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1. Introduction

Modeling non-linear finite deformations of cylindrical tubes
under pressure is of considerable interest in many engineering
and physiological applications. One of the interesting applications
is the so-called collapsible tube problem, which focuses on the
instability of a finite length tube subject to external pressure, with
its two ends constrained on two rigid tubes. Although seemingly
simple, this system reveals many rich dynamic features that have
stimulated much research in the last 30 years (see, for example
[1–8]).

Many studies adopt two-dimensional models, which are infor-
mative but are limited by the geometrical specialization [9–17].
veloped more recently
med material linearity
ics is simplified using
Interestingly, bifurcation behavior of the corresponding dry
structure, where pressure loading is constant and fluid–structure
interaction is absent, is closely tied to the critical stability in
collapsible tube flows. It has been found that these different
mechanisms (system stability under a static or flow-induced
pressure load) lead to similar results except that a substantially
higher pressure drop is required to achieve the same level of
collapse for the static load case [23]. For this reason, we also
briefly review the extensive bifurcation studies that have been
conducted on cylindrical tubes and shells.

We mention, in particular, the seminal work of Yamaki [24,25],
who investigated the buckling of circular cylindrical thin shells
under external pressure for a variety of loadings, boundary condi-
tions and pre-buckling states. Among many interesting observations,
he showed that mode 2 bifurcation is the most unstable mode for
sufficiently long tubes, and that the most unstable mode number
increases as the tube length is decreased. Stability studies concern-
ing geometrically non-linear vibrations and dynamics of circular
cylindrical shells, were reviewed by Amabili and Paı̈doussis [26],
with and without fluid–structure interaction. Other recent advances
in post-buckling analysis of thin-walled structures were reported by



Kounadis [27]. With a particular interest in post-buckling behavior
Heil and Pedley [23] examined the stability of cylindrical shells
under external pressure using a geometrically non-linear shell
theory and confirmed that the mode number of the most unstable
mode increases as the tube length is decreased, as predicted by
Yamaki [25]. There is also an extensive literature on plastic buckling
of circular tubes. Experimental and modeling aspects of the com-
pression of steel tubes in the plastic regime have been reviewed in
the recent works by Bardi and Kyriakides [28] and Bardi et al. [29].
Additional reviews on thin shell stability are those by Koiter [30,31],
Simitses [32], Hutchinson and Koiter [33], and Zhu et al. [34]. In
summary, buckling and post-buckling behaviors of thin-walled
structures have been studied extensively.

On the other hand, work on post-buckling of thick-walled
tubes has not been prominent, although some attempts have been
made. Classical or general shell theories were developed on the
assumption that lines originally normal to the shell mid-surface
remain straight, and that the transverse normal stresses are
assumed to be zero. Chróścielewski et al. [35] established values
of two correction factors for transverse shear stress resultants and
stress couples within the six-field geometrically non-linear theory
of elastic shells. They also examined the influence of the theore-
tical values on the non-linear behavior of regular and irregular
shell structures. Since the transverse shear moduli of most
laminated shell structures are low, Simitses [32] developed a
higher-order shear deformation shell theory by removing several
simplifying assumptions in classical shell theory. He found that
classical theories are not applicable for moderately thick cylin-
ders, but with a shear correction his theory gives more accurate
results. Libai and Simmonds [36] discussed various shell and
membrane theories. Plastic localized buckling of moderately thick
cylindrical shells under axial compression were examined by
Goto and Zhang [37], who observed that the circumferential wave
number of the diamond buckling mode increases with a decrease
in the wall thickness.

Many experiments have been conducted on collapsible tubes
having thick walls [38–41], with a ratio of thickness to inner radius
of at least 0.38, which is significantly thicker than the moderately
thick shells considered previously, and cannot be properly described
by any existing shell theories. Thick-walled vessels under internal
pressure also appear in many other physiological problems, such as
left ventricle modeling. It is therefore important to be able to fully
assess the three-dimensional mechanical behavior of thick-walled
tubes under either internal or external pressure or both. Indeed, very
few investigators have studied bifurcations of thick-walled tubes
under external pressure with the exceptions of Nowinski and
Shahinpoor [42], Marzo et al. [19] and Zhu et al. [34,43], wherein
certain model simplifications are adopted.

The present work is a major extension to our previous studies
[34,43] in which we presented numerical results for fully non-linear
three-dimensional thick-walled cylindrical tubes subject to either
internal or external pressure. Bifurcation behavior of thick-walled
tubes subject to external pressure and axial loading was examined
in Zhu et al. [34] based on the theory of infinitesimal deformations
superimposed on a finitely deformed circular cylindrical configura-
tion. Using this theory, the effects of wall thickness and aspect ratio
on the initial bifurcation behavior were studied systematically. In
Zhu et al. [43], detailed results were given for large axisymmetric
deformations of thick-walled cylindrical tubes made of incompres-
sible hyperelastic material subject to zero displacements on their
ends and pressure on their external lateral surfaces. It was found
that for a thick-walled short tube corner bulging is the typical non-
linear feature. For longer tubes the non-linear model predicts
multiple axial modes of deformation.

In the present paper, we extend the axisymmetric analysis
to allow for fully three-dimensional deformations. The governing
equations, including both geometrical and material non-linearities,
are formulated for thick-walled cylindrical tubes of finite length.
The material is taken to be incompressible and isotropic and we
consider two separate pressure loadings: internal and external
pressure on the lateral boundaries of the tube with both ends fixed.
The resulting non-linear sets of equations are solved using the
object-oriented Cþþ finite element package libMesh [44], and
Abaqus [45]. Since the tube walls collapse suddenly under external
pressure, the load-displacement response shows a zero or negative
stiffness and strain energy might be released to maintain equili-
brium. To trace the equilibrium path for tubes under external
pressure, the modified Rik’s algorithm [46,47] is used. We consider
tubes with different aspect ratios to show the effect of wall
thickness and tube length on the non-linear behavior. Corner
bulging was found in thick-walled short tubes subject to either
internal or external pressure, while the distribution patterns of the
shear stresses change significantly. For longer tubes, multiple post-
buckling modes are found. For tubes under external pressure the
response becomes discontinuous at the onset of buckling, and the
critical pressures for each mode have been identified.
2. Basic equations

In this section we give a brief summary of the equations
governing large elastic deformations with reference to their appli-
cation to a thick-walled circular cylindrical tube. For a detailed
treatment of the non-linear theory, we refer to, for example, Ogden
[48].

We consider a circular cylindrical tube with initial geometry
corresponding to internal radius A, external radius B and length L.
In the reference configurations we describe points of the tube in
terms of the position vector X relative to an origin situated at the
center point of the tube axis. The position vector of the material
point X in the deformed configuration of the tube is denoted by x
and we describe the deformation in the form

x¼Xþu, ð1Þ

where u¼ uðXÞ is the displacement vector.
We work in terms of rectangular Cartesian coordinates Xi and

xi, i¼1, 2, 3, for the reference and deformed configurations,
respectively, with corresponding unit basis vectors Ei and ei.
The initial geometry of the tube is then described by

Ar
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1þX2
2

q
rB, �L=2rX3rL=2: ð2Þ

With respect to the chosen bases the deformation gradient
tensor F may be written

F¼Grad x¼
@xi

@Xj
ei � Ej, ð3Þ

where summation over indices i and j from 1 to 3 is implied.
Under the assumption that the material of the tube is incompres-
sible the constraint

det F¼ 1 ð4Þ

must be satisfied at every material point X.
Let S denote the nominal stress tensor. For an incompressible

hyperelastic material with strain-energy function W ¼WðFÞ per
unit volume, this is given by

S¼
@W

@F
�pF�1, ð5Þ

where p is a Lagrange multiplier associated with constraint (4). In
the absence of body forces the equilibrium equation may then be
given in general form as

Div S¼ 0, ð6Þ



where Div is the divergence operator with respect to X. The
Cauchy stress tensor r for an incompressible material is related to
S by r¼ FS, and Eq. (6) may be written equivalently as div r¼ 0.

For the numerical calculations we use the neo-Hookean strain-
energy function, for which W is given by

W ¼ 1
2mðI1�3Þ, ð7Þ

where the constant m is the shear modulus of the material and I1

is defined by I1 ¼ tr ðFTFÞ. From (5) we then have

S¼ mFT
�pF�1, ð8Þ

and the corresponding Cauchy stress is r¼ mFFT
�pI.

We write u in terms of its components as u¼ ue1þve2þwe3.
On the ends of the tube we take the displacement to vanish, so
that

u¼ v¼w¼ 0 on X3 ¼ 7L=2: ð9Þ

On the lateral surfaces we consider two pressure conditions:
for the first case, a pressure P, per unit deformed area, is applied
on the external lateral surface of the tube while the inner surface
is free of traction. For the second case, the pressure is applied on
the internal lateral surface and the outer surface is free of
traction. Let M be a unit vector on the reference lateral surface
pointing out of the material. Then, M¼ ðX1E1þX2E2Þ=B on the
outer surface and M¼�ðX1E1þX2E2Þ=A on the inner surface. On
the surface where the pressure is specified, denoted Gp, the
traction boundary condition may then be written

STM¼�PF�TM on Gp, ð10Þ

where M is now the appropriate unit normal depending on
whether Gp is the inner or outer surface.
3. Finite element algorithm

3.1. Discretization

The governing PDEs (6) and the constraint Eq. (4) are approxi-
mated using the weighted residual Galerkin method, with the
elastic domain divided into a set of sub-domains. We have
written code based on the open-source finite element library
libMesh [44] to solve the non-linear PDEs numerically. We now
summarize the details of the discretization and the numerical
techniques used. In terms of quadratic shape functions Nk and
linear shape functions Lk, the displacement components ðu,v,wÞ
and the Lagrange multiplier p are written

u¼
Xn1

k ¼ 1

Nkðx,ZÞuk, v¼
Xn1

k ¼ 1

Nkðx,ZÞvk,

w¼
Xn1

k ¼ 1

Nkðx,ZÞwk, p¼
Xn2

k ¼ 1

Lkðx,ZÞpk,

where n1 and n2 are the element node numbers, which are
dependent on the element type chosen, x and Z are natural
coordinate variables, corresponding to isoparametric finite ele-
ments, uk, vk, wk are the components of the displacement at node
k, and pk is the Lagrange multiplier at node k.

This allows us to write the discretized non-linear governing
Eqs. (6), with (8), and (4) as

R�KðUÞU�F ðUÞ ¼ 0, ð11Þ

where U is the global vector of unknowns, KðUÞ is the global stiffness
matrix, F ðUÞ denotes the force vector, which is also dependent on U,
and R is the global residual vector, which should be 0 for an exact
solution. Both tetrahedral and hexagonal elements are used in the
simulations. The matrix Eq. (11) is assembled from the finite element
matrix equations, which are

Xn1

j ¼ 1

Z
Oe
mðNi,1Nj,1þNi,2Nj,2þNi,3Nj,3Þ dO

euj

þ
Xn1

j ¼ 1

Z
Oe

pfNi,1½�ð1þw,3ÞNj,2þw,2Nj,3�

þNi,2½�w,1Nj,3þð1þw,3ÞNj,1�þNi,3ð�w,2Nj,1þw,1Nj,2Þg dOevj

þ
Xn1

j ¼ 1

Z
Oe

pð�Ni,1Nj,3þNi,3Nj,1Þ dO
ewj

�
Xn2

j ¼ 1

Z
Oe

Ni,1Lj dOepj ¼�

Z
Oe
mNi,1 dOe

þ

I
Ge

NiðS11M1þS21M2þS31M3Þ dGe, ð12Þ

Xn1

j ¼ 1

Z
Oe

pfNi,1½�w,2Nj,3þð1þw,3ÞNj,2�þNi,2½�ð1þw,3ÞNj,1þw,1Nj,3�

þNi,3ð�w,1Nj,2þw,2Nj,1Þg dOeuj

þ
Xn1

j ¼ 1

Z
Oe
mðNi,1Nj,1þNi,2Nj,2þNi,3Nj,3Þ dO

evjþ
Xn1

j ¼ 1

Z
Oe

pð�Ni,2Nj,3

þNi,3Nj,2Þ dO
ewj�

Xn2

j ¼ 1

Z
Oe

Ni,2Lj dOepj ¼�

Z
Oe
mNi,2 dOe

þ

I
Ge

NiðS12M1þS22M2þS32M3Þ dGe, ð13Þ

Xn1

j ¼ 1

Z
Oe

p½Ni,1ð1þv,2ÞNj,3�Ni,2v,1Nj,3�Ni,3ð1þv,2ÞNj,1� dO
euj

þ
Xn1

j ¼ 1

Z
Oe

p½�Ni,1u,2Nj,3þNi,2ð1þu,1ÞNj,3þNi,3ð�Nj,2þu,2Nj,1Þ� dO
evj

þ
Xn1

j ¼ 1

Z
Oe
mðNi,1Nj,1þNi,2Nj,2

þNi,3Nj,3Þ dO
ewj�

Xn2

j ¼ 1

Z
Oe

Ni,3Lj dOepj ¼�

Z
Oe
mNi,3 dOe

þ

I
Ge

NiðS13M1þS23M2þS33M3Þ dGe, ð14Þ

Xn1

j ¼ 1

Z
Oe

Li½ð1þv,2þw,3þv,2w,3�v,3w,2ÞNj,1þðv,3w,1�v,1�v,1w,3ÞNj,2

þðv,1w,2�w,1�v,2w,1ÞNj,3� dO
eujþ

Xn1

j ¼ 1

Z
Oe

LiðNj,2

�w,2Nj,3þw,3Nj,2Þ dO
evjþ

Xn1

j ¼ 1

Z
Oe

LiNj,3 dOewj ¼ 0, ð15Þ

where Oe is the domain of an element in the reference configuration,
Ge is its boundary, ,k signifies differentiation with respect to the
reference coordinate Xk and M1, M2, M3 are the components of the
unit outward normal to Ge.

3.2. Newton’s method and the continuation method

Eq. (11) is solved in libMesh by employing the SNES library of
PETSc [49], which provides a powerful set of numerical routines,
including line search and trust region techniques. Newton–Krylov
methods constitute the core of the package. The iterative Newton
method is used and involves repeated assembly and solution of
the equation systems JU¼�R, where J is the true Jacobian



Fig. 1. Displacement component u versus internal pressure P for the thick-walled

short tube with A=B¼ 0:5, L=B¼ 1 at point ðX,Y ,ZÞ ¼ ð0:5,0,0Þ: linear result

(curve 1); 3D non-linear result (curve 2); axisymmetric result (curve 3 with

symbols). Curve 4 is for the thick-walled longer tube with A=B¼ 0:5, L=B¼ 5 at

point ðX,Y ,ZÞ ¼ ð0:5,0,0Þ, and curve 5 is for a thinner and longer tube with A=B¼

0:8, L=B¼ 5 at point ðX,Y ,ZÞ ¼ ð0:8,0,0Þ.
matrix, which, using (11), is defined by

J ðUrÞ ¼
@RðUrÞ

@U
¼KðUrÞþ

@KðUrÞ

@U
Ur�

@F ðUrÞ

@U
: ð16Þ

Convergence is achieved when the relative residual tolerance
JRðUrÞJ=JRðU0ÞJ (in the ‘2 norm) is less than 10�8, where RðU0Þ is
the initial residual.

In order to track the post-buckling solutions for tubes under
external pressure, we use the modified Riks method [46,47],
which takes the load multiplier as an unknown parameter l,
and solve for it simultaneously with the nodal displacements. In
other words, the pressure loading is controlled by

P¼ lPref , ð17Þ

where Pref is the reference load vector. The effective additional
arc-length equation is needed to determine l, which is given as
[47]

ðDlÞ2þðDUÞ2 ¼ ðDlÞ2, ð18Þ

where DU represents the total increment in displacement within
the load step, and Dl represents the total increment in load
multiplier.

As the pressure increases, the tube walls may collapse sud-
denly where the load–displacement curves exhibit a softening
effect. Numerically, the tangent stiffness becomes negative and
the classical solution procedures usually fail to converge. The
displacement control method enables us to trace the non-linear
response through the various buckling modes.
4. Numerical results

To demonstrate the effects of the wall thickness and the ratio of
length to (external) radius on the non-linear behavior of the tubes,
we consider three tube geometries, as in [43]: a thick-walled short
tube with A=B¼ 0:5 and L=B¼ 1; a thick-walled longer tube with
A=B¼ 0:5 and L=B¼ 5, and a thin-walled longer tube with A=B¼ 0:8
and L=B¼ 5, where A, B, L are the internal radius, external radius,
and length of the tube in the reference configuration. All variables
presented are made dimensionless, with length scaled by B and
stresses scaled by the shear modulus m, which are both taken to be
unity with appropriate and consistent units (i.e. if B¼1 cm, then
m¼ 1 dyn=cm2, and if B¼1 m, then m¼ 1 Pa, etc.).

For each tube geometry, we analyze the non-linear deforma-
tion separately for internal and external pressures. All simulations
are carried out using the libMesh code except for the large values
of external pressure, when the numerical convergence becomes
extremely difficult to achieve with our existing solver since no
pre-conditioners are applied. For the larger pressure values the
well-developed commercial package Abaqus is used. Specifically,
Figs. 1, 3, 4, and 5 are plotted based on libMesh results, while
Figs. 12, 16, and 17 are plotted using the Abaqus results.

In the following, we use m to denote the azimuthal mode
number and n the axial mode number. The components of the
Cauchy stress r recovered at each node are obtained by including
the superconvergent patch recovery process [50], which allows us to
trace the variations of the Cauchy stresses at particular element
nodes.

4.1. Internal pressure

In this section, we present results for tubes subject to internal
pressure. For the particular material model we adopt here, only
one deformation mode (m¼ 1,n¼ 1) is found, independently of
the tube aspect ratio considered.

The solution for the non-linear displacement component u as a
function of the internal pressure P is shown as curve 2 in Fig. 1
plotted at the central point on the inner wall for the tube with
A=B¼ 0:5 and L=B¼ 1. This is compared with the corresponding
linear result (curve 1) and the axisymmetric non-linear result
(curve 3) obtained from the models used in [43]. Fig. 1 shows that
the linear and non-linear models agree very well for small values
of P, but the linear theory underestimates the displacement u,
especially when P\0:6. On the other hand, the axisymmetric and
three-dimensional non-linear models (curves 2 and 3) are gra-
phically indistinguishable, suggesting that the deformation under
internal pressure for Pt1:4 is indeed axisymmetric. Curves 4 and
5 in Fig. 1 are the three-dimensional non-linear results for the
longer tubes (also for a central point located on the inner wall). It
is not surprising to observe that for the same internal pressure,
the deformations of the longer and thinner tubes are much
greater. Note that in Fig. 1 and henceforth it is convenient to
use the notation ðX,Y ,ZÞ instead of ðX1,X2,X3Þ.

For the thick-walled short tube, there is some very small, yet
visible, corner (or edge) bulging at the outer wall of the tube as the
internal pressure increases to P¼1.5, as can be seen in Fig. 2. This is
absent in the corresponding linear case (not shown). Corner bulging
is also found (but on the inner wall) when the tube is subject to
external pressure (see Fig. 8 below) and was previously reported by
Zhu et al. [43]. Thus, the non-linear effect of corner bulging can
occur under either internal or external pressure. However, the
extent of bulging is much smaller for a tube under internal pressure,
compared with that for a tube under external pressure. This is
because the corner bulging for tubes under internal pressure occurs
at the outer wall, where there is more room for the material to
expand compared with the situation for corner bulging at the inner
wall. We comment that due to the sharp corner singularity, it is not
possible to resolve the bulging tip numerically. However, we have
checked to make sure our results are mesh independent everywhere
else. Note also that the bulging arises from the material inside the
tube wall being squeezed out, but the end boundaries of the tube
remain fixed.

To illustrate the response of the Cauchy stresses to the internal
pressure at a particular location, plots of the stress components
s11, s33, s12 and s22 versus the pressure are shown in Fig. 3, and



Fig. 2. (a) Deformed tube with A=B¼ 0:5, L=B¼ 1 subject to internal pressure P¼1.5, with the distribution of displacement component u superimposed and (b) cross-

sectional view blow-up showing the corner (edge) bulging.

Fig. 3. Plots of Cauchy stress components versus internal pressure P for the thick-walled short tube with A=B¼ 0:5, L=B¼ 1 at point ðX,Y ,ZÞ ¼ ð0:5,0,0Þ: (a) s11 ,s33 ,s12 and

(b) s22.
of s11, s33 and s22 in Figs. 4 and 5. In each case the components
not shown are very close to zero. Comparing the three figures, we
observe that
1.
 The magnitude of the normal stress s11 increases almost
linearly during the deformation process while s22 and s33

exhibit highly non-linear features; the negative sign of s11

indicates that the tube is being compressed in the radial
direction; the positive sign of s22 is associated with circum-
ferential stretching; the non-monotonic behavior of the axial
stress s33 is interesting—for small values of P it is negative,
corresponding to axial compression, but then becomes positive
as the inner radius increases and there is a tendency to
extension in the axial direction.
2.
 For each tube the shear stresses are virtually zero except for very
large loading pressures P; s12 is shown to illustrate this, but only
in Fig. 3.
3.
 As the tube become longer and thinner, the magnitude of
s11 decreases while that of s22 increases significantly. For
example, at pressure P¼0.15, s22 ¼ 0:05, 0:3, 1:3, respectively,
for the tubes with (A=B¼ 0:5,L=B¼ 1), (A=B¼ 0:5,L=B¼ 5) and
(A=B¼ 0:8,L=B¼ 5). We have also found that at the center of
the inner wall s12 is zero for the two longer tubes, but non-
zero for the thick-walled short tube. This suggests that the
solutions are heavily influenced by the boundary conditions at
the ends. Moreover, the turning point of s33 in Fig. 3 correlates
exactly with the occurrence of corner bulging.

4.2. External pressure

Tubes subject to external pressure exhibit many more inter-
esting features than those under internal pressure.

4.2.1. Thick-walled short tubes: A=B¼ 0:5 and L=B¼ 1
If the external pressure is small, the thick-walled short tube

deforms essentially axisymmetrically since we have found that
the displacement component v is very close to zero (with
magnitude of order between 10�5 and 10�3), and, as shown in



Fig. 4. Plots of Cauchy stress components versus internal pressure P for the thick-walled longer tube with A=B¼ 0:5, L=B¼ 5 at point ðX,Y ,ZÞ ¼ ð0:5,0,0Þ: (a) s11 , s33 and

(b) s22.

Fig. 5. Plots of Cauchy stress components versus internal pressure P for the thinner and longer tube with A=B¼ 0:8, L=B¼ 5 at point ðX,Y ,ZÞ ¼ ð0:8,0,0Þ: (a) s11 ,s33 and

(b) s22.
Fig. 6, the displacements u for the three-dimensional and axisym-
metric cases are virtually identical. This suggests that prior to
bifurcation occurring the deformed thick-walled short tube main-
tains its axisymmetric shape. This axisymmetric deformation can
hold up to 30% strain, which is well beyond the linear region.

Importantly, the three-dimensional results obtained using our
libMesh code agree excellently with those using Abaqus; the detailed
displacement and stress distributions from these two numerical
approaches are also identical, as illustrated in Figs. 6 and 7. However,
we note that Abaqus has more robust solvers, which can handle
sudden snap-through buckling much better than the libMesh models
developed so far. In the following, we will present results using
libMesh for smaller values of external pressure, and Abaqus for large
values of the external pressure. Note that in Figs. 7–9 the plot ranges
of values have been chosen so as to distinguish the different
contours. We remark that in Fig. 7(b), the maximum value of the
stress s12 at Z¼0 is computed to be the same ð ¼ 0:23Þ using
libMesh and Abaqus.
Fig. 8 shows the displacement u and shear stress s13 distribu-
tions for P¼2.0 for the cross-section at Y¼0. This is the case when
the inner wall bulges out at the corners. Similar corner bulging
behavior for the axisymmetric case was discussed in detail in
[43]. Qualitatively, the patterns of shear stresses due to corner
bulging (i.e. shear splitting with alternating signs in different
regions) is captured again by the general three-dimensional
theory. Because of the corner bulging, the distributions of the
shear stresses s12, s13, s23 in the cross-section at Z¼0.35 are
complex, as shown in Fig. 9, where four sub-zones are found in
which s12 changes sign. The peak shear stress s12 (positive and
negative) occurs at the internal wall of the tube.

As in Section 4.1, we trace the variations of the stresses s11, s12,
s22 and s33 versus the pressure P near the point ðX,Y ,ZÞ ¼
ð�0:5,0,0Þ. These results are shown in Fig. 10. The stress components
that are close to zero are not included. Fig. 10(b) shows that the most
significant load bearing stress component is s22, which is ten
times greater in magnitude than the other stress components and



decreases almost linearly with increasing P. Hence the tube is
predominantly under compression. The other stress components
are smaller in magnitude but exhibit non-linear behavior, particu-
larly in the case of s33, which has a similar pattern to that in the case
of internal pressure loading; it decreases first with the increase of P

but then increases when P is greater than about 1.2. Again, this
coincides with the appearance of the corner bulging. Different
Fig. 6. Displacement component u versus external pressure P for the thick-walled

short tube (A=B¼ 0:5,L=B¼ 1) at point ðX,Y ,ZÞ ¼ ð�0:5,0,0Þ; axisymmetric result

(dotted curve); Abaqus result (solid curve); libMesh result (symbols).

Fig. 7. Comparison of results from Abaqus (left) and libMesh (right) for external
boundary conditions have also been tested and we find that the
bulging corner emerges as a result of the material non-linearity and
boundary conditions. There is no bulging effect in the linear case
with the same boundary conditions.

4.2.2. Thick-walled longer tubes: A=B¼ 0:5 and L=B¼ 5
For longer tubes, higher modes of deformation occur as the

external pressure increases. Fig. 11 shows three different defor-
mation patterns for the thick-walled longer tube with A=B¼ 0:5
and L=B¼ 5, which correspond to mode numbers (m¼ 2,n¼ 1),
(m¼ 2,n¼ 2), and (m¼ 3,n¼ 1). Clearly, these are no longer
axisymmetric deformations.

The bifurcation observed here is quite different from the
analytical prediction of Zhu et al. [34] (see Fig. 12 therein), where,
using three-dimensional incremental equilibrium equations, they
predict that only mode (m¼ 2,n¼ 1) bifurcation may occur from a
deformed circular cylindrical configuration for the given para-
meters. The fundamental difference in this study is that the tube
configuration is not circular cylindrical prior to bifurcation. In
fact, almost all other published works concerned with tube
bifurcation analysis have adopted the assumption that the initial
configuration is circular cylindrical. The different bifurcation
patterns predicted here highlight the importance of using a fully
three-dimensional approach for predicting bifurcations of tubes
under large deformations.

On the other hand, for the axial modes, our previous findings
in [43] still hold, i.e. longer tubes favor mode n¼2 deformations,
while shorter tubes prefer mode n¼1, as illustrated in Fig. 11.

The various bifurcation routes can be better viewed from the
pressure–displacement plot, shown in Fig. 12. Initially the solu-
tion is unique and the cross-section remains circular when the
external pressure is increased. Then, a first bifurcation occurs at
about P¼0.27 (point a) when one of the solution branches jumps
pressure P¼0.4: (a) side view of u at Y¼0 and (b) top view of s12 at Z¼0.



Fig. 8. Deformed tube cross-sectional view (at Y¼0) for the thick-walled short tube with A=B¼ 0:5, L=B¼ 1 under external pressure P¼2.0. (a) Displacement component u

and (b) shear stress s13.

Fig. 9. Deformed tube cross-sectional view at (Z¼0.35) for the thick-walled short tube with A=B¼ 0:5, L=B¼ 1 subject to external pressure P¼2.0, (a) s12; (b) s13; and (c) s23.

Fig. 10. Plots of Cauchy stress components versus P for the thick-walled short tube with A=B¼ 0:5, L=B¼ 1 near the point ðX,Y ,ZÞ ¼ ð�0:5,0,0Þ in deformation mode

(m¼ 1, n¼ 1): (a) s11 , s33 , s12 and (b) s22.
to point d then follows the post-buckling path 1 (mode m¼2,
n¼1). Another solution branch remains unbuckled until a greater
pressure is applied, but then there is a snap-through from points
b to e, followed by the post-buckling path 2 (mode m¼2, n¼2).
The third solution branch buckles at slightly higher pressure
(point c) and then jumps into the post-buckling mode (m¼3,
n¼1) at f. These post-buckling modes are clearly shown in Fig. 11.
Note that all the circumferential modes we refer to here are for



Fig. 11. Non-linear azimuthal modes of deformation for the thick-walled longer tube with A=B¼ 0:5, L=B¼ 5: (a) mode (m¼ 2, n¼ 1) at P¼0.387; (b) mode (m¼ 2, n¼ 2)

at P¼0.840; and (c) mode (m¼ 3, n¼ 1) at P¼1.12. Cross-sectional cuts at Z¼0 and Z¼1.5 are shown on the right.

Fig. 12. Displacement component v versus external pressure P for the thick-

walled longer tube (A=B¼ 0:5, L=B¼ 5) at point ðX,Y ,ZÞ ¼ ð�0:4,0:3,�0:1Þ. The

solution bifurcates at points a, b, c and buckles into mode (m¼ 2,n¼ 1) following

path 1, mode (m¼ 2, n¼ 2) following path 2, and mode (m¼ 3,n¼ 1) following

path 3.
the central cross-section of the tube (Z¼0), since mode-2 (ellip-
tical cross-sectional shape) can occur before d at off-center
locations, e.g. when Z ¼ 71:5. To follow these snap-through bifur-
cations, very small arc-length increments have to be used to trace
the solution paths. Clearly, all these are sub-critical bifurcations.
4.2.3. Thinner and longer tubes: A=B¼ 0:8 and L=B¼ 5
For the thinner and longer tubes with A=B¼ 0:8 L=B¼ 5, the

deformations are quite complex. A total of eight more post-buckling
modes are found in our calculations. These are (m¼ 1,n¼ 2), (m¼
2,n¼ 1), (m¼ 2,n¼ 2), (m¼ 3,n¼ 1), (m¼ 4,n¼ 1), (m¼ 4,n¼ 2),
(m¼ 4,n¼ 3) and (m¼ 5,n¼ 1). These higher modes exhibit fasci-
nating patterns of deformations, as shown in Figs. 13–15, with part of
the tube strongly collapsed.

Fig. 16(a) demonstrates three of the higher-mode bifurcations
(m¼ 1,3,5, n¼1). Initially, the tube cross-section at (Z¼0) remains
circular only up to a relatively small external pressure, Pt0:018.
Then one solution branch bifurcates into the post-buckling mode
(m¼2, n¼1) at point a, and the magnitude of v increases sharply
along path 1. The second solution branch bifurcates at b when
PC0:06, following the post-buckling mode (m¼3, n¼1) along path
2. The third solution branch continues to resist buckling until a
greater pressure PC0:285 is reached, and then bifurcates into mode
(m¼5, n¼1) along path 3. Although the bifurcation pattern is
similar to that for the thick-walled longer tube shown in Fig. 12,
there is no obvious jump along the solution paths, although the
displacement changes significantly after the bifurcations. The sec-
ond and third post-buckling modes are shown in detail in Fig. 14.

A different solution path can be viewed in Fig. 16(b), where the
displacement u is plotted against P. As the tube buckles from
mode (m¼ 2,n¼ 1) into mode (m¼ 2,n¼ 2) at point a, u jumps
from 0.063 to 0.22. Then it changes to mode (m¼ 4,n¼ 1) at point
b with u dropping almost to zero. At point c, however, the tube
transitions back into mode (m¼2, n¼2), which is maintained
through point d, but with the azimuthal mode rotating around
the Z-axis by 90 degrees, as Fig. 13 illustrates.

The solution paths for the other higher modes (m¼ 4,
n¼ 1,2,3) are shown in Fig. 17. Here the bifurcations occur at



Fig. 13. Non-linear azimuthal modes of deformation for the thinner and longer tube with A=B¼ 0:8, L=B¼ 5: (a) mode (m¼ 1, n¼ 2) at P¼0.389; (b) mode (m¼ 2, n¼ 1)

at P¼0.0186; (c) mode (m¼ 2, n¼ 2) at P¼0.129. Cross-sectional cuts at Z¼0 and Z¼1.6 are shown on the right.

Fig. 14. Non-linear axial modes of deformation for the thinner and longer tube with A=B¼ 0:8, L=B¼ 5: (a) mode (m¼ 3, n¼ 1) at P¼0.082 and (b) mode (m¼ 5, n¼ 1) at

P¼0.271. Cross-sectional cuts at Z¼0 are shown on the right.
PC0:08 (point a), PC0:09 (point b), and PC0:16 (point c),
respectively, into the higher modes (m¼ 4,n¼ 1,2,3). The bifurca-
tion patterns are similar to those shown in Fig. 16(a), although the
post-buckling paths 2 and 3 are less steep. Again, there are no
obvious jumps in these solution branches. The post-buckling
modes are shown in Fig. 15.



Fig. 15. Non-linear axial modes of deformation for the thinner and longer tube with A=B¼ 0:8, L=B¼ 5: (a) mode (m¼ 4, n¼ 1) at P¼0.097; (b) mode (m¼ 4, n¼ 2) at

P¼0.158; and (c) mode (m¼ 4, n¼ 3) at P¼0.251. Cross-sectional cuts at Z ¼ 0,0:85, 1:75 and 1.97 are shown on the right.

Fig. 16. For a tube with A=B¼ 0:8, L=B¼ 5: (a) displacement component v versus external pressure P; the solution bifurcates at points a, b, c and thereafter follows

different paths; path 1 is the post-buckling mode (m¼ 2, n¼ 1) plotted at point ðX,Y ,ZÞ ¼ ð0:3,0:95,0:17Þ; path 2 is the post-buckling mode (m¼ 3, n¼ 1) plotted at point

ðX,Y ,ZÞ ¼ ð0:47,0:65,�0:11Þ; path 3 is the post-buckling mode (m¼ 5,n¼ 1) plotted at point ðX,Y ,ZÞ ¼ ð0:47,0:65,�0:11Þ: (b) solution paths shown as the displacement

component u versus P plotted at point ðX,Y ,ZÞ ¼ ð�0:7,0:4,1:64Þ.
Finally, we remark that the solution branches are also very
sensitive to geometric imperfections and hence grid asymmetries.
The results for modes (m¼ 3,n¼ 1) and (m¼ 5,n¼ 1) are obtained
using tetrahedral elements, Fig. 14. All the other modes shown in
Figs. 13 and 15 are computed with hexagonal elements. The
reason for using different elements is that the onset of post-
buckling solutions is highly sensitive to initial perturbations.
Small perturbations in the mesh geometry may lead the equili-
brium paths into different branches. Therefore, using different
types of elements, we can follow certain solution branches much
more easily. For example, modes 3 and 5 only occur if we use
tetrahedral meshes.

5. Discussion and conclusions

The general three-dimensional fully non-linear equations of
equilibrium in Lagrangian form have been solved numerically in
order to investigate the interesting post-buckling behavior of



Fig. 17. Displacement component u versus external pressure P for the thinner and

longer tube with A=B¼ 0:8, L=B¼ 5 at point ðX,Y ,ZÞ ¼ ð0:73,0:67,0:17Þ. The solution

bifurcates at points a, b, c and into three different post-buckling modes

(m¼ 4,n¼ 1,2,3), labeled 1, 2, 3, respectively.

Fig. 18. The negative dependence of pressure on area is demonstrated by the plot

of (�P) versus cross-sectional area ratio A=A0 following the post-buckling mode

(m¼ 2, n¼ 1) for the thick-walled longer tube, as in Fig. 12, and mode

(m¼ 5, n¼ 1), for the thinner and longer tube, as in Fig. 16(a). See the text for

detailed discussion.
cylindrical tubes with different aspect ratios. To valid our numer-
ical code, comparisons have been made with corresponding linear
models and with results from Abaqus.

In general, to produce higher mode bifurcations, greater
external pressure is required. In this study we have not attempted
to exhaust all possible solution branches. However, it is clear that
the thinner and/or longer the tube, the more solution branches
appear as the external pressure is increased. All of the collapsed
deformations eventually lead to inner wall contacts, which are
not considered here.

For thick-walled short tubes, only axisymmetric bifurcation
modes are observed under either internal or external pressure. This
indicates that the axisymmetric analysis provides a good approx-
imation for thick-walled short tube problems. Thick-walled short
tubes also exhibit complex corner bulging behavior which cannot be
captured using the linear theory. Corner bulging is observed for the
tubes under both internal and external pressures, and seems to be a
strongly non-linear behavior caused by the end constraints.

For thick-walled longer tubes, our results show that the bifurca-
tion pressure is the lowest for mode (m¼ 2,n¼ 1), Fig. 12, and the
bifurcation is sub-critical. This agrees with previous observations of
Wang and Ertepinar [51], Bertram [39] and Marzo et al. [19].

The critical bifurcation pressure for longer tubes is much
smaller, and the post-buckling solution is no longer unique. In
fact, depending on the initial parameters, the solution may follow
different post-buckling paths. In addition, the difference in the
critical pressures between neighboring bifurcation modes is very
small, especially for thinner and longer tubes. In our numerical
simulations, very small arc-length steps are needed to distinguish
different bifurcation paths. We also found that these bifurcation
states are sensitive to the incremental load applied. If the
incremental load is large, the solution may jump on to a different
post-buckling path. This is shown in Fig. 16(b). These deforma-
tions are not only highly non-linear, but also fully three-dimen-
sional. The axisymmetric assumption can no longer be used here.

We make a particular observation on the compliance change of
the longer tubes after the post-buckling path corresponding to
(m¼ 2,n¼ 1), i.e. the central circular cross-sectional area buckles
in to an elliptical shape (see Fig. 19), and the transmural pressure
(defined as internal minus external pressure, in this case¼�P) is
plotted against the ratio of the deformed to reference cross-
sectional area A=A0 at Z¼0 in Fig. 18. Clearly, after the point d in
Fig. 12, A=A0 drops sharply against very small changes in P; in fact,
there is a negative dependence on �P for the thick-walled tube
(A=B¼ 0:5,L=B¼ 5), i.e. a smaller transmural pressure is required
for the tube to collapse further, whereas for the thinner tube
(A=B¼ 0:8,L=B¼ 5) there is no negative dependence on P after the
initial buckling.

If we look at the first principal stress, then along path 1 the
maximum stress jumps from the ends to the central cross-section
(Z¼0) at the point c for the thick-walled tube, whereas for the
thinner tube, the maximum stress remains at the ends (see
Figs. 19 and 20). We believe the reason for the compliance change
is due to the sudden collapse of the middle section of the thicker-
walled tube. These tubes are more strongly constrained by the
end boundaries and therefore have much stronger resistance to
collapse until the external pressure is sufficiently large and the
strain energy has accumulated to the point that the system snaps
through to a lower energy state. The thinner-walled tubes, on the
other hand, collapse more readily since there is no accumulation
of strain energy as the external pressure increases further. Indeed,
similar behavior is seen after the higher-mode bifurcations, as
shown in Figs. 12 and 16(a) (paths 2 and 3).

This observation is interesting and has implications for collap-
sible tube problems since it has been reported both experimentally
and numerically that in the post-buckling mode (m¼ 2,n¼ 1) thick
tubes can become more compliant than thinner ones [39,19]. This is
supported by our results. Note that the lengths of the tubes used by
Wang and Ertepinar [51], Bertram [39] and Marzo et al. [19] were
much larger than those studied here, so that the end effects are less
obvious. Clearly, the end constraints combined with wall thickness
contribute to the sudden jumps (snap-through) behavior and
negative transmural pressure dependence.

Finally, we recognize that Abaqus has superior solvers for the
post-buckling analysis, and could be used to carry out all the
simulations without using libMesh. In fact, the Abaqus solvers
continue to give ‘‘solutions’’ even after the contact walls are pene-
trated unless supplemented by a contact model. We have not done



Fig. 19. Location of the maximum first principal stress changes following the post-buckling mode (m¼ 2, n¼ 1) before (top) and after (bottom) point d in Fig. 12: thick-

walled longer tube.

Fig. 20. Location of the maximum first principal stress changes following the post-buckling mode (m¼ 2, n¼ 1) before (top) and after (bottom) point a in Fig. 16: thinner

and longer tube.
this since tube deformation after contact is not of interest in the
present study. However, the purpose of developing our libMesh code
is so that we have better control of numerical schemes, and can
further develop the code for other physiological applications, such as
heart modeling. In particular, we are interested in developing
interfaces to fluid–structure interaction solvers such as immersed
boundary codes. The human heart is also subject to internal pressure,
and hence may not develop higher mode bifurcations in the normal
physiological situation. In this respect, the current libMesh solvers are
sufficient.
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