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                                           ON A CONJECTURE CONCERNING SOME
                                             AUTOMATIC CONTINUITY THEOREMS

                                                                      M.El Azhari

      ABSTRACT. Let A and B be commutative locally convex algebras with unit. A is assumed to be 
a uniform topological algebra. Let Ф be an injective homomorphism from A to B. Under additional 
assumptions, we characterize the continuity of the homomorphism Ф-1 / ImФ by the fact that the 
radical (or strong radical) of the closure of ImФ has only zero as a common point with ImФ. This 
gives an answer to a conjecture concerning some automatic continuity theorems on uniform 
topological algebras.
                                                     

1. INTRODUCTION.  Let A and B be commutative locally convex algebras with unit. A is 
assumed to be a uniform topological algebra. Let Ф be an injective homomorphism from A to B.
Under which conditions is Ф-1/ ImФ  continuous?
      Under additional assumptions such as:
(1)  A is weakly regular and functionally continuous, B an lmc algebra, and (ImФ)¯ (the closure
of ImФ)  is a semisimple Q-algebra; or 
(2)  A is weakly σ*-compact-regular, and (ImФ)¯ is a strongly semisimple Q-algebra;
it is shown in [5] that Ф-1/ ImФ  is continuous, which improves earlier results by Bedaa, Bhatt and
Oudadess ([2]).
      The following examples show that the hypothesis (ImФ)¯ is a Q-algebra in (1) and (2) cannot be 
omitted.
                                                                                                                                                                
Example 1.  Let A = C[0,1] be the algebra of all complex continuous functions on the closed unit 
interval [0,1].  A is a uniform Banach algebra under the supnorm. Since M(A) is homeomorphic to
[0,1],  it follows that A is weakly regular. Consider B = C[0,1].  For any countable compact subset
K of [0,1],  and  f ϵ B,  we put pK(f) = sup{│f(x)│,  x ϵ K}.  B is a complete uT-algebra under the 
system (pK)K.  Consider Ф: A→B, Ф(f) = f.  Then (ImФ)¯=B  is semisimple but not a Q-algebra.
Clearly Ф-1/ ImФ  is not continuous.

Example 2.  Let A = Cb(R) be the algebra of all complex continuous bounded functions on the real 
line.  A is a uniform Banach algebra under the supnorm.  A is weakly σ*-compact-regular 
[2, Remark (4)].  Let B = C(R) be the algebra of all complex continuous functions on R, with the 
compact-open topology.  Consider Ф: A→B,  Ф(f) = f.  Then (ImФ)¯= C(R)  is strongly semisimple
but not a Q-algebra.  Clearly Ф-1/ ImФ  is not continuous.

      In [2], the authors conjectured that the semisimplicity of (ImФ)¯ in (1)  (and strong 
semisimplicity of (ImФ)¯ in (2)) can be omitted.  According to the proofs in [2] and [5], the 
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semisimplicity of (ImФ)¯ in (1) can be replaced by ImФ ∩ R((ImФ)¯) = {0}, and the 
strong semisimplicity of (ImФ)¯ in (2) can be replaced by ImФ ∩SR((ImФ)¯) = {0}.

      In this paper, we show that if A is weakly regular and functionally continuous, B an lmc algebra,
and (ImФ)¯ is a Q-algebra, then the continuity of Ф-1/ImФ is equivalent to ImФ ∩ R((ImФ)¯ = {0}.
We also show that if A is weakly σ*-compact-regular, B has continuous product, and (ImФ)¯ is a
Q-algebra, then the continuity of Ф-1/ ImФ is equivalent to ImФ ∩ SR((ImФ)¯ = {0}.

      2.   PRELIMINARIES.  All algebras considered are over the field ₵, commutative, and having
a unit element.  A topological algebra  is an algebra which is also a Hausdorff topological vector 
space such that the multiplication is separately continuous.  A locally convex algebra (lc algebra)
is a topological algebra whose topology is locally convex.  A locally multiplicatively convex 
algebra (lmc algebra) is a topological algebra whose topology is determined by a family of
submultiplicative seminorms.  A uniform seminorm on an algebra  A is a seminorm p such that
p(x2) = p(x)2  for all x ϵ A.  Such a seminorm is submultiplicative [4].  A uniform topological 
algebra (uT-algebra) is a topological algebra whose topology is determined by a family of uniform
seminorms.  A uniform normed algebra is a normed algebra (A,║║) such that ║x2║= ║x║2  

for all x ϵ A.  Let A be an algebra and x ϵ A, we denote by spA(x) the spectrum of x and  rA(x) the
spectral radius of x.  For an algebra A,  M*(A) denotes the set of all nonzero multiplicative linear
functionals on A.  For a topological algebra A,  M(A) denotes the set of all nonzero continuous 
multiplicative linear functionals on A.  A topological algebra  A  is functionally continuous if
M*(A) = M(A).  A topological algebra is a Q-algebra  [7]  if the set of invertible elements is open.
A topological algebra is weakly regular [2] if given a closed subset F of  M(A), F ≠ M(A), there
exists a nonzero x ϵ A  such that f(x) = 0  for all f ϵ F.  A topological algebra  A  is weakly 
σ*-compact-regular [2] if given a compact subset K of  M*(A), K ≠ M*(A), there exists a nonzero
x ϵ A  such that f(x) = 0  for all f ϵ K.  We use R(A) to denote the radical of an algebra A.  If
R(A) = {0}, we say that A is semisimple.  Let A be a topological algebra with M(A) ≠ Ø, the set
{x ϵ A, f(x) = 0  for all f ϵ M(A)} is called the strong radical of A and denoted by SR(A).  If
SR(A) = {0}, we say that A is strongly semisimple.  Let A be an lmc algebra, if A is complete or a
Q-algebra, then R(A) = SR(A).

      3.   RESULTS

Theorem 3.1.  Let  A be a weakly regular, functionally continuous, uT-algebra.  Let B be an lmc
algebra, and let Ф: A→B be a one-to-one homomorphism such that (ImФ)¯ is a Q-algebra.  
Then the following are equivalent:
(1)  Ф-1/ ImФ  is continuous.
(2)  ImФ  is functionally continuous.
(3)  Ф*: M((ImФ)¯ ) → M(A),  Ф*(f) = foФ,  is surjective.
(4)  ImФ ∩ R((ImФ)¯ ) = {0}.    
 
Proof: (1) => (2):  Let  F ϵ M*(ImФ),  F = FoФo(Ф-1/ ImФ)  is continuous since  FoФ  and
Ф-1/ ImФ  are continuous.
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(2) => (3):  Let  f ϵ M(A) and  F = fo(Ф-1/ ImФ),  F ϵ M*(ImФ) = M(ImФ) and  f = FoФ.  F can be
extended to an F¯ϵ M((ImФ)¯ ).  We have f = F¯oФ.  This shows that Ф*  is surjective.
(3)=> (1):  By [5, Theorem 2.1], the topology of A is defined by a family  {p

S 
, s ϵ S} of

submultiplicative seminorms such that (i )  for all x ϵ A and s ϵ S  with p
S
(x) = 1,  there exists

f ϵ M(A) such that  │f(x)│= 1.  Let s ϵ S and y ϵ ImФ  with  p
S
( Ф-1(y)) ≠ 0.  By (i ), there exists

f ϵ M(A) such that  │f ( Ф-1 (y))│= pS ( Ф-1(y)).  Since Ф* is surjective, there exists F ϵ M(( ImФ)¯ )
such that  f = FoФ.  We have  pS ( Ф-1 (y)) = │f( Ф-1 (y))│= │F(y)│≤  rC(y),  where  C = (ImФ)¯.
Since C  is a Q-algebra,  rC  is continuous at 0  [7, Proposition 13.5]. Then Ф-1/ ImФ  is continuous.
(3) => (4):  Let  y ϵ ImФ ∩ R((ImФ)¯ ), there exists x ϵ A such that  y = Ф(x) and F(Ф(x)) = 0
for all F ϵ M((ImФ)¯ ).  Then f(x) = 0  for all f ϵ M(A) since Ф* is surjective.  Hence x = 0  and
so y = Ф(x) =0  since  A is a uT-algebra. 
(4) => (3):  Ф* is well defined and continuous.  Since (ImФ)¯ is a Q-algebra, M((ImФ)¯ ) is 
compact  [6, p.187 ], thus Ф*(M((ImФ)¯ ) is compact.  Suppose that Ф* is not surjective.  By
the weak regularity of A, there exists a nonzero x ϵ A such that f(Ф(x)) = 0  for all f ϵ M((ImФ)¯ ).
Since (ImФ)¯ is a Q-algebra, it follows that Ф(x) ϵ ImФ ∩ R((ImФ)¯ ) ={0}, and then x = 0,
a contradiction.

Theorem 3.2.  Let A be a weakly σ*-compact-regular, uT-algebra.  Let B be an lc algebra with
continuous product, and Ф: A → B be a one-to-one homomorphism such that  (ImФ)¯ is a 
Q-algebra.  The following are equivalent:
(1)  Ф-1/ ImФ  is continuous.
(2)  ImФ ∩ SR((ImФ)¯ ) = {0}.
(3)  Ф**: M((ImФ)¯ ) → M*(A), Ф**(f) = foФ, is surjective.
 
Proof: (1) => (2):  The topology of A is determined by a family {pu , u ϵ U} of uniform seminorms.
For each u ϵ U, let Nu = {x ϵ A, pu(x) = 0} and  Au  be the Banach algebra obtained by completing
A/Nu  in the norm ║xu║u  = pu(x),  xu = x + Nu  .  It is clear that Au  is a uniform Banach algebra.
For each u ϵ U, let Mu(A) = { f ϵ M(A), │f(x)│≤ pu(x)  for all x ϵ A}.  Let u ϵ U and x ϵ A,
pu(x) =║xu║u = ru (xu) = sup{│g(xu)│, g ϵ M(Au)} = sup{│f(x)│, f ϵ Mu(A)} by [7, Proposition 7.5 ]
( ru is the spectral radius on Au). Let u ϵ U and y ϵ ImФ,  pu ( Ф-1(y)) = sup{│foФ-1 (y))│, f ϵ Mu(A)}.
Let f ϵ Mu(A),  foФ-1 ϵ M(ImФ) = M((ImФ)¯ ) since Ф-1/ImФ  is continuous and B has continuous
product.  Then  pu(Ф-1(y)) ≤ sup {│F(y)│, F ϵ M((ImФ)¯ )} for all u ϵ U and y ϵ ImФ.  Let
y ϵ ImФ ∩ SR((ImФ)¯ ), we have pu(Ф-1(y)) = 0  for all u ϵ U, then Ф-1(y) = 0  and so y = 0. 
(2) => (3):  Ф** is continuous.  Since (ImФ)¯ is a Q-algebra, M((ImФ)¯ ) is compact  [6, p.187], 
thus Ф**(M((ImФ)¯ ))  is compact.  Suppose that Ф**  is not surjective.  Since A is σ*-compact-
regular, there exists a nonzero x ϵ A such that f(Ф(x)) = 0  for all f ϵ M((ImФ)¯ ).  This gives
Ф(x) ϵ ImФ ∩ SR((ImФ)¯ ) = {0}, and then x = 0, a contradiction. 
(3) => (1):  Similar to the proof of (3) => (1) in Theorem 3.1.

     Here is an example such that A is weakly regular, uniform Banach algebra, B is a Banach 
algebra, Ф: A → B is a one-to-one homomorphism, and  ImФ ∩ R((ImФ)¯ ) = {0} but
R((ImФ)¯ ) ≠ {0}.
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Example.  Let  A = C[0,1] be the algebra of all complex continuous functions on the closed unit 
interval [0,1].  A is a uniform Banach algebra under the supnorm ║.║,  A is also weakly regular.  
By [3], there exists a norm │.│on C[0,1] such that C[0,1] is an incomplete normed algebra.  It is 
well known that ║.║ ≤ │.│.  Let B be the completion of C[0,1] under the norm │.│.  Consider 
Ф: A → B, Ф(f) = f, we have (ImФ)¯ = B.  If B is semisimple, then Ф is continuous, and 
consequently the norms ║.║ and │.│ are equivalent, a contradiction.  Since ║.║ ≤ │.│, Ф-1/ ImФ
is continuous and so  ImФ ∩ R((ImФ)¯ ) = {0} by Theorem 3.1.

Remark.  The algebra A considered in the above example is also σ*-compact-regular and
ImФ ∩ SR((ImФ)¯ ) = {0}  but SR((ImФ)¯ ) ≠ {0}.

    The following result is an application of Theorem 3.1.

Theorem 3.3.  Let A be a functionally continuous normed algebra.  Then the following assertions
are equivalent:
(1)  A is a uniform normed algebra.                                                                         
(2)  A has a largest closed, idempotent, absolutely convex, bounded subset.

Proof. (1) => (2):  Let ║.║ be a uniform norm defining the topology of A.  Let B ={x ϵ A,║x║≤ 1}, 
B is a closed, idempotent, absolutely convex, bounded subset of A. Let C be an idempotent bounded 
subset of A.  There exists M > 0 such that ║x║≤ M  for all x ϵ C.  Let x ϵ C, ║x║ = ║x2n║2-n  ≤ M2-n

for all n ≥ 1, then ║x║ ≤ 1    i.e.  x ϵ B.
(2) => (1):  Let B be a largest closed,  idempotent, absolutely convex, bounded subset of A.  By
[1, Proposition 2.15], we have A = A(B) ={tx, t ϵ₵ and x ϵ B}.  Let ║.║B  be the Minkowski 
functional of  B, (A,║.║B) is a normed algebra.  By [1, Proposition 2.15],  β = ║.║B  where β is the 
radius of boundedness, then (A, ║.║B) is a uniform algebra since β(x2 ) = β(x)2   for all x ϵ A.  Let
A1  be the completion of A under the original norm.  It is clear that Ф: (A, ║.║B) → A1 , Ф(x) = x,
is continuous, and consequently (A, ║.║B) is functionally continuous.  We now remark that we have
proved the equivalence of (1), (2) and (3) in Theorem 3.1 without the condition that A is weakly 
regular.  Using this remark, Ф-1/ ImФ is continuous, then Ф is a homeomorphism (into), so A is a
uniform normed algebra.  
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