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Dynamical response of hyper-elastic cylindrical shells under
periodic load

REN Jiu-sheng (���)

(Department of Mechanics, Shanghai Institute of Applied Mathematics and Mechanics,

Shanghai University, Shanghai 200444, P. R. China)

Abstract Dynamical responses, such as motion and destruction of hyper-elastic cylin-
drical shells subject to periodic or suddenly applied constant load on the inner surface,
are studied within a framework of finite elasto-dynamics. By numerical computation and
dynamic qualitative analysis of the nonlinear differential equation, it is shown that there
exists a certain critical value for the internal load describing motion of the inner surface
of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when
the average load of the periodic load or the constant load is less than its critical value.
However, the shell will be destroyed when the load exceeds the critical value. Solution
to the static equilibrium problem is a fixed point for the dynamical response of the cor-
responding system under a suddenly applied constant load. The property of fixed point
is related to the property of the dynamical solution and motion of the shell. The effects
of thickness and load parameters on the critical value and oscillation of the shell are dis-
cussed.

Key words hyper-elastic cylindrical shells, nonlinear differential equation, periodic
oscillation, quasi-periodic oscillation, critical load

Introduction

In recent years, hyper-elastic materials, such as rubber, synthetic elastomers and polymeric
materials, have been used in a broader and broader range of engineering fields due to their
unique and non-replaceable properties. Therefore, the nonlinear problems, such as the insta-
bility of hyper-elastic materials and structures, have attracted much attention in the world as
they play a fundamental role on the failure of materials[1−3]. The well-known examples are
the inflation of spherical hyper-elastic balloons[4−5] and the deformation of the hyper-elastic
spherical shells or cylindrical shells[6−8]. Most of the literatures on such mechanics deal with
elasto-statics which have been extensively studied. For example, when a cylindrical shell is in-
flated, it maintains a uniform inflation at the initial stage until a certain maximum of pressure
is attained. After the maximum, the shell will undergo a non-uniform inflation. One part of the
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shell is highly stretched as a bubble while the remainder becomes lightly stretched. However,
many physical problems are inherently dynamic, so a stability analysis of elasto-dynamics is
important. As an example, intracranial aneurysms are typically subject to periodic or nearly
periodic internal pressures[9]. Because of its property of large deformation, high elasticity and
the application of hyper-elastic theory, the mathematical model for hyper-elastic dynamics is
an ignition-boundary value problem with high nonlinear differential equations. Therefore, the
solution of the dynamical problem is more difficult than the quasi-static problem. The system
is autonomous when the forcing internal pressure is constant. Techniques for studying such
autonomous systems are well-known, and they have been extensively studied[10−11]. For exam-
ple, when an incompressible cylindrical shell is inflated by a suddenly applied constant internal
pressure, it will undergo a nonlinearly periodic oscillation. However, dynamical cases of a time
varying internal pressure have not been well studied. The case of some kinds of biological soft
tissues and rubber spherical membranes surrounded by a fluid under a periodic internal loading
was studied by Haslach and Humphrey[12]. A periodic orbit in a phase space exists near a static
equilibrium, and a jump from one periodic orbit to another is possible for rubber models.

The purpose of the present paper is to further investigate the dynamical response and the
destruction of incompressible hyper-elastic cylindrical shells under a periodic or constant in-
ternal pressure within a framework of finite elasto-dynamics. At first, the instability problem
and the destruction of incompressible hyper-elastic cylindrical shells under a statically uniform
internal pressure are examined within a framework of finite elasto-statics. The solution of the
static equilibrium problem is the fixed point for the dynamic response of the corresponding
autonomous system under a suddenly applied constant internal pressure. Then the dynamical
response and the destruction of cylindrical shells under the suddenly applied constant internal
pressure or the periodic internal pressure are examined within the framework of finite elasto-
dynamics. The second order differential relationship between the deformation of the internal
boundary of the shell and the internal pressure is obtained from the basic formulations. The
displacement response curves, the phase portrait and the Poincaré maps are given out by the
numerical computation through the Runge-Kutta integrator for the transformed first order dif-
ferential equations. The dynamical response along with the destruction of the shell is discussed
with these results following the usual dynamics. There exists a critical value for the shell un-
der a suddenly applied constant internal pressure or a periodic internal pressure. When the
pressure is less than the critical value, the shell will undergo a nonlinear periodic oscillation or
quasi-periodic oscillation. When the pressure is larger than the critical value, the shell will be
ultimately destroyed with time.

1 Formulations

Consider the finite deformation dynamics and the destruction for an incompressible hyper-
elastic cylindrical shell with an undeformed internal radius A and an outer radius B. Assume
it is set into motion by a periodic internal pressure p(t) = p0 + p1 sin(ωt) at the initial time t0.
A point (r, θ, z) at time t is assumed to occupy the point (R, Θ, Z) in the undeformed state.
Then the deformation function of the shell is given as

r = r(R, t), θ = Θ, z = Z (A ≤ R ≤ B). (1)

From the incompressibility condition of the material, we have

r = r(R, t) =
[
(R2 − A2) + a2

] 1
2 , (2)

where a = r (A, t) is the deformed internal surface. The principal stretches are

λ1 =
∂r(R, t)

∂R
=

R

r
, λ2 =

r(R, t)
R

=
r

R
, λ3 = 1. (3)
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The strain energy function of the shell is given as the neo-Hookean material with the strain
energy function as follows:

W =
μ

2
(I1 − 3). (4)

Here, the first invariant I1 = (λ2
1+λ2

2+λ2
3), μ is the shear modulus for infinitesimal deformations.

The corresponding non-zero principal components of the Cauchy stress tensor are
⎧
⎪⎪⎨

⎪⎪⎩

τrr(r, t) = λ1
∂W

∂λ1
− p(r, t) = μλ2

1 − p(r, t),

τθθ(r, t) = λ2
∂W

∂λ2
− p(r, t) = μλ2

2 − p(r, t),
(5)

where p(r, t) is the hydrostatic pressure to be determined.
The motion equation with the absence of body forces is

dτrr

dr
+

1
r
(τrr − τθθ) = ρr̈ (t ≥ 0), (6)

where ρ is the constant mass density of the material. The boundary conditions of the shell are
{

τrr(a, t) = −p(t),
τrr(b, t) = 0.

(7)

Here, b = r(B, t) is the deformed outer surface.
The initial stress-free conditions for the shell at time t = 0 are

{
r(R, 0) = R,

ṙ(R, 0) = 0.
(8)

2 The governing differential equations

From the incompressible condition (2),

r̈(t) =
1
r

[(
1 − a2

r2

)
ȧ2 + aä

]
. (9)

Substituting stresses (5) and (9) into the motion equation (6), we have

d

dr

[
μλ2

1 − p(r, t)
]
+

1
r

[
μ
(
λ2

1 − λ2
2

)]
=

ρ

r

[(
1 − a2

r2

)
ȧ2 + aä

]
. (10)

Integrating it with respect to r, then

μλ2
1 − p(r, t) + p(a, t) +

∫ r

a

μ
(
λ2

1 − λ2
2

) ds

s

= ρȧ2 a2 − r2 + 2r2 ln r − 2r2 ln a

2r2
+ ρaä(ln r − ln a). (11)

Introducing it into (5), we have

τrr (r, t) = ρȧ2 a2 − r2 + 2r2 ln r − 2r2 ln a

2r2
+ ρaä(ln r − ln a) −

∫ r

a

μ
(
λ2

1 − λ2
2

) ds

s
− p(a, t).

(12)
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Introducing it into (7), we have p(a, t) = p(t), and

p(t) =ρȧ2 a2 − b2 + 2b2 ln b − 2b2 ln a

2b2
+ ρä(ln b − ln a) −

∫ b

a

μ(λ2
1 − λ2

2)
ds

s
. (13)

By defining new invariants
a

A
= x(t),

B2

A2
− 1 = δ,

we have
b2

A2
= x2(t) + δ,

b2

B2
=

x2 + δ

δ + 1
,

b

a
=

√

1 +
δ

x2
.

Let ξ = r
R , then

ξ =
(

1 − a2 − A2

r2

)− 1
2

,
dr

r
=

1
1 − ξ2

dξ

ξ
.

Equation (13) may be rewritten as

p(t) = ρA2ẋ2
[ −δ

2(x2 + δ)
+ ln

√

1 +
δ

x2

]
+ ρA2xẍ ln

√

1 +
δ

x2
−
∫

q
x2+δ
δ+1

x

[μ
(
ξ−2 − ξ2

)

ξ (1 − ξ2)

]
dξ

= ρA2ẋ2
[ −δ

2(x2 + δ)
+ ln

√

1 +
δ

x2

]
+ ρA2xẍ ln

√

1 +
δ

x2

+
1
2

1 + δ

δ + x2
− 1

2x2
− ln x +

1
2

ln
δ + x2

1 + δ
. (14)

Here, a = xA, b = A
√

x2 + δ.
The initial conditions are

x(0) = 1, ẋ(0) = 0. (15)

By putting x1 = x and x2 = ẋ, a system of first order equations are obtained from (14):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 =
1

x1 ln
√

1 + δ
x2
1

[
1

ρA2

(
−1

2
1 + δ

δ + x2
1

+
1

2x2
1

+ ln x1 − 1
2

ln
δ + x2

1

1 + δ

)]

+
1

x1 ln
√

1 + δ
x2
1

[
p(t)
ρA2

− x2
2

(
−δ

2(x2
1 + δ)

+ ln

√

1 +
δ

x2
1

)]

.

(16)

The corresponding initial conditions are

x1(0) = 1, x2(0) = 0. (17)

3 Static equilibrium solutions

The solution of the static equilibrium problem is the fixed point for the dynamic response of
the corresponding autonomous system under a constant internal pressure. The property of the
fixed point is related to the property of the dynamical solution and the motion of the shell. The
equilibrium pressure function is the core of the static equilibrium problem. Let the right side
of the motion equation (6) equal zero, the equilibrium equation for the cylindrical shell under
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a statically internal uniform pressure p0 is obtained. Following a similar analogy as above, we
have

p0 =
∫ v(A)

v(B)

μ(v−3 − v)
v2 − 1

dv. (18)

Here,

v = v (R) =
r (R)

R
=
(

1 +
a2 − A2

R2

) 1
2

, v (B) =
(

1 +
a2 − A2

B2

) 1
32

, v (A) =
a

A
= x

describe the motion of the internal boundary of the shell.
Numerical results of (18) for the shell with different thickness are shown in Fig. 1. Material

constants are taken as μ = 2.63 MPa, ρ = 950 kg · m−3. As shown in Fig. 1, the deformation
of the shell increases with the pressure, and there exists a horizontal asymptote. When the
pressure is close to the one corresponding to the horizontal asymptote, the deformation of the
shell may have a quick increase, which means the destruction of the shell. Therefore, this
pressure may be taken as the critical value pcr for the shell under the internal uniform pressure
p0. Also, the critical value pcr increases with the thickness of the shell. For example, the
values are 0.28 MPa, 1.45 MPa and 4.12 MPa for the shell with thickness δ = 0.234, 2.0, 4.0,
respectively. Therefore, it is more difficult to destroy a thicker shell.

1 2 3 4 5
0

1

2

3

4

δ = 4
δ = 2
δ = 0.234

x

p 0
/M

Pa

Fig. 1 The equilibrium pressure function

4 Dynamic response under a constant internal pressure

The system is autonomous when the forcing internal pressure is constant. Letting p(t) = p0

and integrating (14) with respect to x, we obtain

x2 ln

√

1 +
δ

x2
ẋ2 − 2

ρA2

∫ x

1

x

(
1
2

1 + δ

δ + x2
− 1

2x2
− ln x +

1
2

ln
δ + x2

1 + δ

)
dx − p0

ρA2
(x2 − 1) = 0.

(19)

From the theory of vibrations, the motion x (t) is periodic if and only if the curve of x vs.
ẋ = V in the phase diagram is closed and owns a finite period T =

∮
dx
V . For a given load

p0, the period motion x (t) will occur if there is a root x > 0 for (19) when V = 0. Letting
V = ẋ = 0 in (19) leads to

2
∫ x

1

x

(
1
2

1 + δ

δ + x2
− 1

2x2
− ln x +

1
2

ln
δ + x2

1 + δ

)
dx − p0

ρA2
(x2 − 1) = 0. (20)

For a given load p0, if there is a root x > 0 for (20), then it is the maximum radius of
the internal surface of the shell in the oscillation process and denoted by xmax. The curves
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between xmax and p0 for the shell with different thickness are shown in Fig. 2. Then the curves
computed from (19) between the velocity V = ẋ and x are shown in Fig. 3 corresponding to
different values of xmax.

1 2 3 4 5
0.0

0.4

0.8

1.2

1.6

2.0

δ = 4
δ = 2
δ = 0.234

xmax

p 0
/M

Pa

Fig. 2 xmax vs. p0 curves

0.8 1.2 1.6 2.0 2.4 2.8 3.2
−0.8

−0.4

0.0

0.4

0.8

V

p0 = 0.519 MPa
p0 = 0.812 MPa

p0 = 1.05 MPa
p0 = 1.23 MPa

x

Fig. 3 Phase diagrams for δ = 2

It is seen that there exists a critical value pcr for the pressure of the shell (for example,
when δ = 2, pcr = 1.204 MPa). When p0 < pcr, xmax increases with the pressure, and the
corresponding phase curves in the phase plane are closed curves. Thus the shell undergoes a
nonlinearly periodic oscillation. However, when p0 ≥ pcr, the phase curves in the phase plane
are not closed. So the shell will be destroyed ultimately with time. At the same time, the
critical value pcr for the shell increases with the thickness of the shell, i.e., it is easier to destroy
a shell with a thinner thickness.

The system is autonomous when the forcing internal pressure is constant. The fixed point
for the system is (x1, x2) = (xs, 0) . Here, xs is the corresponding static equilibrium of the
system (the static deformation under the same load). The property of the fixed point is related
to the property of the dynamical solution and the motion of the shell. The type of the fixed
point should be determined from the Jacobian at the fixed point as usual. The Jacobian at the
fixed point of equation (16) is

J =
(

J11 J12

J21 J22

)

(xs,0)

=
(

0 1
J21 0

)
, (21)

where,

J21 =
1

xs ln
(
1 + δ

x2
s

)

[
2μ

ρA2

(

− 1
x3

s

− 2xs

δ + x2
s

+
1
xs

+
(1 + δ)xs

(δ + x2
s )

2

)]

+
2δ

x4
s

(
1 + δ

x2
s

)
ln
(
1 + δ

x2
s

)
[

p0

ρA2
+

μ

ρA2

(
1

2x2
s

− 1 + δ

2 (δ + x2
s )

+ ln xs − ln
δ + x2

s

1 + δ

)]

+
1

x2
s ln

(
1 + δ

x2
s

)
[

2p0

ρA2
+

2μ

ρA2

(
1

2x2
s

− 1 + δ

2 (δ + x2
s )

+ ln xs − ln
δ + x2

s

1 + δ

)]
. (22)

The trace of the Jacobian is trJ = J11 + J22 = 0, and the determinant of the Jacobian is
D = det |J | = −J21. Numerical results for the determinant of the Jacobian for the shell in the
case of δ = 2 from (22) are shown in Table 1.

Table 1 Determinant of the Jacobian (δ = 2)

xs 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

D/106 6.6 3.46 1.51 0.78 0.66 0.48 0.42 0.19 −0.16
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As usual, if D < 0, the fixed point is a saddle and it is unstable. If tr J = 0, D > 0, the
fixed point is a center and it is stable. It is shown that if p0 < pcr = 1.204 MPa (xs < 1.9), the
fixed point is a center; and if p0 ≥ pcr = 1.204 MPa, the fixed point is an unstable saddle in the
case of δ = 2. And as usual, each center is surrounded by a homoclinic or heteroclinic orbit.
As an example, for the shell in the case of δ = 2 under the constant pressure p0 = 1.04 MPa,
(xs, 0) = (1.6, 0) is the center of the closed curve (homoclinic orbit) with (x (0) , 0) = (1.0, 0)
and (xmax, 0) = (2.4, 0) in the phase space shown as the solid curve in Fig. 3.

5 Dynamic response under a periodic internal pressure

In practice, rubber hoses or biological structures must endure periodic or near periodic
forcing. The response to the periodic forcing must be examined for its stability and for the
destruction of the structure. Therefore, the dynamic response and the destruction of the shell
for a periodic forcing, such as p (t) = p1 + p2 sin(ωt), are examined.

In the case of p (t) = p1 + p2 sin(3πt), numerical results, such as the displacement response
curves, the phase portraits and the Poincaré maps, are given by numerical computation through
the Runge-Kutta integrator of the first order differential equations (16). One of the displacement
response curves is shown in Fig. 4. Five of the phase portraits and two of the Poincaré maps
are shown in Figs. 5–9 and Figs. 10–11, respectively.

560 570 580 590 600
1.0

1.2

1.4

1.6

1.8

2.0

x

t

Fig. 4 Displacement response curve with
δ = 2, p1 = 0.3 MPa and p2 =
0.1 MPa

1.0 1.2 1.4 1.6 1.8 2.0

−0.4

−0.2

0.0

0.2

0.4

V

x

Fig. 5 Phase portrait with δ = 2, p1 =
0.3 MPa and p2 = 0.1 MPa

1.0 1.5 2.0 2.5 3.0 3.5 4.0−1.5

−0.5

0.5

0.0

1.5

1.0

−1.0

V

x

Fig. 6 Phase portrait with δ = 2, p1 =
0.8 MPa and p2 = 0.7 MPa

1 2 3 4 5 6
−2.0

−1.0

0.0

1.0

2.0

V

x

Fig. 7 Phase portrait with δ = 2, p1 =
1.0 MPa and p2 = 0.5 MPa

As usual, for the internal periodic forcing p(t) = p1 + p2 sin(ωt), the mean pressure is
pm = p1 + p2. It is found that there exists a critical value pm

cr for the mean pressure for a given
load amplitude p2 and a given frequency ω. When the mean pressure pm < pm

cr, the displacement
response curves, the phase portrait and the Poincaré maps as shown above may be obtained. It
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Fig. 8 Phase portrait with δ = 2, p1 =
1.4 MPa and p2 = 0.1 MPa
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x

Fig. 9 Phase portrait with δ = 2, p1 =
1.4 MPa and p2 = 0.5 MPa
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Fig. 10 Poincaré map with δ = 2, p1 =
1.0 MPa and p2 = 0.1 MPa
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x

Fig. 11 Poincaré map with δ = 2, p1 =
1.4 MPa and p2 = 0.1 MPa

is shown by the figures that the motion of the shell presents nonlinear quasi-periodic oscillations.
However, when the mean pressure pm ≥ pm

cr, the figures as shown above cannot be obtained.
That is to say the shell may be destroyed ultimately with time.

At the same time, the effect of the load amplitude p2 and the frequency ω on the critical
mean pressures pm

cr may be ignored. For example, the value is always 1.4 MPa for the shell in
the case of δ = 2.

6 Conclusions

Dynamical response and the destruction of internally periodic pressurized or constant pres-
surized incompressible hyper-elastic cylindrical shells are examined within the framework of
finite elasto-dynamics. There exists a critical value for the pressure of the shell under static
equilibrium. When the pressure approaches this critical value, the shell expands quickly and
will be destroyed. The solution of the static equilibrium problem is the fixed point for the
dynamical response of the corresponding system under a suddenly applied constant load. The
property of the fixed point is related to the property of the dynamical solution and the motion
of the shell. There also exists a critical value for the pressure of the shell under a suddenly
applied constant internal pressure. When the pressure is less than this critical value, the fixed
point is a center surrounded by a homoclinic orbit, and the shell will undergo nonlinear periodic
oscillation. But when the pressure is larger than the critical value, the fixed point is an unstable
saddle, the phase portrait is a non-closed curve, and the shell will be destroyed ultimately with
time. There also exists a critical value for the pressure of the shell under a periodic internal
pressure by numerical computation of the first order differential equations. When the pressure
is less than this critical value, the displacement response curves, the phase portrait and the
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Poincaré maps may be given, and the shell will undergo a nonlinear quasi-periodic oscillation.
But when the pressure is larger than this critical value, the figures cannot be obtained, and the
shell will be destroyed ultimately with time. The critical value demanded for the destruction
of the shell under a periodic internal pressure or a constant pressure is less than that under the
static equilibrium, and the value under the constant pressure is the lowest.
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