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Abstract. Following ideas of A. C. Cochran, we give a suitable definition of a
saturated uniformly A-convex algebra. In the m-convex case, such algebra is a
uniform topological one.
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1. PRELIMINARIES

A locally convex algebra is a complex algebra with a locally convex topol-
ogy for which the multiplication is separately continuous. A locally m-convex
algebra is a locally convex algebra whose topology is defined by a family of sub-
multiplicative seminorms. A uniform seminorm on an algebra E is a seminorm
p such that p

(
x2
)

= p(x)2 for all x ∈ E. Such a seminorm is submultiplicative.
A uniform topological algebra is a locally convex algebra whose topology is de-
fined by a family of uniform seminorms. A uniform normed algebra is a normed
algebra (E, ‖.‖) such that ‖x2‖ = ‖x‖2 for all x ∈ E. A locally convex algebra
E is uniformly A-convex if its topology is defined by a family {pα, α ∈ Λ} of
seminorms with the property that for x ∈ E, there is a positive constant rx such
that pα(xy) ≤ rxpα(y) and pα(yx) ≤ rxpα(y) for all α ∈ Λ and y ∈ E. Let E be
a locally convex algebra. Denote by M∗ (E) the set of all nonzero multiplicative
linear functionals on E. Denote by M(E) the space of all nonzero continuous
multiplicative linear functionals on E, topologized via the weak topology, it is
called the carrier space of E.

2. RESULTS

Let (E, (pα)α∈Λ) be a Hausdorff commutative uniformly A-convex algebra
with unit e. The family {pα, α ∈ Λ} of seminorms can be chosen such that
pα (e) = 1 for all α ∈ Λ. For x ∈ E, let ‖x‖ = sup [sup{pα (xy) , pα (y) ≤ 1} : α ∈ Λ] =
inf{rx > 0, pα (xy) ≤ rxpα (y) for all α ∈ Λ, y ∈ E}. By [1, Lemma 3.2], ‖.‖ is
a submultiplicative norm on E for which pα(x) ≤ ‖x‖ for all α ∈ Λ and x ∈ E.
Let M be the carrier space of (E, (pα)α∈Λ) and let Mn be the carrier space of
(E, ‖.‖) ,M ⊂ Mn. Since (E, ‖.‖) is a commutative normed algebra with unit,
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Mn is nonempty. M may be empty [2]. For the sequel, we assume that M
is nonempty. For α ∈ Λ and m ∈ M, Cochran [1] has defined the extended
real number tα (m) = sup{|m(x)|, pα(x) ≤ 1} and the map φα : M → R by
φα (m) = tα(m)−1 if tα(m) <∞ and φα (m) = 0 otherwise.

Proposition 2.1.
(1) tα(m) ≥ 1 and 0 ≤ φα(m) ≤ 1 for all α ∈ Λ and m ∈M ;
(2) tα(m) <∞ if, and only if, m is continuous for pα;
(3) If tα (m) <∞, then |m(x)| ≤ tα (m) pα(x) for all x ∈ E.

Proof. (1) Since m (e) = 1 and pα (e) = 1, it follows that tα(m) ≥ 1, hence
φα (m) = tα(m)−1 ≤ 1.

(2) m is continuous for pα if, and only if, m is bounded on {x ∈ E, pα(x) ≤
1}, i.e. tα (m) <∞.

(3) Let x ∈ E and ε > 0, |m
(

(pα (x) + ε)
−1
x
)
| ≤ tα(m) since pα

(
(pα (x) + ε)

−1
x)
)
≤

1, thus |m (x) | ≤ tα (m) (pα (x) + ε) . Since ε > 0 is arbitrary, we conclude that
|m (x) | ≤ tα (m) pα (x) .

Let Cb(M) be the algebra of all complex continuous bounded functions on
M, with the topology defined by the family {p̂α, α ∈ Λ} of seminorms, where
p̂α(f) = sup{φα(m)|f(m)|,m ∈M} for all f ∈ Cb (M) . For α ∈ Λ , defineMα =
{m ∈M, tα (m) <∞}. If Mα is empty, φα (m) = 0 for all m ∈M, so p̂α (f) = 0
for all f ∈ Cb (M) . If Mα is nonempty, p̂α(f) = sup{tα(m)−1|f(m)|,m ∈Mα}.
If {pα, α ∈ Λ} is a directed family of seminorms, then M =

⋃
α∈ΛMα , so there

exists α ∈ Λ such that Mα is nonempty. The following result is due to Cochran
[1], the proof is given for completeness.

Proposition 2.2 [1]. Let G : E → C(M) be the Gelfand map. Then
(1) |x̂(m)| ≤ ‖x‖ for all x ∈ E and m ∈M, so G (E) = Ê ⊂ Cb (M) ;
(2) p̂α (x̂) ≤ pα(x) for all α ∈ Λ and x ∈ E.

Proof. (1) Let m ∈ M ⊂ Mn. Since (E, ‖.‖) is a normed algebra and m ∈
Mn , it follows that |x̂ (m) | = |m(x)| ≤ ‖x‖ for all x ∈ E. Consequently ,
Ê ⊂ Cb (M) .

(2) Let α ∈ Λ. If Mα is empty, p̂α (x̂) = 0 ≤ pα(x) for all x ∈ E. If
Mα is nonempty, we have |m (x) | ≤ tα (m) pα(x) for all m ∈ Mα and x ∈ E,
i.e. tα (m)

−1 |m (x) | ≤ pα(x) for all m ∈ Mα and x ∈ E. Thus p̂α (x̂) =

sup{tα (m)
−1 |m (x) |,m ∈Mα} ≤ pα(x) for all x ∈ E.

Let α ∈ Λ and let Fα be the topological dual of (E, pα) . For f ∈ Fα, put
tα (f) = sup{|f(x)|, pα(x) ≤ 1}, tα is a norm on Fα. If Mα is nonempty, Mα

is usually topologized via the weak topology. But for the following proposition,
we consider on Mα the topology τα induced by the topology of tα. The map
Mα → R,m→ tα (m) , is continuous for τα. Since (Mα, τα) is a metric space, it
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is a completely regular space, we denote by Mβ
α the Stone-Čech compactification

of Mα .

Proposition 2.3. The following assertions are equivalent:
(1) If pα (x) = 1 for some α ∈ Λ and x ∈ E, then p̂α (x̂) = 1 ;
(2) p̂α (x̂) = pα (x) for all α ∈ Λ and x ∈ E;
(3) For α ∈ Λ and x ∈ E such that pα (x) = 1,Mα is nonempty and the

continuous extension of the map Mα → R,m → tα (m)
−1 |m (x) |, to Mβ

α is
equal to 1 at some m0 ∈Mβ

α .

Proof. (1) ⇒ (2) : Let α ∈ Λ and x ∈ E. If pα (x) = 0, then 0 ≤ pα (x̂) ≤
pα (x) = 0 by Proposition 2.2, so p̂α (x̂) = 0. If pα (x) 6= 0, p̂α

(
pα (x)

−1
x̂
)

= 1

since pα

(
pα (x)

−1
x
)

= 1, hence p̂α (x̂) = pα (x) .

(2) ⇒ (3) : Let α ∈ Λ and x ∈ E such that pα (x) = 1. Mα is nonempty
since 1 = pα (x) = p̂α (x̂) 6= 0. Let m1,m2 in Mα , |m1 (x) − m2 (x) | =
| (m1 −m2) (x) | ≤ tα (m1 −m2) pα (x) = tα (m1 −m2) , then the map Mα →
R,m → m (x) , is continuous. Consequently, the map ϕα : Mα → R,ϕα (m) =

tα (m)
−1 |m (x) |, is continuous. ϕα is also bounded on Mα since p̂α (x̂) =

sup{tα(m)−1|m(x)|,m ∈ Mα} = pα (x) = 1. Therefore ϕα has a continu-

ous extension ϕβα to Mβ
α . Since tα (m)

−1 |m (x) | ≤ 1 for all m ∈ Mα and
Mα is dense in Mβ

α , it follows that ϕβα (m) ≤ 1 for all m ∈ Mβ
α . We have

1 = sup{tα (m)
−1 |m(x)|,m ∈ Mα} ≤ sup{ϕβα (m) ,m ∈ Mβ

α} ≤ 1, hence
sup{ϕβα (m) ,m ∈ Mβ

α} = 1. Since Mβ
α is compact, there exists m0 ∈ Mβ

α

such that ϕβα (m0) = 1.
(3)⇒ (1) : Let α ∈ Λ and x ∈ E such that pα (x) = 1. If p̂α (x̂) =

sup{tα (m)
−1 |m(x)|,m ∈Mα} = s < 1, tα(m)−1|m(x)| ≤ s < 1 for all m ∈Mα

, then ϕβα (m) ≤ s < 1 for all m ∈ Mβ
α , this contradicts (3) . Therefore

p̂α (x̂) ≥ 1, so 1 ≤ p̂α (x̂) ≤ pα (x) = 1 i.e. p̂α (x̂) = 1.

We say that E is a Cochran algebra if p̂α (x̂) = pα (x) for all α ∈ Λ and
x ∈ E.

Proposition 2.4. If E is a Cochran algebra, then the Gelfand map G from
(E, (pα)α∈Λ) onto (Ê, (p̂α)α∈Λ) is an algebraic and topological isomorphism.

Proof. Let x ∈ E. If x̂ = 0, then p̂α (x̂) = pα (x) = 0 for all α ∈ Λ, so
x = 0 since E is Hausdorff. Consequently, G is an algebraic isomorphism. Since
p̂α (x̂) = pα (x) for all α ∈ Λ and x ∈ E, G is a topological isomorphism.

Proposition 2.5. Let E be a Cochran algebra whose carrier space M is
equicontinuous. Then E is a uniform normed algebra.

Proof. For x ∈ E, let q (x) = sup{|m(x)|,m ∈M}. Since M is equicontinuous,
the map q is a continuous seminorm on E. Let α ∈ Λ and x ∈ E, pα (x) =
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p̂α (x̂) = sup{φα(m)|m(x)|,m ∈M} ≤ q(x) since 0 ≤ φα(m) ≤ 1 for all m ∈M.
Let x ∈ E such that q (x) = 0, since E is Hausdorff and pα (x) ≤ q (x) = 0 for
all α ∈ Λ , it follows that x = 0. q is a continuous uniform norm on E such that
pα(x) ≤ q (x) for all α ∈ Λ and x ∈ E, then the topology of E can be defined
by the uniform norm q.

Corollary 2.1. Let E be a Cochran algebra. If E is barrelled or a Q-algebra,
then E is a uniform normed algebra.

Proof. (1) Assume that E is barrelled. By Proposition 2.2, |m(x)| ≤ ‖x‖ for
all x ∈ E and m ∈M. Therefore M is bounded for the weak topology, so M is
equicontinuous.

(2) Assume that E is a Q-algebra. By [3, Proposition II.7.1], every topo-
logical Q-algebra has an equicontinuous carrier space.

The saturated uniformly A-convex algebras were introduced by Cochran [1]
as a subclass of the class of Cochran algebras.

Definition 2.1 [1]. E is saturated if for each α ∈ Λ and x ∈ E such that
pα (x) = 1, there exists m0 ∈M such that m0 (x) = sup{|m(y)|, pα(y) ≤ 1} for
some m ∈M. ( Then p̂α (x̂) = 1 = pα (x)).

Oudadess [2] has proved that the class of complete saturated algebras (in
the sense of Definition 2.1) is empty. His proof uses the completeness of the
algebra. Here we give a simple proof in the general case.

Proposition 2.6. The class of saturated algebras (in the sense of Definition
2.1) is empty.

Proof. Let α ∈ Λ , we have pα (−e) = pα (e) = 1. Since the algebra is saturated,
there exist m0,m in M such that −1 = m0 (−e) = sup{|m(y)|, pα(y) ≤ 1} ≥ 0,
which is absurd.

We think that the definition of a saturated algebra should be as follows:

Definition 2.2. E is saturated if for each α ∈ Λ and x ∈ E such that pα (x) =
1, there exists m0 ∈ M such that |m0 (x) | = sup{|m0(y)|, pα(y) ≤ 1}, i.e.
m0 ∈Mα and tα(m0)−1|m0(x)| = 1.

Proposition 2.7. If E is saturated, then E is a Cochran algebra.

Proof. Let α ∈ Λ and x ∈ E such that pα (x) = 1. By hypothesis, Mα is

nonempty and the map Mα → R,m → tα (m)
−1 |m (x) |, is equal to 1 at some

m0 ∈M. Therefore E is a Cochran algebra by Proposition 2.3.
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If pα is submultiplicative, Nα = {x ∈ E, pα (x) = 0} is an ideal in E and the
quotient algebra E/Nα is a normed algebra with the norm ‖xα‖α = pα (x) , xα =
x+Nα. Let Eα be the completion of E/Nα, Eα is a commutative Banach algebra
with unit.

Proposition 2.8. If pα is submultiplicative, then
(1) Mα is a nonempty compact space;
(2) tα (m) = 1 for all m ∈Mα.

Proof. (1) Mα is homeomorphic to M(Eα) by [4, Proposition 7.5], then Mα

is a nonempty compact space.
(2) Let m ∈Mα, |m (x) | ≤ tα (m) pα(x) for all x ∈ E, then Nα is included

in Ker (m) . We may define a multiplicative linear functional mα on E/Nα by
mα (xα) = m (x) . Since E/Nα is a normed algebra andmα ∈M(E/Nα), |mα (xα) | ≤
‖xα‖α for all x ∈ E. Further, as E/Nα is unital, 1 = sup{|mα(xα)|, ‖xα‖α ≤
1} = sup{|m(x)|, pα(x) ≤ 1} = tα(m).

Proposition 2.9. If pα is submultiplicative for every α ∈ Λ, then the following
assertions are equivalent:

(1) E is saturated;
(2) E is a Cochran algebra;
(3) (E, (pα)α∈Λ) is a uniform topological algebra.

Proof. (1) ⇒(2) : By Proposition 2.7.
(2)⇒ (3) : Let α ∈ Λ and x ∈ E, pα (x) = p̂α (x̂) = sup{tα(m)−1|m(x)|,m ∈

Mα} = sup{|m(x)|,m ∈ Mα} by Proposition 2.8. Thus pα is a uniform semi-
norm.

(3) ⇒ (1) : Let α ∈ Λ and x ∈ E such that pα (x) = 1. Since Eα is a
uniform Banach algebra, 1 = pα(x) = ‖xα‖α = sup{|g(xα)|, g ∈ M(Eα)} =
sup{|m(x)|,m ∈Mα} by [4, proposition 7.5]. Since Mα is compact, there exists
m0 ∈ Mα such that |m0 (x) | = 1 = tα (m0) by Proposition 2.8, hence E is
saturated.

We give an example of a saturated algebra which is not m-convex.

Example. Let Cb(R) be the algebra of all complex continuous bounded func-
tions on R. Let Λ be the subset of Cb(R) defined by φ ∈ Λ if φ(x) > 0 for all
x ∈ R, sup{|φ(x)|, x ∈ R} = 1 and φ vanishes at infinity. We endow Cb(R)
with the topology determined by the family {pφ, φ ∈ Λ} of seminorms, where
pφ(f) = sup{|f(x)φ(x)|, x ∈ R}. Cb(R) is a commutative complete uniformly
A-convex algebra with unit u(u (x) = 1 for all x ∈ R) such that pφ (u) = 1
for all φ ∈ Λ. (Cb(R), (pφ)φ∈Λ) is not m-convex. Let f ∈ Cb(R) and φ ∈ Λ
such that pφ (f) = 1. Since φ vanishes at infinity, there exists x0 ∈ R such
that |f (x0)φ (x0) | = 1. Show that |f(x0)| = sup{|g(x0)|, pφ(g) ≤ 1}. The proof
is due to Beddaa [5], it is given here for completeness. We have |f (x0) | ≤
sup{|g(x0)|, pφ(g) ≤ 1} since pφ (f) = 1. If pφ (g) ≤ 1 = |f (x0)φ (x0) |, then
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|g (x0)φ (x0) | ≤ |f (x0)φ (x0) |, so |g (x0) | ≤ |f (x0) | since φ (x0) > 0. We
have shown that |δx0

(f) | = sup{|δx0
(g)|, pφ(g) ≤ 1}, where δx0

: Cb (R) →
C, δx0

(h) = h (x0) , is a nonzero continuous multiplicative linear functional on
Cb (R) . Thus (Cb(R), (pφ)φ∈Λ) is saturated.

Oudadess [2] has introduced the following definition:

Definition 2.3 [2]. E is v-saturated if for all α ∈ Λ and x ∈ E such
that pα (x) = 1, there exist m0,m in M∗ = M∗(E) such that |m0(x)| =
sup{|m(y)|, pα(y) ≤ 1}.

We have three remarks about this definition.

1. If E is v-saturated, for α ∈ Λ and x ∈ E such that pα(x) = 1, there
exist m0,m in M∗ such that sup{|m(x)|, pα(y) ≤ 1} = |m0(x)| <∞, then M is
nonempty since m ∈M , so the fact of replacing M by M∗ is not justified.

2. Oudadess [2] did not use anywhere the sup-property of his definition. He
only used the following deduced property: for all α ∈ Λ and x ∈ E such that
pα (x) = 1, there exists m0 ∈M∗ such that |m0(x)| ≥ 1.

3. In [2, Theorem 5.4], Oudadess claimed that if E is complete and v-
saturated, then the Gelfand map G from (E, (pα)α∈Λ) onto (Ê, (p̂α)α∈Λ) is an
algebraic and topological isomorphism. For the proof, he used Theorem 3.5 of
[1], but this theorem allows us only to conclude that G is a continuous algebraic
isomorphism.
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