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Following ideas of A. C. Cochran, we give a suitable definition of a saturated uniformly A-convex algebra. In the m-convex case, such algebra is a uniform topological one.

PRELIMINARIES

A locally convex algebra is a complex algebra with a locally convex topology for which the multiplication is separately continuous. A locally m-convex algebra is a locally convex algebra whose topology is defined by a family of submultiplicative seminorms. A uniform seminorm on an algebra E is a seminorm p such that p x 2 = p(x) 2 for all x ∈ E. Such a seminorm is submultiplicative. A uniform topological algebra is a locally convex algebra whose topology is defined by a family of uniform seminorms. A uniform normed algebra is a normed algebra (E, . ) such that x 2 = x 2 for all x ∈ E. A locally convex algebra E is uniformly A-convex if its topology is defined by a family {p α , α ∈ Λ} of seminorms with the property that for x ∈ E, there is a positive constant r x such that p α (xy) ≤ r x p α (y) and p α (yx) ≤ r x p α (y) for all α ∈ Λ and y ∈ E. Let E be a locally convex algebra. Denote by M * (E) the set of all nonzero multiplicative linear functionals on E. Denote by M (E) the space of all nonzero continuous multiplicative linear functionals on E, topologized via the weak topology, it is called the carrier space of E.

RESULTS

Let (E, (p α ) α∈Λ ) be a Hausdorff commutative uniformly A-convex algebra with unit e. The family {p α , α ∈ Λ} of seminorms can be chosen such that

p α (e) = 1 for all α ∈ Λ. For x ∈ E, let x = sup [sup{p α (xy) , p α (y) ≤ 1} : α ∈ Λ] = inf{r x > 0, p α (xy) ≤ r x p α (y) for all α ∈ Λ, y ∈ E}. By [1, Lemma 3.2],
. is a submultiplicative norm on E for which p α (x) ≤ x for all α ∈ Λ and x ∈ E. Let M be the carrier space of (E, (p α ) α∈Λ ) and let M n be the carrier space of (E, . ) , M ⊂ M n . Since (E, . ) is a commutative normed algebra with unit, M n is nonempty. M may be empty [START_REF] Oudadess | v-saturated uniformly A-convex algebras[END_REF]. For the sequel, we assume that M is nonempty. For α ∈ Λ and m ∈ M, Cochran [START_REF] Cochran | Representation of A-convex algebras[END_REF] has defined the extended real number t α (m) = sup{|m(x)|, p α (x) ≤ 1} and the map

φ α : M → R by φ α (m) = t α (m) -1 if t α (m) < ∞ and φ α (m) = 0 otherwise. Proposition 2.1.
(1) t α (m) ≥ 1 and 0 ≤ φ α (m) ≤ 1 for all α ∈ Λ and m ∈ M ;

(2) t α (m) < ∞ if, and only if, m is continuous for p α ;

(3

) If t α (m) < ∞, then |m(x)| ≤ t α (m) p α (x) for all x ∈ E.
Proof.

(1) Since m (e) = 1 and p α (e) = 1, it follows that t α (m) ≥ 1, hence

φ α (m) = t α (m) -1 ≤ 1.
(2) m is continuous for p α if, and only if, m is bounded on {x ∈ E, p α (x) ≤ 1}, i.e. t α (m) < ∞.

(3) Let x ∈ E and ε > 0, |m (p α (x) + ε) -1 x | ≤ t α (m) since p α (p α (x) + ε) -1 x) ≤ 1, thus |m (x) | ≤ t α (m) (p α (x) + ε) . Since ε > 0 is arbitrary, we conclude that |m (x) | ≤ t α (m) p α (x) .
Let C b (M ) be the algebra of all complex continuous bounded functions on M, with the topology defined by the family {p α , α ∈ Λ} of seminorms, where pα

(f ) = sup{φ α (m)|f (m)|, m ∈ M } for all f ∈ C b (M ) . For α ∈ Λ , define M α = {m ∈ M, t α (m) < ∞}. If M α is empty, φ α (m) = 0 for all m ∈ M, so pα (f ) = 0 for all f ∈ C b (M ) . If M α is nonempty, pα (f ) = sup{t α (m) -1 |f (m)|, m ∈ M α }. If {p α , α ∈ Λ} is a directed family of seminorms, then M = α∈Λ M α , so there exists α ∈ Λ such that M α is nonempty.
The following result is due to Cochran [START_REF] Cochran | Representation of A-convex algebras[END_REF], the proof is given for completeness.

Proposition 2.2 [1]. Let G : E → C(M ) be the Gelfand map. Then (1) |x(m)| ≤ x for all x ∈ E and m ∈ M, so G (E) = Ê ⊂ C b (M ) ; (2) pα (x) ≤ p α (x) for all α ∈ Λ and x ∈ E. Proof. (1) Let m ∈ M ⊂ M n . Since (E, . ) is a normed algebra and m ∈ M n , it follows that |x (m) | = |m(x)| ≤ x for all x ∈ E. Consequently , Ê ⊂ C b (M ) . (2) Let α ∈ Λ. If M α is empty, pα (x) = 0 ≤ p α (x) for all x ∈ E. If M α is nonempty, we have |m (x) | ≤ t α (m) p α (x) for all m ∈ M α and x ∈ E, i.e. t α (m) -1 |m (x) | ≤ p α (x) for all m ∈ M α and x ∈ E. Thus pα (x) = sup{t α (m) -1 |m (x) |, m ∈ M α } ≤ p α (x) for all x ∈ E.
Let α ∈ Λ and let F α be the topological dual of (E,

p α ) . For f ∈ F α , put t α (f ) = sup{|f (x)|, p α (x) ≤ 1}, t α is a norm on F α . If M α is nonempty, M α
is usually topologized via the weak topology. But for the following proposition, we consider on M α the topology τ α induced by the topology of t α . The map

M α → R, m → t α (m) , is continuous for τ α . Since (M α , τ α ) is a metric space, it
is a completely regular space, we denote by M β α the Stone-Čech compactification of M α .

Proposition 2.3. The following assertions are equivalent:

(1) If p α (x) = 1 for some α ∈ Λ and x ∈ E, then pα (x) = 1 ;

(2) pα (x) = p α (x) for all α ∈ Λ and x ∈ E;

(3) For α ∈ Λ and x ∈ E such that p α (x) = 1, M α is nonempty and the continuous extension of the map

M α → R, m → t α (m) -1 |m (x) |, to M β α is equal to 1 at some m 0 ∈ M β α . Proof. (1) ⇒ (2) : Let α ∈ Λ and x ∈ E. If p α (x) = 0, then 0 ≤ p α (x) ≤ p α (x) = 0 by Proposition 2.2, so pα (x) = 0. If p α (x) = 0, pα p α (x) -1 x = 1 since p α p α (x) -1 x = 1, hence pα (x) = p α (x) .
(

) ⇒ (3) : Let α ∈ Λ and x ∈ E such that p α (x) = 1. M α is nonempty since 1 = p α (x) = pα (x) = 0. Let m 1 , m 2 in M α , |m 1 (x) -m 2 (x) | = | (m 1 -m 2 ) (x) | ≤ t α (m 1 -m 2 ) p α (x) = t α (m 1 -m 2 ) , then the map M α → R, m → m (x) , is continuous. Consequently, the map ϕ α : M α → R, ϕ α (m) = t α (m) -1 |m (x) |, is continuous. ϕ α is also bounded on M α since pα (x) = sup{t α (m) -1 |m(x)|, m ∈ M α } = p α (x) = 1. Therefore ϕ α has a continu- ous extension ϕ β α to M β α . Since t α (m) -1 |m (x) | ≤ 1 for all m ∈ M α and M α is dense in M β α , it follows that ϕ β α (m) ≤ 1 for all m ∈ M β α . We have 1 = sup{t α (m) -1 |m(x)|, m ∈ M α } ≤ sup{ϕ β α (m) , m ∈ M β α } ≤ 1, hence sup{ϕ β α (m) , m ∈ M β α } = 1. Since M β α is compact, there exists m 0 ∈ M β α such that ϕ β α (m 0 ) = 1. (3)⇒ (1) : Let α ∈ Λ and x ∈ E such that p α (x) = 1. If pα (x) = sup{t α (m) -1 |m(x)|, m ∈ M α } = s < 1, t α (m) -1 |m(x)| ≤ s < 1 for all m ∈ M α , then ϕ β α (m) ≤ s < 1 for all m ∈ M β α , this contradicts (3) . Therefore pα (x) ≥ 1, so 1 ≤ pα (x) ≤ p α (x) = 1 i.e. pα (x) = 1. 2 
We say that E is a Cochran algebra if pα (x) = p α (x) for all α ∈ Λ and x ∈ E. Proposition 2.4. If E is a Cochran algebra, then the Gelfand map G from (E, (p α ) α∈Λ ) onto ( Ê, (p α ) α∈Λ ) is an algebraic and topological isomorphism.

Proof. Let x ∈ E. If x = 0, then pα (x) = p α (x) = 0 for all α ∈ Λ, so x = 0 since E is Hausdorff. Consequently, G is an algebraic isomorphism. Since pα (x) = p α (x) for all α ∈ Λ and x ∈ E, G is a topological isomorphism. Proposition 2.5. Let E be a Cochran algebra whose carrier space M is equicontinuous. Then E is a uniform normed algebra.

Proof. For x ∈ E, let q (x) = sup{|m(x)|, m ∈ M }. Since M is equicontinuous, the map q is a continuous seminorm on E. Let α ∈ Λ and x ∈ E, p α (x) = pα (x) = sup{φ α (m)|m(x)|, m ∈ M } ≤ q(x) since 0 ≤ φ α (m) ≤ 1 for all m ∈ M.
Let x ∈ E such that q (x) = 0, since E is Hausdorff and p α (x) ≤ q (x) = 0 for all α ∈ Λ , it follows that x = 0. q is a continuous uniform norm on E such that p α (x) ≤ q (x) for all α ∈ Λ and x ∈ E, then the topology of E can be defined by the uniform norm q.

Corollary 2.1. Let E be a Cochran algebra. If E is barrelled or a Q-algebra, then E is a uniform normed algebra.

Proof. (1) Assume that E is barrelled. By Proposition 2.2, |m(x)| ≤ x for all x ∈ E and m ∈ M. Therefore M is bounded for the weak topology, so M is equicontinuous.

(2) Assume that E is a Q-algebra. By [3, Proposition II.7.1], every topological Q-algebra has an equicontinuous carrier space.

The saturated uniformly A-convex algebras were introduced by Cochran [START_REF] Cochran | Representation of A-convex algebras[END_REF] as a subclass of the class of Cochran algebras. Definition 2.1 [START_REF] Cochran | Representation of A-convex algebras[END_REF]. E is saturated if for each α ∈ Λ and x ∈ E such that p α (x) = 1, there exists m 0 ∈ M such that m 0 (x) = sup{|m(y)|, p α (y) ≤ 1} for some m ∈ M. ( Then pα (x) = 1 = p α (x)).

Oudadess [START_REF] Oudadess | v-saturated uniformly A-convex algebras[END_REF] has proved that the class of complete saturated algebras (in the sense of Definition 2.1) is empty. His proof uses the completeness of the algebra. Here we give a simple proof in the general case. We think that the definition of a saturated algebra should be as follows:

Definition 2.2. E is saturated if for each α ∈ Λ and x ∈ E such that p α (x) = 1, there exists m 0 ∈ M such that |m 0 (x) | = sup{|m 0 (y)|, p α (y) ≤ 1}, i.e. m 0 ∈ M α and t α (m 0 ) -1 |m 0 (x)| = 1. Proposition 2.7. If E is saturated, then E is a Cochran algebra. Proof. Let α ∈ Λ and x ∈ E such that p α (x) = 1. By hypothesis, M α is nonempty and the map M α → R, m → t α (m) -1 |m (x) |, is equal to 1 at some m 0 ∈ M. Therefore E is a Cochran algebra by Proposition 2.3. |g (x 0 ) φ (x 0 ) | ≤ |f (x 0 ) φ (x 0 ) |, so |g (x 0 ) | ≤ |f (x 0 ) | since φ (x 0 ) > 0. We have shown that |δ x0 (f ) | = sup{|δ x0 (g)|, p φ (g) ≤ 1}, where δ x0 : C b (R) → C, δ x0 (h) = h (x 0 ) , is a nonzero continuous multiplicative linear functional on C b (R) . Thus (C b (R), (p φ ) φ∈Λ ) is saturated.
Oudadess [START_REF] Oudadess | v-saturated uniformly A-convex algebras[END_REF] has introduced the following definition: Definition 2.3 [START_REF] Oudadess | v-saturated uniformly A-convex algebras[END_REF]. E is v-saturated if for all α ∈ Λ and x ∈ E such that p α (x) = 1, there exist m 0 , m in M * = M * (E) such that |m 0 (x)| = sup{|m(y)|, p α (y) ≤ 1}.

We have three remarks about this definition.

1. If E is v-saturated, for α ∈ Λ and x ∈ E such that p α (x) = 1, there exist m 0 , m in M * such that sup{|m(x)|, p α (y) ≤ 1} = |m 0 (x)| < ∞, then M is nonempty since m ∈ M , so the fact of replacing M by M * is not justified.

2. Oudadess [START_REF] Oudadess | v-saturated uniformly A-convex algebras[END_REF] did not use anywhere the sup-property of his definition. He only used the following deduced property: for all α ∈ Λ and x ∈ E such that p α (x) = 1, there exists m 0 ∈ M * such that |m 0 (x)| ≥ 1.

3. In [2, Theorem 5.4], Oudadess claimed that if E is complete and vsaturated, then the Gelfand map G from (E, (p α ) α∈Λ ) onto ( Ê, (p α ) α∈Λ ) is an algebraic and topological isomorphism. For the proof, he used Theorem 3.5 of [START_REF] Cochran | Representation of A-convex algebras[END_REF], but this theorem allows us only to conclude that G is a continuous algebraic isomorphism.

Proposition 2 . 6 .

 26 The class of saturated algebras (in the sense of Definition 2.1) is empty.Proof. Let α ∈ Λ , we have p α (-e) = p α (e) = 1. Since the algebra is saturated, there exist m 0 , m in M such that -1 = m 0 (-e) = sup{|m(y)|, p α (y) ≤ 1} ≥ 0, which is absurd.

If p α is submultiplicative, N α = {x ∈ E, p α (x) = 0} is an ideal in E and the quotient algebra E/N α is a normed algebra with the norm x α α = p α (x) , x α = x+N α . Let E α be the completion of E/N α , E α is a commutative Banach algebra with unit.

Proposition 2.8. If p α is submultiplicative, then

(1) M α is a nonempty compact space;

(2) t α (m) = 1 for all m ∈ M α .

Proof.

(1) M α is homeomorphic to M (E α ) by [4, Proposition 7.5], then M α is a nonempty compact space.

(

Proposition 2.9. If p α is submultiplicative for every α ∈ Λ, then the following assertions are equivalent:

(1) E is saturated;

(2) E is a Cochran algebra;

(3) (E, (p α ) α∈Λ ) is a uniform topological algebra.

Proof.

(1) ⇒(2) : By Proposition 2.7.

( We give an example of a saturated algebra which is not m-convex.

Example. Let C b (R) be the algebra of all complex continuous bounded functions on R. Let Λ be the subset of C b (R) defined by φ ∈ Λ if φ(x) > 0 for all x ∈ R, sup{|φ(x)|, x ∈ R} = 1 and φ vanishes at infinity. We endow C b (R) with the topology determined by the family {p φ , φ ∈ Λ} of seminorms, where

Since φ vanishes at infinity, there exists x 0 ∈ R such that |f (x 0 ) φ (x 0 ) | = 1. Show that |f (x 0 )| = sup{|g(x 0 )|, p φ (g) ≤ 1}. The proof is due to Beddaa [START_REF] Beddaa | Théorèmes du type Gelfand-Naimark dans des algèbres topologiques ou bornologiques[END_REF], it is given here for completeness. We have |f (x 0 ) | ≤ sup{|g(x 0 )|, p φ (g) ≤ 1} since p φ (f ) = 1. If p φ (g) ≤ 1 = |f (x 0 ) φ (x 0 ) |, then