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p-Rank and p-groups in algebraic groups

Adrien Deloro

Abstract

A few remarks on the measures of the p-rank of a group equipped with a dimension, including the

refutation of a result of Burdges and Cherlin.
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Groups of finite Morley rank are abstract analogues of algebraic groups; like them they bear a dimension
enabling various genericity arguments. They do not come from geometry but from logic; yet the Cherlin-Zilber
conjecture and related work suggest tight relationships between both aspects. My reader may thus view what
follows as naive properties of algebraic groups obtained by elementary means; the word “definable” stands for
“constructible”. Should he desire more on groups of finite Morley rank, [1] would provide references.

I wish to thank Éric Jaligot for his many suggestions.

A group of finite Morley rank is connected if it has no proper definable subgroup of finite index. One lets
H◦ be the connected component of a definable subgroup H , i.e. its smallest definable connected subgroup of
finite index. This extends to arbitrary H : H is included in a smallest definable subgroup d(H), one takes the

connected component d(H)◦ and sets H◦ = H ∩ d(H)◦ .

Throughout, p will be a prime (possibly 2). A p-torus T is a finite power of the Prüfer quasi-cyclic

p-group Zp∞ ; T � Zd
p∞ is injective among abelian groups. For H ≤ T , H◦ consistently denotes the maximal

subtorus of H .

A group of finite Morley rank is U⊥
p if it has no infinite elementary abelian p-subgroup. U⊥

p groups

conjugate their Sylow p-subgroups [3, Theorem 4], i.e. their maximal (non-necessarily definable) p-subgroups;

these are finite extensions of p-tori. Hence, for S a Sylow p-subgroup of a U⊥
p group, S◦ is a p-torus.

Given a U⊥
p group, 3 measures of its Sylow p-subgroups are available. One can consider the Prüfer p-rank

Prp(G), which is the number of Zp∞ factors in a Sylow p-subgroup. One can also estimate the normal p-rank

np(G), which is the maximal p-rank of an elementary abelian p-group normal in a Sylow p-subgroup. Or one

can simply compute the p-rank mp(G), which is the maximal p-rank of an elementary abelian p-subgroup. All

3 numbers are well defined by conjugacy of the Sylow p-subgroups, and mp(G) ≥ np(G) ≥ Prp(G).

2010 AMS Mathematics Subject Classification: 20F11 (primary); 20G07, 20C11, 20D15.
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1. The n-rank

Lemma 1 If G is a connected, U⊥
p group, then np(G) = Prp(G) .

Proof. Let S be a Sylow p-subgroup of G , V � S an elementary abelian normal subgroup, and v ∈ V . As

V � S , vS◦ ⊆ V which is finite; by connectedness, S◦ centralizes v . So v ∈ CS(S◦) = S◦ by [3, Corollary

3.1], and V ≤ S◦ . �

2. Not quite a digression

For a p-torus T � Zd
p∞ , Ωpn(T ) denotes the set of elements of order at most pn .

Fact 1 Let ϕ be an automorphism of finite order of a p-torus T � Zd
p∞ .

1. Suppose Ωp2 (T ) ≤ CT (ϕ) . Then ϕ = Id .

2. Suppose Ωp(T ) ≤ CT (ϕ) . If p = 2 , then ϕ2 = Id . If p �= 2 , then ϕ = Id .

Proof. This must be classical but I know no reference.

1. Up to taking a power of ϕ , we may assume that ϕ has prime order q . Let x /∈ CT (ϕ) have minimal

order. Then ϕ(xp) = xp so there is y ∈ Ωp(T ) \ {1} with ϕ(x) = xy . By assumption y ∈ CT (ϕ), so

x = ϕq(x) = xyq and q = p . Let x̂ and ŷ be such that x̂p = x and ϕ(x̂) = x̂ŷ . Then ŷp = y so

ŷ ∈ Ωp2(T ) ≤ CT (ϕ) and x̂ = ϕp(x̂) = x̂ŷp = x̂y , a contradiction.

2. Since ϕ centralizes Ωp(T ), for x ∈ Ωp2 (T ) there is y ∈ Ωp(T ) with ϕ(x) = xy ; hence ϕp(x) = xyp = x

and Ωp2(T ) ≤ CT (ϕp). So ϕp = Id; we may assume p �= 2. Represent ϕ|Ωp3 (T ) by a matrix

M ∈ GLd(Z/p3Z). As Ωp(T ) ≤ CT (ϕ), the reduction of M modulo p is the identity: there is a

matrix N with M = Id +pN . Since ϕp = Id,

0 ≡
p∑

�=1

(
p
�

)
p�N � ≡ p2N +

p(p − 1)
2

p2N2
[
p3

]
.

Since p �= 2, p divides p(p−1)
2

, so p2N ≡ 0[p3] and N ≡ 0[p] . Hence the reduction of M = Id +pN

modulo p2 is the identity: M centralizes Ωp2 (T ), and ϕ is trivial. �

Consequence If p �= 2 , the restriction map ρ : Aut(T ) → Aut(Ωp(T )) kills no element of finite order. In

particular if W is a finite subgroup of Aut(T ) then W embeds into Aut(Ωp(T )) � GLd(Fp) . If p = 2 then

ker ρ|W ↪→ (Z/2Z)d .

Proof. The only non-immediate claim is about the rank of K = ker ρ|W when p = 2. Observe that K has

exponent 2, so it is abelian. We go in a direction that will prove fruitful. Taking automorphism groups changes

inductive limits to projective limits, so Aut(T ) � lim
←

Aut((Z/pnZ)d) = lim
←

GLd(Z/pnZ) = GLd(Zp). Hence K

embeds into GLd(Z2). Now elements of K are simultaneously diagonalizable over Q̄2 with eigenvalues ±1, so
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K embeds into {±1}d . �

We could use a similar method to get a lazy bound on rk W for W ≤ Aut(T ) an elementary abelian
p-group; observe how we are naturally moving towards the p-adic representation. Anyway, embedding into
GLd(Fp), i.e. restricting to Ωp(T ), was too clumsy in the first place. For instance, any element of GLd(Fp)

comes from an element of GLd(Zp), but not necessarily from one of finite order. (The reader may check that

GL2(Z5) has no element of order 5.) Representation-theoretically speaking, embedding into GLd(Zp) is more

appropriate, and this is what we shall now do.

3. Bounding the m-rank

Let ϕ be an automorphism of order p of a p-torus T � Zd
p∞ .

Fact 2 (Maschke’s Theorem) Let T1 ≤ T be a ϕ-invariant subtorus. Then there is a ϕ-invariant subtorus

T2 ≤ T such that T = T1 + T2 and T1 ∩ T2 ≤ Ωp(T1) .

Proof. There is a subtorus T0 ≤ T with T = T1 ⊕ T0 . Let π be the projection on T1 along T0 and

π̂ =
∑p−1

i=0 ϕiπϕ−i . Then π̂ is ϕ-covariant, im π̂ = T1 , and π̂(t1) = pt1 for t1 ∈ T1 . Take T2 to be the

maximal subtorus of ker π̂ . �

Fact 3 (ϕ, T as above) If C◦
T (ϕ) = 1 then p − 1|d and Id +ϕ + · · ·+ ϕp−1 = 0 .

Proof. (This again must be well known.) We may assume p �= 2. Let τ ≤ T be isomorphic to Zp∞ , and

set Θ =
∑p−1

i=0 ϕi(τ ); Θ is ϕ-invariant and Prp(Θ) ≤ p . So by Maschke’s Theorem, we may assume d ≤ p . As

in the proof of the Consequence above, let us view ϕ as an element of order p of GLd(Zp) ≤ GLd(Qp). By

assumption, 1 is not an eigenvalue.

The minimal polynomial μ of ϕ over Qp divides Xp − 1 = (X − 1)(1 + X + · · ·+ Xp−1), so it divides

1 + X + · · · + Xp−1 . The latter is irreducible over Zp by Eisenstein’s criterion, so μ = 1 + X + · · · + Xp−1 .

But μ divides the characteristic polynomial which has degree d . So p − 1 ≤ d ≤ p . Over Q̄p , ϕ has p − 1

eigenvalues, which sum to −1. So if d = p , one of them, say j , occurs twice: hence 1 + Trϕ = j ∈ Qp , against

p �= 2. So d = p − 1. �

Lemma 2 For W ≤ Aut Zd
p∞ an elementary abelian p-group, rk W ≤ 1

p−1d .

Proof. E = Qd
p is a sum of W -irreducible subspaces ⊕i∈IEi

⊕⊕j∈JFj with Ei ’s the W -trivial lines. Since

W is abelian, it acts W -covariantly. Let ρj : W → AutW (Fj) be the restriction map, with (non-trivial) image

Wj and kernel Kj . Each EndW Fj is a skew-field by Schur’s Lemma, so the abelian group Wj of exponent

p has order p . As CW (E) = 1, W ↪→ ∏
j∈J W/Kj , and rk W ≤ #J . By Fact 3, dimFj ≥ p − 1, whence

#J ≤ d
p−1 . �

Corollary 1 Let G be a connected, U⊥
p group. Then mp(G) ≤ p

p−1 Prp(G) .
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Proof. For V ≤ S an elementary abelian subgroup of a Sylow p-subgroup S , write V = (V ∩S◦)⊕W . By

[3, Corollary 3.1], CS(S◦) = S◦ ; use Lemma 2. �

4. Maximal abelian p-subgroups

Thesis [2, Theorem 1.2] Let G be a connected, U⊥
p group with mp(G) ≥ 3 . Then any maximal elementary

abelian p-subgroup V < G has p-rank at least 3 .

The flaw in [2] lies at the bottom of page 172. On the very last line, “commutation with v” need not in

general be “a map from Ω1(T )/A to A”. Observe that in [2] Theorem 6.4 relies on Corollary 4.2, which relies
on Theorem 1.2.

Counter-Example In PSL5(C) let Θ be the usual torus and σ be the Weyl element naturally associated with

the 5-cycle (12345) . Let θ ∈ CΘ(σ) \ {1} . Then 〈θ, σ〉 does not extend to an elementary abelian 5-group of
rank 3 .

Proof. The actual computations will take place in SL5(C). Let λ = e
2iπ
5 ∈ C ; then Z(SL5(C)) = {λk Id} .

The matrix s = (δj,i+1) ∈ SL5(C) (equality modulo 5) reduces modulo Z(SL5(C)) to σ ∈ PSL5(C); con-

jugation by s rotates coefficients of a matrix (mi,j) ∈ SL5(C) along the 5 (complete) diagonals. So given

θ ∈ Θ ≤ PSL5(C) and a diagonal matrix t ∈ SL5(C) representing it, one sees that [σ, θ] = 1 iff ti,i = λk+�i for

some integers k and � ; thus CΘ(σ) has order 5. Fix θ ∈ CΘ(σ) \ {1} . Conjugation by t on (mi,j) multiplies

mi,j by λ�(j−i) . So C(θ) = Θ � 〈σ〉 , and 〈θ, σ〉 is maximal. �

The following merely serves the purpose of exposing an important method.

Observation Let G be a connected, U⊥
p group, and S ≤ G a Sylow p-subgroup. Then S is connected iff

abelian iff nilpotent.

Proof. Only one claim is non-trivial; we prove it by induction on the Morley rank (read: dimension) of G .

Suppose S nilpotent; let ω ∈ S . Then by nilpotence, τ = C◦
S◦(ω) �= 1. By [3, Corollary 3.1], ω lies in any

maximal p-torus of C◦(ω), so ω ∈ C◦(τ ). Hence 〈S◦, ω〉 ≤ C◦(τ ). If C◦(τ ) < G we are done by induction.

Otherwise τ is central and we can factor by Z◦(G), pursuing by induction. �

I shall now bring my reader some comfort.

Lemma 3 The thesis of [2, Theorem 1.2] holds for p = 2 , and so does [2, Corollary 6.5].

Proof. Suppose m2(G) ≥ 3; clearly Pr2(G) ≥ 2. Let i, j be 2 commuting involutions; by torality [3,

Theorem 3] there is a Sylow 2-subgroup S with i ∈ S◦ and j ∈ S .

Suppose Pr2(G) ≥ 3. If j ∈ S◦ we are done. If not, consider the map ϕ(k) = [j, k] : Ω2(S◦) → Ω2(S◦).
Then imϕ ≤ kerϕ and rk imϕ + rk ker ϕ ≥ 3, so rk ker ϕ ≥ 2 and we are done. From now on, suppose
Pr2(G) = 2 (so m2(G) ≤ 4) and let V = Ω2(S◦).

Assume first that j ∈ S\S◦ . If j inverts S◦ then 〈i, j〉 ≤ 〈V, j〉 : we are done. Otherwise τ = C◦
S◦(j) �= 1.

If i /∈ τ then 〈i, j〉 ≤ 〈i, Ω2(τ ), j〉 : we are done. So assume i ∈ τ ≤ C◦(j). By torality [3, Theorem 3 and

Corollary 3.1], i lies in a 2-torus of C◦(j) and j lies in any 2-torus of C◦(j), so i and j are cotoral.
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So assume that j ∈ S◦ , that is V = 〈i, j〉 . By assumption there is an elementary abelian 2-subgroup

of rank 3: A = 〈r, s, t〉 ≤ S ; clearly A ∩ S◦ �= 1, say r ∈ V . If s or t is in V then 〈i, j〉 = V ≤ A : we are

done. Suppose that s and t (hence st as well) lie in S \S◦ . Since |Aut(V )| = 6, one of s, t, st must centralize

V = 〈i, j〉 : we are done again. �

Here is a final word on counter-examples.

Lemma 4 Let G be a counter-example to [2, Theorem 1.2]. Then Prp(G) = p− 1 . In particular, [2, Theorem

1.2] also holds for p = 3 .

Proof. By Lemma 3, p ≥ 3. As mp(G) ≥ 3, one sees with Corollary 1 that Prp(G) ≥ 2. Equality can

hold only for p = 3; as there is an elementary 3-group of rank 3, there is an automorphism of order 3 fixing

Ω3(Z2
3∞), against Fact 1: equality cannot hold.

Hence Prp(G) ≥ 3. Let V = 〈α, ω〉 be a maximal abelian p-group and S ≥ V a Sylow p-subgroup. By

torality we may assume α ∈ S◦ , so ω ∈ S \ S◦ . If C◦
S◦(ω) �= 1 then by maximality, α ∈ C◦

S◦(ω) ≤ C◦(ω), and

as in the proof of Lemma 3, α and ω are cotoral, a contradiction. Hence C◦
S◦(ω) = 1. Let ϕ ∈ End Ωp(S◦)

map x to [x, ω] ; writing ω as an automorphism, ϕ(x) = ω(x) − x and ϕn(x) =
∑n

i=0(−1)i(n
i )ωi(x). As

(−1)i(p−1
i ) ≡ 1 [p] , ϕp−1 = Id +ω + · · · + ωp−1 . But C◦

S◦(ω) = 1, so Fact 3 applied to ω implies ϕp−1 = 0.

Since kerϕ = CΩp(S◦)(ω) = 〈α〉 , one has rk Ωp(S◦) ≤ p − 1. �
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