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1. INTRODUCTION                                                                                                       

It was proved in [3] that every complex seminorm with square property on a commutative algebra is 

submultiplicative, and it was posed the problem whether this result holds in a noncommutative 

algebra. This problem was answered in the particular case of Banach algebras [4] and fully resolved in 

[2], [5] and [7]. The result of [3] holds in the real case. But the results of [2], [4], [5] and [7] don’t hold 

in the real case since we use the Hirschfeld-Zelazko Theorem [6], or its locally bounded version [2], 

which are not valid in the real case. Using a functional representation theorem [1, Theorem 1], we 

show that every real seminorm with square property is submultiplicative.      

 

2. PRELIMINARIES 

Let A be an associative algebra over the field K =R or C.  A seminorm on A is a function p: A→[0, ∞) 

satisfying p(a+b) ≤ p(a)+p(b) for all a, b in A and p(ka)=│k│p(a) for all a in A and k in K. p is a complex 

seminorm if K = C  and p is a real seminorm if K=R. p is submultiplicative if p(ab) ≤ p(a)p(b) for all a, b 

in A. p satisfies the square property if p(a²)=p(a)² for all a in A. Let A be a real algebra and let a be any 

element of A. The spectrum sp (a) of a in A is defined to be equal to the spectrum of a as an element 

of the complexification of A. If A is unital, then sp (a) ={s + it ϵ C, (a - se) ² + t²e ∉ A⁻¹} for all a in A, 

where e is the unit of A and A⁻¹ is the set of all invertible elements in A. Let (A, ǁ.ǁ) be a real normed 

algebra, the limit r (a) =lim ǁaⁿǁ ¹/ⁿ exists for each a in A. If A is complete,                                             

then r (a) =sup {│v│, v ϵ sp (a)} for every a in A. 
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3. RESULTS 

Let (A, ǁ.ǁ) be a real Banach algebra with unit such that ǁaǁ ≤ m r (a) for some positive constant m and 

all a in A. Let X (A) be the set of all nonzero multiplicative linear functionals from A into the 

noncommutative algebra H of quaternions. For a in A and x in X (A), put J (a) (x) = x (a). For a in A,             

J(a): X(A) → H  is a map from X(A) into H.  X(A) is endowed with the topology generated by J(a), a ϵ A, 

that is the weakest topology such that all the functions J(a), a  ϵ A, are continuous. By [1, Theorem 1], 

X(A) is a nonempty compact space and the map  J: A → C(X(A),H), a → J(a), is an isomorphism (into), 

where  C(X(A),H) is the real algebra of all continuous functions from X(A) into H. 

Proposition 3.1.  (1) An element a is invertible in A if and only if J (a) is invertible in C(X (A), H), and                                

(2) sp (a) = sp (J (a))   for all a in A. 

Proof.  (1) The direct implication is obvious. Conversely, there exists g in C(X(A),H) such that             

J(a) g = g J(a)=1    i.e.   x(a) g(x) = g(x) x(a) = 1  for all x in X(A). Let T be a nonzero irreducible 

representation of A, by the proof of [1, Theorem 1] there exists S: T(A) → H an isomorphism (into). 

Since SoT ϵ  X(A) and  0ǂ SoT(a) = S(T(a)), it follows that T(a) ǂ 0. If aA ǂ A, there exists a maximal 

right ideal M containing aA. Let L be the canonical representation of A on A/M which is nonzero and 

irreducible, also L(a) = 0  since aA  is included in  M, contradiction. Then aA = A  and by the same             

Aa = A. There exist b, c in A such that ab = ca = e  ( e is the unit of A). We have  c = c(ab) = (ca)b = b, so 

a is invertible in A.                                                                                                                                                                                  

(2)  s + it ϵ sp(a)  iff  (a - se)2 + t2e  ∉ A   1  

                              iff   J((a – se)2 +t2e) ∉  C(X(A),H)    1   by (1) 

                              iff   (J(a) – s J(e))2 + t2 J(e)  ∉  C(X(A),H)    1 

                              iff   s + it  ϵ  sp(J(a)). 



Theorem 3.2.  Let A be a real associative algebra. Then every seminorm with square property on A is 

submultiplicative. 

Proof.  If A is commutative, see [3, Theorem 1]. If A is noncommutative, let p be a seminorm with 

square property on A. By [5] or [7], there exists m > 0  such that  p(ab) ≤ mp(a)p(b) for all a, b in A. Ker(p)       

is a two sided ideal in A , the norm │.│ on the quotient algebra  A/Ker(p), defined by │a + Ker(p)│= p(a)         

is a norm with square property on A/Ker(p). Define ǁa + Ker(p)ǁ = m│a + Ker(p)│ for all a in A. Let a, b       

in A,  ǁab +Ker(p)ǁ = m│ab + Ker(p)│ ≤  m2 │a + Ker(p)││b + Ker(p)│ = ǁa + Ker(p)ǁ ǁb + Ker(p)ǁ.                  

(A/Ker(p), ǁ.ǁ)  is a real normed algebra. Let a in A,  ǁa2 + Ker(p)ǁ = m│a2 + Ker(p)│= m│a + Ker(p)│2 =         

m    1 ( m│a + Ker(p)│)2 = m    1 ǁa + Ker(p)ǁ2.  The completion B of ( A/Ker(p), ǁ.ǁ)  satisfies also the 

property  ǁb2ǁ = m    1 ǁbǁ2  for all b in B, and consequently  ǁb2ⁿǁ2¯ⁿ = m2¯ⁿ     1 ǁbǁ  for all b in B and n in 

N*,  then r(b) = m    1 ǁbǁ   i.e.   ǁbǁ = m r(b). We consider two cases.                                                                 

B is unital:  By [1, Theorem 1],  X(B) is a nonempty compact space and the map  J: B → C(X(B),H)  is an 

isomorphism ( into).  C(X(B),H)  is a real Banach algebra with unit under the supnorm ǁ.ǁs .  By  
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Proposition 3.1,  r(b) = r(J(b))  for all b in B.  Let b in B,  ǁbǁ = m r(b) = m r(J(b)) = m ǁJ(b)ǁs  since the 

supnorm  satisfies the square property.  Then  ǁJ(b)ǁs = m    1 ǁbǁ = │b│ for all b in A/Ker(p), so │.│ is 

submultiplicative on A/Ker(p)   i.e.   p is submultiplicative.                                                                                                                  

  B is not unital:  Let B1 be the algebra obtained from B by adjoining the unit. By the same proof of                   

[6, Lemma 2], there exists a norm N on B1 such that 

(i) (B1 , N)  is a real Banach algebra with unit 

(ii) N(b) ≤ m3 rB₁ (b)  for all b in B1 

(iii) N  and  ǁ.ǁ   are equivalent on B. 

By [1, Theorem 1],  X(B1)  is a nonempty compact space and the map  J: B1 → C(X(B1),H)  is an 

isomorphism ( into).  Let b in B,  ǁbǁ = m rB(b) = m rB₁(b)  by (iii)       

                                                                                   = m r(J(b))   by Proposition 3.1 

                                                                                    = m ǁJ(b)ǁs   by the square property of the supnorm. 

Then ǁJ(b)ǁs = m    1 ǁbǁ = │b│   for all b in A/Ker(p),  so │.│ is submultiplicative on A/Ker(p)                                      

i.e.   p is submultiplicative.   
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