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Weyl groups of small groups

of finite Morley rank

Jeffrey Burdges∗ and Adrien Deloro

June 9, 2008

Abstract

We examine Weyl groups of minimal connected simple groups of finite
Morley rank of degenerate type. We show that they are cyclic, and lift
isomorphically to subgroups of the ambient group.

1 Introduction

Infinite groups of finite Morley rank have little truly geometric structure; how-
ever, their algebraic properties are remarkably reminiscent of algebraic groups.
The strongest conjecture to this effect is the Cherlin-Zilber algebraicity conjec-
ture which posits that an infinite simple group of finite Morley rank is a linear
algebraic group over an algebraically closed field.

There are a number of partial results towards this conjecture and a complete
proof in the even & mixed type cases [ABC08], read potentially characteristic
two. In other cases, much recent work has followed three themes : various
identification theorems [Bur07b, Del08a], an analysis of the minimal simple
groups where Bender’s method is well understood [Bur07a], and the analysis of
torsion using genericity arguments [BBC07, BC08b], as well as work involving
several techniques [CJ04, BCJ07, Del08b, AB08].

A major part of the combined thread is the analysis of the Weyl group
W = N(T )/C(T ) of G associated to some maximal decent torus T . Here a
decent torus is merely the smallest definable subgroup containing some divisible
abelian torsion subgroup, such as a p-torus Z(p∞)n. One may speak of the
Weyl group of G because maximal decent tori are conjugate in a group of finite
Morley rank [Che05].

The main result of the present article is that the Weyl group of a minimal
connected simple group of finite Morley rank is cyclic. We also show that, for
p > 2 dividing |W |, the group G has no divisible p-torsion.

Theorem 4.1. Let G be a minimal connected simple group of finite Morley
rank, and let T be a decent torus of G. Then the Weyl group W := N(T )/C(T )
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is cyclic, and has an isomorphic lifting to G; moreover no primes dividing |W |
appear in T except possibly 2.

In spirit, the proof proceeds by proving the three conclusions in the reverse
order.

Our primary concern here is the case of groups of degenerate type, where
Sylow 2-subgroups are finite, or equivalently trivial [BBC07]. The second au-
thor’s thesis work covers the odd type case (see Fact 4.2 below), where the Sylow
2-subgroup is divisible-abelian-by-finite, and the afore mentioned classification
in even & mixed types [ABC08] covers those cases.

In degenerate type, one may also extract some unlikely number theoretic
consequences from this argument.

Corollary 3.10*. Let G be a minimal connected simple group of finite Morley
rank and degenerate type, and let T be a nontrivial decent torus of G. Then G
interprets a bad field in characteristic p for every prime divisor p of |W |.

A bad field (k, H, +, ·) is a field k of finite Morley rank with a proper non-
trivial definable subgroup H of it’s multiplicative subgroup. Such fields exist in
characteristic zero [BHMPW08] but are quite unlikely in positive characteristic
p because then :

1. there are only finitely many primes of the form pn−1
p−1 by [Wag97].

2. (pn − 1)π � pαn where π denotes the set of primes appearing in the bad
field’s multiplicative subgroup H, (·)π denotes removing all primes but
these, and α := rk(H)/ rk(k) [HW].

These conditions are regarded as unlikely by specialists.
As an exercise, we point out that Corollary 3.10 is quite easy when p is

the minimal prime divisor of |W | and T is a maximal decent torus. First Fact
2.5 provides a Borel subgroup B containing p-unipotence. So one considers a
B-minimal A ≤ Up(B). If CB(A) < B then Zilber’s field theorem produces the
bad field, as desired. Otherwise CB(A) = B implies that ∪BG is generic in
G. So then, by [BC08b, Theorem 1], B contains a maximal decent torus of G,
whose Weyl group normalizes B. Finally the Weyl group element may not live
either inside or outside B by Facts 2.2 and 2.6.

In §2 we expose minor adjustments of various known results, and recall
some facts that will be used. §3 is devoted to analyzing Cartan subgroups
C(T ) where T a maximal decent torus, as well as how Weyl cosets lift into
elements of the group. Theorem 4.1 is proved in §4. In §5 we conclude that
under the assumption that maximal decent tori are large enough and there is
a non-trivial Weyl group, only finitely many Borel subgroups can contain the
Carter subgroup.
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2 Literature

This section serves as general background. However, the reader should be aware
that later sections freely use standard material from [BN94] without any com-
ment.

2.1 Weyl Groups

The Weyl group of an algebraic group is the quotient of the normalizer of a
maximal algebraic torus by the centralizer of the same torus. In general, groups
of finite Morley rank need not contain any algebraic torus, but frequently have
so-called decent tori. A decent torus is a divisible abelian group which is the
definable hull of its torsion, i.e. is the intersection of all definable subgroups
containing its torsion subgroup. The group WT := N(T )/C(T ) is the Weyl
group associated to a given torus T . Here one may use only the connected
component C◦(T ) of the centralizer by the following.

Fact 2.1 ([AB08, Theorem 1]). Let T be a decent torus of a connected group
H of finite Morley rank, Then C(T ) is connected.

We naturally say “the Weyl group of G” when T is a maximal decent torus;
this is well-defined because maximal decent tori are always conjugate [Che05,
Last lines].

In the present article, we use repeatedly the fact that connected solvable
groups of finite Morley rank have trivial Weyl groups. This fact is originally
due to Oliver Frécon, but we employ the following formulation.

Fact 2.2 ([AB08, Lemma 6.6]). Let H be a connected solvable group of fi-
nite Morley rank and let K be a definable connected subgroup of H such that
[NH(K) : K] < ∞. Then NH(K) = K.

A priori, if T is a decent subtorus of another torus S, then its Weyl group
WT is just a section of WS . But in the special case of minimal connected simple
groups, one can say more thanks to the preceding fact.

Lemma 2.3. Let G be a minimal connected simple group of finite Morley rank,
and let T be a nontrivial decent torus of G. Then the Weyl group WT =
N(T )/C(T ) associated to T is naturally isomorphic to a subgroup of the Weyl
group W of G.

Proof. Let S be a maximal decent torus containing T , so that W = WS =
N(S)/C(S). Then S ≤ C(T ) C N(T ). A Frattini argument using conjugacy of
maximal decent tori says that N(T ) = C(T ) ·NN(T )(S) and

WT = N(T )/C(T ) = NN(T )(S)/NC(T )(S).
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Of course C(T ) is solvable by minimal simplicity of G and connected by Fact
2.1. So Fact 2.2 says that NC(T )(S) = CC(T )(S) = C(S), which implies that

WT = NN(T )(S)/C(S) ≤ N(S)/C(S) = WS = W.

A similar argument shows that, if G is a minimal connected simple group
containing a non-trivial decent torus, the Weyl group of G is isomorphic to
WQ := N(Q)/Q where Q is a Carter subgroup containing the maximal decent
torus T . Indeed one need not specify the Carter subgroup Q as they are all
conjugate [Fré08].

2.2 Connected torsion

We shall employ numerous results about connected torsion subgroups. A con-
nected solvable p-subgroup of a group of finite Morley rank is always a central
product of a p-torus, i.e. a power of the Prüfer p-group Z(p∞), and a p-unipotent
subgroup, i.e. a definable connected nilpotent p-group of bounded exponent. A
number of recent results provide criteria either forcing unipotence to appear or
preventing it from occurring.

Fact 2.4 ([BC08b, Theorem 3]). Let G be a connected group of finite Morley
rank, π a set of primes, and a any π-element of G such that C◦

G(a) has π⊥ type.
Then a belongs to a π-torus.

Fact 2.5 ([BC08b, Corollary 5.3]). Let G be a minimal connected simple group
of finite Morley rank. Suppose the Weyl group is nontrivial and has odd order,
with r the smallest prime divisor of its order. Then G contains a unipotent
r-subgroup in the centralizer of any r-element representing an r-element of W .

Fact 2.6 ([AB08, Lemma 4.3]). Let G be a minimal connected simple group of
finite Morley rank. Let B be a Borel subgroup of G such that Up(B) 6= 1 for
some prime p. Then p 6 |[NG(B) : B].

The preceding facts can be used to prove that minimal connected simple
groups are covered by their Borel subgroups.

Fact 2.7 ([AB08, Corollary 4.4]). Let G be a minimal connected simple group
of finite Morley rank. Any torsion element x of G lies inside any Borel subgroup
of G which contains C◦(x).

We will make crucial use of the following striking consequence.

Lemma 2.8. Let G be a minimal connected simple group of finite Morley rank,
let T be a nontrivial maximal torus, and let x̄ ∈ N(T )/C(T ). Then any lifting
of x̄ to a torsion element x ∈ N(T ) \C(T ) has same order as x̄. In other words
〈x〉 ∩ C(T ) = 1 whenever x ∈ N(T ) \ C(T ) is torsion.

Proof. Suppose towards a contradiction that xn ∈ C(T ) with xn 6= 1. Fix some
Borel subgroup B containing C◦(xn) ≥ C◦(x). Since x is torsion, x ∈ B by
Fact 2.7. But T ≤ C◦(xn) ≤ B too, contradicting Fact 2.2.
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2.3 Intersections

In general, p-unipotent subgroups are more difficult to handle than tori, but
their role inside minimal connected simple groups is well understood, thanks to
the following trivial alteration of [CJ04, Proposition 3.11].

Fact 2.9 ([Bur07a, Lemma 2.1]). Let G be a minimal connected simple group.
Let B1, B2 be two distinct Borel subgroups of G satisfying Upi(Bi) 6= 1 for some
prime pi (i = 1, 2). Then F (B1) ∩ F (B2) = 1.

Here the p-unipotent radical Up(·) denotes the largest p-unipotent subgroup,
and the Fitting subgroup F (·) is the largest normal nilpotent subgroup. One
normally invokes this fact to say that, if B is a Borel subgroup with Up(B) 6= 1,
then B ∩ Bg is p⊥ for all g 6∈ NG(B). Otherwise one considers a third Borel
subgroup containing C(t) where t ∈ B∩Bg has order p. Such a situation violates
Fact 2.9 because CUp(B)(t) and CUp(Bg)(t) would be infinite.

As in [JF0n], a maximal unipotence parameter q̃ of a group B of finite Morley
rank is a pair (p, r) where p is a prime number or ∞, and r an integer or ∞,
such that p = ∞⇔ r < ∞.

The phrase “q̃-subgroup” has the obvious meaning if p is prime; but “q̃-
subgroup” means a U(0,r)-subgroup [Bur04a] in the second case.

Fact 2.10 ([Del07, Lemme 1.9.1]). Let G be a minimal connected simple group,
and let B be a Borel subgroup of G. Also let q̃ be a maximal unipotence parameter
of B. If A is a normal q̃-subgroup of B, then B is the only Borel subgroup
containing A for which q̃ is still a maximal unipotence parameter.

2.4 Actions

We require the following easy result which we have not located in the literature.

Lemma 2.11. Let G be a group of finite Morley rank and U ≤ G be a p-
unipotent subgroup. If t ∈ NG(U) is such that CU (t) 6= 1, then CU (t) is infinite.

In particular, if G is a minimal connected simple group and B ≤ G a
Borel subgroup with Up(B) 6= 1, then CUp(B)(t) is infinite for any t ∈ G with
CUp(B)(t) 6= 1.

This will follow from the following two facts.

Fact 2.12 ([Bur04b, Fact 3.3]). Let H = KT be a group of finite Morley
rank. Suppose that T is a solvable π-group of bounded exponent and that K is
a definable abelian normal π⊥-subgroup of H. Then H = [H,T ]⊕ CH(T ).

Fact 2.13 ([BC08a, Lemma 2.5], see also [Bur04a, Fact 3.12]). Let H be a
solvable group of finite Morley rank, v a definable automorphism of H of order qn

for some prime q, and K a definable normal v-invariant connected q⊥-subgroup
of H. Then

C◦
H(v mod K) = C◦

H(v)K/K.
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The notation C◦
G(v mod K) refers to the connected component of the preim-

age in G of CG/K(v).

Proof of Lemma 2.11. Let x ∈ CU (t)# and let Zi := Z◦i (U) for i ∈ N. As U
is nilpotent and connected, there is some integer i such that x ∈ Zi+1 \ Zi.
In particular t when acting on the connected abelian quotient Y := Zi+1/Zi

centralizes x̄.
We now write t = uvw with u, v, w ∈ d(t) such that d(u) is divisible, v is a

p′-element, and w is a p-element. By [Wag01, Corollary 9], there are no torsion-
free definable sections of the multiplicative subgroup of a field of finite Morley
rank in positive characteristic. In consequence, Y · d(u) must be nilpotent, that
is u centralizes Y .

Notice that v ∈ d(t) ≤ C(x̄). By Fact 2.12, CY (v) ∼= Y/[Y, v] is connected.
So CY (v) is nontrivial because it contains x̄, and hence Y1 := CY (v) = CY (uv)
is infinite.

Eventually the p-element w acts on Y1. As Y1 is an infinite p-group of
bounded exponent, Y2 := CY1(w) ≤ CY (uvw) is infinite, by [BN94, Corollary
6.20]. Hence CY (t) is infinite. It follows from Fact 2.13 that CZi(t), and then
also CU (t), are infinite.

To prove the second claim, it suffices to notice that t ∈ NG(B) = NG(Up(B))
by Fact 2.9.

We will also use the following generation principle.

Fact 2.14 ([Bur04b, Fact 3.7]). Let H be a solvable q⊥-group of finite Morley
rank. Let E be a finite elementary abelian q-group acting definably on H. Then
H = 〈CH(E0) : E0 ≤ E, [E : E0] = q〉.

Another useful fact is this nilpotence criterion.

Fact 2.15 ([Wag97, Theorem 2.4.7] plus [BN94, Exercise 14 p.79]). Let H be a
connected solvable group of finite Morley rank with an automorphism of prime
order whose centralizer in H is finite. Then H is nilpotent.

Almost any article about Weyl groups in our context will employ its p-adic
representation : End(Z(p∞)n) is the ring Mn×n(Zp) of n× n matrices over the
p-adic integers Zp. For us, this isomorphism, sometimes referred to as the Tate
module, will be exploited via the following argument.

Fact 2.16. Let G be group of finite Morley rank. Let T be a p-torus and
a ∈ N(T ) \C(T ) be a p-element. Then the Prüfer p-rank of T is at least p− 1.

Proof. We may assume that ap centralizes T . Represent a as an automorphism
of GLd(Zp), where d denotes the Prüfer p-rank of T , and work in GLd(Qp). The
minimal polynomial µa divides Xp−1 = (X−1)(1+X + · · ·+Xp−1). Of course
a 6∈ C(T ) implies µa 6= X−1. On the other hand 1+X+· · ·+Xp−1 is irreducible
over Qp. So it follows that µa has degree at least p− 1. Now the characteristic
polynomial has degree d and is a multiple of µa, whence d ≥ p− 1.
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3 Cartan subgroups

A Cartan subgroup of an algebraic group is the centralizer of a maximal torus. In
this section we analyze the “Cartan subgroup” C(T ) of our group by analyzing
representatives of the Weyl group, eventually proving the following.

Theorem 3.1 (Henri/Élie). Let G be a minimal connected simple group of de-
generate type. Suppose also that G has a nontrivial Weyl group W := N(T )/C(T )
where T is a maximal decent torus. Then the Cartan subgroup C(T ) is nilpotent,
and thus is a Carter subgroup of G.

Moreover, C(T ) is actually a Borel subgroup if either C(T ) is not abelian or
G has Prüfer q-rank ≥ 3 for some prime q.

Throughout this section we use the hypotheses and notation of Theorem 3.1,
i.e. G is a minimal connected simple group of degenerate type with a nontrivial
Weyl group W := N(T )/C(T ). Of course the decent torus T is necessarily
nontrivial under this hypothesis.

3.1 Weylian elements

We say that a torsion element a of G is Weylian if it normalizes some maximal
decent torus T . Also let τ denote the set of primes occurring in a maximal
decent torus T . By conjugacy of decent tori [Che05], τ is just the set of primes
for which G contains divisible torsion. Then

τ ′ := { p prime | Z(p∞) does not embed into G } .

Of course an element a of G is τ ′ iff it’s (finite) order |a| is a τ ′ number. We
note that both of these properties are closed under taking powers. In §4, we
will show that any element of W lifts to a Weylian τ ′-element.

Lemma 3.2. If a is a τ ′-element, then there is a unique Borel subgroup Ba

containing C◦(a), and a is a product of unipotent elements of Ba.

Proof. Let Ba be a Borel subgroup containing C◦(a). Then a lies inside Ba by
Fact 2.7. As G ≥ B has no divisible τ ′ torsion, a lies inside ΠpUp(Ba), proving
the second part. So the first part follows from Fact 2.9.

We preserve this Ba notation for the unique Borel containing C◦(a), when
a is τ ′, throughout the remainder of the article.

Lemma 3.3. If p ∈ τ ′ divides |W |, then C(T ) is p⊥.

Proof. There is a Weylian p-element a normalizing C(T ) by the usual torsion
lifting principle [BN94, Ex. 11 p. 93; Ex. 13c p. 72]. Clearly Up(C(T )) 6= 1 since
T is π⊥ by definition (see [BN94, §6.4]). If Up(C(T )) 6= 1, then T ≤ C(T ) ≤ Ba

by Fact 2.9. As a ∈ Ba too, this contradicts the fact that connected solvable
groups have trivial Weyl groups (Fact 2.2).
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Lemma 3.4. If a ∈ G is Weylian, and Up(C◦(a)) 6= 1 for each prime divisor p
of |a|, then a is a τ ′-element.

Proof. Suppose that some prime p ∈ τ divides |a|. Then there is a power b of a
which is a p-element. We may assume that a, and b, normalize T , by conjugacy
of decent tori [Che05]. By [BN94, Corollary 6.20], there must be t ∈ T# of
order p such that [b, t] = 1.

By assumption, the Borel subgroup B containing C◦(b) contains p-unipotence.
It follows from Fact 2.6 that b ∈ B. As b ∈ B ∩ Bt, t ∈ N(B) by Fact 2.9. So
again t ∈ B using Fact 2.6.

As t has order p too, it follows that C◦
Up(B)(t) 6= 1 by [BN94, Corollary 6.20].

So again T ≤ C◦(t) ≤ B by Fact 2.9. Now once more we contradict the fact
that connected solvable groups have trivial Weyl groups (Fact 2.2).

So there is no p-torus in T , or hence in G, as desired.

Now consider the minimal prime divisor r of |W |, which is nontrivial by
hypothesis. By Fact 2.5, the centralizer of any r-element a representing an
r-element of W contains r-unipotence. So Lemma 3.4 says :

Corollary 3.5. r ∈ τ ′.

In particular, there are Weylian τ ′-elements.
In §4 we shall prove that any element of the Weyl group lifts to a Weylian

τ ′-element of G.

3.2 Carter subgroups

We next argue that the Cartan subgroup C(T ) is in fact a Carter subgroup of
G.

Lemma 3.6. If a is a Weylian τ ′-element for T , then CC(T )(a) is trivial.

Proof. We may assume that a has prime order p. Again let Ba be the unique
Borel containing C◦(a). Consider some x ∈ CC(T )(a)#. By Lemma 2.11,
CUp(Ba)(x) is infinite. Thus T ≤ C◦(x) ≤ Ba by Fact 2.9. Here again we
contradict the fact that connected solvable groups have trivial Wely groups
(Fact 2.2). Therefore CC(T )(a) = 1, as desired.

Corollary 3.7. C(T ) is a Carter subgroup of G.

Proof. By Corollary 3.5, there is a Weylian τ ′-element a. So CC(T )(a) = 1 by
Lemma 3.6. It follows from Fact 2.15 that C(T ) is nilpotent. So the result
follows because C(T ) is almost self-normalizing by [BN94, Theorem 6.16].

3.3 Invariance

We finally show that the Cartan subgroup C(T ) is a Borel subgroup in certain
cases. Consider a Borel subgroup BT containing C(T ).
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Proposition 3.8. BT can be chosen to be W -invariant in either of the following
cases :

(i) if C(T ) is not abelian; or

(ii) if the Prüfer q-rank of T is ≥ 3 for prime q.

Proof. By [Bur07a, Proposition 4.1ii], every nilpotent subgroup of two distinct
Borel subgroups is abelian. So part (i) follows from Corollary 3.7.

Assume now (ii), i.e. suppose that T has Prüfer q-rank ≥ 3. We may assume
that no Borel subgroup containing C◦(T ) is abelian, as otherwise BT = C(T ) is
clearly W -invariant. In particular, every such Borel subgroup admits at least one
unipotence parameter with r > 0 [Bur04b, JF0n, Theorem 2.12] For each Borel
subgroup Bi containing C(T ), let q̃i be such a maximal unipotence parameter
of Bi with r > 0. Choose BT as to maximize its maximal unipotence parameter
q̃T among all q̃i.

Let YT = [Uq̃(Z(F ◦(BT ))), BT ]. By [Fré05, JF0n, Theorem 2.18], YT is a
homogeneous q̃T -subgroup of BT . Of course YT is clearly characteristic in BT

too. If YT = 1, then Uq̃(Z(F ◦(BT ))) ≤ Z(BT ) ≤ C(T ), and Fact 2.10 implies
that BT is the only Borel subgroup containing C(T ).

So we may assume YT 6= 1. Then, by Fact 2.14, there is a subgroup V ≤
Ωq(T ) of index q such that X = CYT

(V ) 6= 1. Now X is central in F ◦(BT ) and
is actually normalized by C(T ). As C(T ) contains a Carter subgroup of BT ,
one has BT = F ◦(BT ) · C(T ), so X is normal in BT .

Consider a lifting w ∈ N(T ) \ C(T ) of an element of W . As prq(T ) ≥ 3,
there is some t ∈ (V ∩V w)# and C◦(t) ≥ X, Xw. Let Bt be any Borel subgroup
containing C◦(t) ≥ C(T ). Notice that Bt ≥ C◦(t) ≥ X, Xw. By maximality of
q̃T , it follows that q̃T is a maximal unipotence parameter of Bt. In particular,
Fact 2.10 says BT = Bt = Bw

T . Consequently BT is W -invariant.

Proposition 3.9. Let a be a Weylian τ ′-element for T . If a normalizes BT ,
then a has no fixed point in BT , BT is nilpotent, and C(T ) = BT is a Borel
subgroup.

Proof. We may assume that a has order p. First notice that Ba 6= BT as there is
no Weyl group in a connected solvable group (Fact 2.2). So let H := (BT ∩Ba)◦.

We claim that H is abelian. Otherwise [Bur07a, Theorems 4.3 & 4.5 (8)]
say that Ba is involved in a maximal non-abelian intersection, and F ◦(Ba) is
divisible. But this contradicts Up(Ba) 6= 1. Hence H is abelian.

As there is no toral p-torsion in G, H must be p⊥ by Fact 2.9. Consider the
action of the p-element a on the definable abelian connected p⊥ group H. By
Fact 2.12, we may write H = K ⊕ L with K = CH(a) and L = [H, a]. Assume
towards a contradiction that K 6= 1.

Let A ≤ Up(Ba) be a Ba-minimal subgroup. We observe that [A, a] = 1 since
a ∈ Up(Ba). Hence [L, a] = L, [A, a] = 1, and L normalizes A. A commutator
computation proves [L,A] = 1.

Suppose first that [A,K] = 1. Then [A,H] = 1. So, by Fact 2.9, Ba is the
only Borel subgroup containing C◦(H). This proves that N◦

BT
(H) = H, whence
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H is a Carter subgroup of BT . As Carter subgroups of BT are Carter subgroups
of G, Lemma 3.6 and Corollary 3.7 imply that K = 1 = C◦

H(a), a contradiction.
Hence [A,K] 6= 1. It follows that some nontrivial definable section of K

embeds definably into the multiplicative subgroup of a field of characteristic p.
So, by [Wag01, Corollary 9], no such section can be torsion-free. It now follows
that K contains a non-trivial decent torus, say T1. Notice that a ∈ C(T1)
forces C(T1) ≤ Ba. Let T2 ≥ T1 be the maximal decent torus of H. Then
N◦(H) ≤ N◦(T2) = C(T2) ≤ C(T1) ≤ Ba. So H is a Carter subgroup of BT ,
yielding the same contradiction as above.

This proves that K = 1. Hence C◦
BT

(a) = K = 1. By Fact 2.15, BT is
nilpotent. So Lemma 3.6 implies that there is no centralization at all.

We now prove Theorem 3.1.

Proof of Theorem 3.1. Let G be a minimal connected simple group of degen-
erate type, having a nontrivial maximal decent torus T and a nontrivial Weyl
group W = N(T )/C(T ). By Corollary 3.7, a Cartan subgroup C(T ) is a Carter
subgroup of G. The converse is also true because Carter subgroups are conjugate
in G [Fré08].

If either C(T ) is abelian or T has Prüfer q-rank ≥ 3 for some prime number
q, then, by Proposition 3.8, there is a W -invariant Borel subgroup containing
C(T ). This Borel subgroup is then nilpotent by Proposition 3.9, and hence
equal to C(T ).

3.4 Consequences

Corollary 3.10. Let a be a Weylian τ ′-element normalizing T and let Ba be
the unique Borel subgroup containing C◦(a). Then:

• for each prime p dividing |a|, Ba interprets a bad field of characteristic p;

• Ba contains a nontrivial decent torus;

• If Ba contains a q-torus of Prüfer rank 2 for some prime q, then it contains
a Carter subgroup of G;

• Ba does not contain a q-torus of Prüfer rank ≥ 3 for any prime q.

Proof. We may assume that a has order p. Fix a Ba-minimal subgroup A of
Up(Ba). If A ≤ Z(Ba), then, by Fact 2.9, Ba∩Bg

a 6= 1 implies g ∈ N(Ba). Hence
Ba is disjoint from its distinct conjugates, and a standard rank computation
shows that BG

a is generic in G. On the other hand, a generic element g of G
contains a maximal decent torus inside its definable closure d(g) by [BC08b,
Theorem 1]. This implies that Ba contains a maximal decent torus T g. But
since Ba is disjoint from its distinct conjugates, Ba is the only conjugate of Ba

containing T g. In particular ag ∈ N(Ba).
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As usual ag ∈ Ba by Fact 2.6, whence a ∈ Ba ∩ Bg−1

a . So, by Fact 2.9,
g ∈ N(Ba). As T ≤ d(g), we have T ≤ Ba. But this contradicts a ∈ Ba for the
usual reasons (Fact 2.2).

Hence A is not central in Ba. Zilber’s field theorem [BN94, Theorem 9.1]
now says that Ba interprets a field of characteristic p, which is bad since the
group has degenerate type. On the other hand, Ba has a nontrivial decent torus
T0 because the latter field has a locally finite model by [Wag01, Corollary 9].

Assume that Ba contains a q-torus Tq of Prüfer q-rank ≥ 2, and consider
the action of Tq on A. As Tq can’t embed into the multiplicative group of any
field, there is t ∈ Tq such that A ≤ C◦(t). By Fact 2.9, C(Tq) ≤ C◦(t) ≤ Ba.
But C(Tq) contains a Cartan subgroup of G, which is a Carter subgroup of G
by Corollary 3.7.

Now assume that Tq has Prüfer q-rank ≥ 3; say Tq ≤ T g. Then by Theorem
3.1, Ba is a Carter subgroup of G, so Ba = C(T g), and we argue as in the first
paragraph to get a contradiction.

The next corollary will play a key role in §4.

Corollary 3.11. If a is Weylian τ ′-element for T and 1 6= x ∈ N(T ) ∩ C(a),
then x is a Weylian τ ′-element and Bx = Ba.

Proof. We may assume that a is a p-element as usual.
We first prove that x is torsion and not inside C(T ). Let y = xn be such

that y ∈ C(T ). Then y ∈ CC(T )(a) = 1 by Lemma 3.6. So it follows that x is
torsion and not inside C(T ).

We may now assume that x is a q-element. If p = q, then x ∈ Ba by Fact
2.7, as desired. So we may assume that q 6= p. It follows from uniqueness of Ba

that x normalizes Ba. So Lemma 2.11 says x centralizes elements of Up(Ba).
Now, by Fact 2.9, Ba is the only Borel subgroup containing C◦(x).

In view of Lemma 3.4, it suffices to show that C◦(x) contains q-unipotence.
So suppose that Uq(C◦(x)) = 1. Then q is not the minimal prime divisor of |W |
by Fact 2.5, so q ≥ 5 in particular. Moreover x is toral in G by Fact 2.4, i.e.
x ∈ T g for some g ∈ G. So then T g ≤ C◦(x) ≤ Ba.

By Fact 2.16, T g must have Prüfer q-rank at least q − 1 ≥ 4, contradicting
Corollary 3.10.

4 Isomorphic lifting

The main result of the paper is the following characterization of the Weyl group.

Theorem 4.1. Let G be a minimal connected simple group of finite Morley
rank, and let T be a decent torus of G. Then the Weyl group W := N(T )/C(T )
is cyclic, and has an isomorphic lifting to G; moreover no primes dividing |W |
appear in T except possibly 2.

To prove this, we first observe that the decent torus T may be taken maximal
by Lemma 2.3.
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In fact, our proof needs only cover groups of degenerate type. So let us
first reduce to this case. If G has a nontrivial 2-unipotent subgroup, then G is
algebraic by [ABC08], and hence G ∼= PSL2 where |W | = 2. If G has a non-
trivial 2-torus, then |W | = 1, 2, 3 by the comments following Lemma 2.3 and
the second author’s thesis work:

Fact 4.2 ([Del07, see Théorème p.89 and p.91]). Let G be a minimal connected
simple group of finite Morley rank of odd type, and let Q be a Carter subgroup
of G containing a Sylow◦ 2-subgroup. Then WQ := N(Q)/Q has order 1, 2, or
3.

Moreover, if the Weyl group has order 3, then [Del07, Corollaire 5.5.15] says
that N(Q) = Q o 〈σ〉 where σ has order 3. So by Fact 2.5, U3(C◦(σ)) 6= 1, and
Lemma 3.4 proves that σ is a Weylian τ ′-element, which means that G has no
non-trivial 3-torus.

So Theorem 4.1 holds in odd type. As such, we may assume that the Sylow
2-subgroup is finite, and hence trivial by [BBC07].

We also recall an earlier analysis, by the first author and Tuna Altınel, of
the Weyl group W := N(T )/C(T ) in a minimal connected simple group G.

Fact 4.3 ([AB08, Proposition 5.1 & Corollary 5.7]). The Weyl group W of G
is a metacyclic Frobenius complement.

A Frobenius complement is the stabilizer of a point in a Frobenius group;
which is a transitive permutation group on a finite set, such that no non-trivial
element fixes more than one point and some non-trivial element fixes a point.
Such groups have a quite restrictive structure described by the following.

Fact 4.4 ([Gor80, 10.3.1 p. 339]). Let W be a Frobenius complement. Then

1. Any subgroup of W of order pq, p and q primes, is cyclic.

2. Sylow p-subgroups of W are either cyclic or possibly generalized quaternion
groups if p = 2.

Metacyclicity follows for any Frobenius complement inside a degenerate type
group [Gor80, 7.6.2 p. 258].

For us, the important fact about these groups is the following.

Lemma 4.5. Let X be a finite group with cyclic Sylow subgroups such that any
subgroup of order pq with p, q primes, is cyclic. Then any two elements of prime
order commute.

In particular any x, y ∈ X have nontrivial powers which commute.

Proof. Since the Sylow 2-subgroups of X are cyclic, we know that X is solvable
by [Gor80, 7.6.2 p. 258]. Also F (X) is abelian because its Sylow 2-subgroups
are cyclic. Now if F (X) ≤ Z(X) then X = F (X) is abelian, and we are done.

So assume F (X) 6≤ Z(X). Choose p prime such that the Sylow p-subgroup
P of F (X) is not central in X. Then X induces a nontrivial p⊥-action on
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P ' Z/pnZ, by hypothesis. It follows that X induces a nontrivial action on
Ω1(P ). So let a ∈ Ω1(P ) \ Z(X). Then C(a) < X.

Now 〈a〉 C X so for any element x ∈ X of prime order, 〈a, x〉 is cyclic
by hypothesis. Thus, if x, y ∈ G have prime order, then x, y ∈ C(a), and we
conclude by induction.

With the above reductions & lemma at hand, we turn to proving Theorem
4.1, by considering the following situation.

Hypothesis 4.6. Our minimal connected simple group G of degenerate type
has a nontrivial maximal decent torus T with a Weyl group W := N(T )/C(T )
that is a metacyclic Frobenius complement.

Again τ ′ is the set of primes for which G, or equivalently T , has no p-torus.
Let |W | = Πk

i=1p
ni
i with p1 < · · · < pk. We shall construct a sequence (ai)i=1...k

of commuting Weylian τ ′-elements such that w := Πk
i=1ai generates W modulo

C(T ). To restate this, there are ai for i = 1 . . . k such that

(i). each ai ∈ N(T ) \ C(T ) has order pni
i ,

(ii). all the ai’s commute, and

(iii). G has no pi-torus.

A priori, it doesn’t matter in what order these ai appear, but p1 is for free,
thanks to Fact 2.5 via Corollary 3.5.

Let us start. By Fact 4.4 (ii), W contains an element of order pn1
1 . We lift

this element into a p1-element a1 of N(T ). Lemma 2.8 says that a1 has the
adequate order, and Corollary 3.5 explains why p1 ∈ τ ′. So a1 is a Weylian
τ ′-element. Set BW := Ba1 .

We now perform the induction. Assume that a1, . . . , ai have been con-
structed as claimed. Let bi = a1 . . . ai. So then bi is a Weylian τ ′-element.
By Corollary 3.11, Ba1 = · · · = Bai = Bbi . Also for convenience let πi =
{p1, . . . , pi}, and βi denote the image of bi in W .

Claim 1. There is a pi+1-element a′ of N(T ) \ C(T ) that commutes with a
power b′ of bi.

Proof. By Lemma 4.5, there is a pi+1-element α′ of W commuting with a non-
trivial power β′ of βi. Say β′ = βk

i , and let b′ = bk
i 6= 1. Let a0 be a lifting of

α′ into a pi+1-element of N(T ) \ C(T ). So far [a0, b
′] is in C(T ) but need not

equal the identity. Therefore we shall adjust a0 to get a suitable a′.
By Lemma 3.3, C(T ) is π⊥i . It follows that 〈b′〉 is a Hall πi-subgroup of K =

C(T )·〈b′〉 = C(T )o〈b′〉. As K has π⊥i -type, it conjugates its Sylow πi-subgroups
by [BC08b, Theorem 4]; as a straightforward consequence, K conjugates its Hall
πi-subgroups.

Now a′ normalizes K. Let H = K · 〈a0〉. A Frattini argument says that
H = K · NH(〈b′〉), so there must be a pi+1-element a′ in NH(〈b′〉). It follows
that a′ does not lie inside C(T ). Since pi+1 > πi, 〈b′〉 of order πi has no
automorphisms of order pi+1; hence a′ must centralize b′.
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Claim 2. There is a Weylian τ ′-element ai+1 of order p
ni+1
i+1 such that Bai+1 =

BW .

Proof. Let a′ and b′ be as in Claim 1. Notice that b′, being a power of bi,
is a Weylian τ ′-element and Bb′ = BW . By Corollary 3.11, a′ is a Weylian
τ ′-element and Ba′ = BW .

By Fact 4.4 (2), Sylow pi+1-subgroups of W are cyclic. Let αi+1 be any
element of W of order p

ni+1
i+1 generating a Sylow pi+1-subgroup containing the

image of a′. Let a′′ be a lifting of αi+1 into a pi+1-element of N(T ) \C(T ). By
Lemma 2.8, a′′ has order p

ni+1
i+1 . Also, notice that [a′, a′′] ∈ C(T ); we’ll use the

same argument as in Claim 1.
Let K = C(T )o〈a′〉 and H = K · 〈a′′〉 ≤ N(K). Since C(T ) is p⊥i+1, 〈a′〉 is a

Hall pi+1-subgroup of K. There must therefore be a pi+1-element of NN(T )(〈a′〉)
lifting αi+1. Let ai+1 be this element; it has order p

ni+1
i+1 , it is a Weylian τ ′-

element; and above all, ai+1 normalizes 〈a′〉, whence Bai+1 = Ba′ = BW .

Now ai+1 commutes with bi because Bai+1 = BW = Bbi and ai+1 and bi

are unipotent elements of BW of coprime order. So the induction is completed,
and eventually we set w := bk. Then w has order |W | both in G and in W ; in
particular W ' 〈w〉 is cyclic. Besides, w is a Weylian τ ′-element and Bw = BW .
By Corollary 3.3, C(T ) is π⊥k , so no prime number occurring in T can divide
|W |.

This concludes the proof of Theorem 4.1.

Connectedness of the Sylow p-subgroups is an immediate consequence.

Corollary 4.7. Let G be a minimal connected simple group and p 6= 2 a prime.
Then the maximal p-subgroups of G are connected.

Proof. Let S be a maximal p-subgroup of G. If d(S) = G, then S is connected.
So we may assume d(S) < G. In this case, S◦ ≤ d◦(S) which is solvable,

and as usual S◦ = T ∗ U with T a p-torus and U p-unipotent. Also S◦ 6= 1 by
[BBC07].

Suppose first that U 6= 1. Then there is a unique Borel subgroup B contain-
ing U . If s ∈ S, Fact 2.9 forces Bs = B, that is s ∈ N(B). But s ∈ B by Fact
2.6. As S ≤ B is a Sylow p-subgroup of the connected solvable group B, it is
connected.

Suppose otherwise that U = 1. So S◦ = T and S is toral-by-finite. Here the
result follows by Theorem 4.1.

5 Counting Borel subgroups

We conclude by noticing that only finitely many Borel subgroups contain the
Carter subgroup of a minimal connected simple group with a “large” decent
torus. If there is a Weyl group W , this number is either a multiple of |W |, or
simply 1.
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Lemma 5.1. Let G be any group of finite Morley rank. Fix a Carter subgroup
Q of G and a Borel subgroup B of G containing Q. Then there are finitely many
G-conjugates of B containing Q.

Proof. Consider the set S := {(x, y) : x ∈ G/NG(Q), y ∈ G/NG(B), Qx ≤ By}.
The first projection has fibers Sx = {y ∈ G/NG(B) : Qx ≤ By}. These sets

are uniformly definable and have the same rank, say k.
The second projection has fibers Sy = {x ∈ G/NG(Q) : Qx ≤ By}, which

are uniformly definable. Since solvable groups of finite Morley rank conjugate
their Carter subgroups, Sy has rank rk B − rkNB(Q).

Putting this together, we find

rkS = rk G− rkNG(Q) + k = rk G− rkNG(B) + rkB − rkNB(Q),

whence k = 0.

We exploit the theory of maximal intersections of Borel subgroups [Bur07a]
to bound the number of conjugacy classes (see also [Del07, Proposition 5.5.3]).

Lemma 5.2. Let G be a minimal simple connected group. Assume that for
some prime number q, there is a q-torus of Prüfer-rank at least 2. Then a Carter
subgroup of G is included in finitely many non-conjugate Borel subgroups.

Proof. Let Tq be a q-torus of Prüfer q-rank d ≥ 2, and let k = 1 + · · ·+ qd−1 be
the number of lines in Ωq(Tq). Let t1, . . . , tk be vectors of Ωq(Tq) representing
these lines. For ` = 1, . . . , k, fix some Borel subgroup β` ≥ C◦(t`). Also let q̃`

be maximal unipotence parameters for β` (` = 1, . . . , k).
Assume that there is an infinite set I and Borel subgroups Bi (i ∈ I) pairwise

non-conjugate, and all containing Q. Since the Bi’s are pairwise non-conjugate,
we may assume that none of the Bi is conjugate to any of the β`. For each i,
choose a maximal unipotence parameter p̃i for Bi.

Fix some i. Then Bi ≥ Q ≥ Tq, and Fact 2.14 implies Bi = 〈C◦
Bi

(t`) :
` = 1, . . . , k〉 = 〈(Bi ∩ β`)◦ : ` = 1, . . . , k〉. So it follows that at least 2 of the
intersections Hi,` = (Bi ∩ β`)◦ are distinct and non-abelian.

So we may assume that for all i ∈ I, Hi,1 and Hi,2 are distinct and non-
abelian. Since Bi is never conjugate to β1 nor to β2, every Hi,1 and every Hi,2

is a maximal non-abelian intersection [Bur07a, Theorem 4.3]. The same result
tells us that one cannot have p̃i = q̃1 nor p̃i = q̃2.

If there are indices i and j such that q̃1 > p̃i and q̃1 > p̃j , then [Bur07a,
Lemma 3.30] conjugates Bi to Bj , a contradiction. So infinitely often, it must
be the case that p̃i > q̃1, and similarly we may assume that for all i ∈ I, we
have p̃i > q̃2.

In particular, [Bur07a, Lemma 3.30] conjugates β1 to β2. Since r0(H ′
i,`) is

the only value s such that Fs(β`) is not abelian [Bur07a, Theorem 4.5 (4)], we
see that r′ = r0(H ′

i,`) does not depend on i ∈ I nor on ` = 1, 2.
So we let Qr′ = U(0,r′)(Q). By [Bur07a, Lemma 3.23], this subgroup is non-

trivial and central in Hi,` for all i ∈ I and ` = 1, 2. Now 〈Hi,1,Hi,2〉 ≤ C◦(Qr′);
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recall that Bi and β1 are the only Borel subgroups containing Hi,1 and that Bi

and β2 are the only Borel subgroups containing Hi,2.
As Hi,1 6= Hi,2, it follows that β1 6= β2. Then Bi is the only Borel subgroup

containing C◦(Qr′). In particular Bj = Bi for any j ∈ I, a contradiction.

We note that an effective version of this result is possible, but the obvious
bound does not seem useful at present.

Corollary 5.3. Let G be a minimal connected simple group. Assume that there
is a q-torus of Prüfer q-rank ≥ 2 for some prime number q, and a non-trivial
Weyl group. Then the number of Borel subgroups containing a Carter subgroup
of G is 1 or a multiple of |W |.

Proof. This number is finite by the two preceding lemmas. By Theorem 4.1, we
lift W to an isomorphic subgroup Ŵ ≤ G, and let Ŵ act on a G-conjugacy class
of Borel subgroups containing Q. By a Frattini argument, Ŵ acts transitively
on each G-conjugacy class of such Borel subgroups. If some a ∈ Ŵ fixes a
Borel subgroup B ≥ Q, then B = Q by Proposition 3.9. So unless Q is a Borel
subgroup, Ŵ acts freely on each conjugacy class.
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