed for large normal
displacements w of about 40h. The cross-section of the deformed
configuration of the plate for pressure p¼1.5�109 Pa is shown in
Fig. 5(b); Fig. 5(c) presents the deformed configuration for central
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deflection of 80h. In case of displacement dependent pressure the
plate is more bended near the edges; this is due to the rotation of
the plate with consequent rotation of the pressure direction that
creates this effect.



6. Conclusions

Numerical results show that the exact formulation of the vir-
tual work done by displacement dependent pressure must be used
for large deformation of plates and shells. This becomes particu-
larly important for thick shells and plates, especially if made of soft
materials. In fact rubbers and biological materials, which can be
described with different types of hyperelastic constitutive rela-
tionships [33], usually present large strains and large deforma-
tions. The formulation can be immediately applied to FGM and
laminated composite materials [34,35]. In case of static problems,
the additional computational cost of the exact solution is not
relevant if compared to the approximate expressions and to the
displacement independent pressure.
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