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On the logic resolution of the wave particle
duality paradox in quantum mechanics

(Extended abstract)

M.A. Nait Abdallah

UWO, London, Canada and INRIA, Paris, France

Abstract. In this paper, we consider three landmark experiments of
quantum physics and discuss the related wave particle duality paradox.
We present a formalization, in terms of formal logic, of single photon self-
interference. We show that the wave particle duality paradox appears,
from the logic point of view, in the form of two distinct fallacies: the hard
information fallacy and the exhaustive disjunction fallacy. We show that
each fallacy points out some fundamental aspect of quantum physical
systems and we present a logic solution to the paradox.

1 Introduction

It is a common view among physicists to see Quantum Mechanics simply as a
calculation method which yields results that are in astonishing accordance with
all experimental observations performed so far. Under such a view, the math-
ematical theory of Quantum Mechanics does not operate on mathematical ob-
jects directly representing quantum physical objects, but rather on probabilities
yielding useful pragmatic results.

The question arises as to whether a more analytic mathematical approach to
the study of quantum mechanics would be of some use, or even at all possible. In
this paper, we explore, from the point of view of mathematics, the logical content
of three major experiments due to Grangier, Roger and Aspect [11] and Scully,
Englert and Walther [14], and draw from this analysis a logic-based solution to
the wave particle duality paradox in Quantum Mechanics.

1.1 Three quantum physics experiments

In reference [11] the authors describe two experiments that indisputably show
that the light quantum, or photon, is both a wave and a particle. Such a simulta-
neous double identity is very difficult to grasp within a classical logic conceptual
framework, where it indeed leads to a paradox.

The setup of Grangier et al. experiment #1 (Figure 1) has a light source that
emits single photons, one by one, well-separated in time, and sends them through
a beam splitter (half-silvered mirror). The emitted photons all have exactly the
same physical properties. The intensity of light (luminous flow) thus emitted is
evenly split by the half-slivered mirror, between a vertically reflected portion
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and a horizontally transmitted portion. One positions a detector on each of the
two exit channels, as well as a joint detection device at the end of both channels.

Fig. 1. Grangier et al. First experiment

Experiment # 2 setup (Figure 2) recombines both beams of light with a sec-
ond beam splitter, thus yielding a Mach-Zehnder interferometer, where M1,M2

Fig. 2. Grangier et al. Second experiment

are mirrors and BSin, Bout are beam splitters. Again, the intensity of light
traveling the lower (resp. upper) path into the second beam splitter BSout is
evenly split by the half-slivered mirror, between a horizontally reflected (resp.
transmitted) portion and a vertically transmitted (resp. reflected) portion.

The first experiment (Figure 1) shows that every single photon is detected by
a single detector on a single path. The photons are not split on a beam splitter,
each photon is insecable and can take only one of either path. Whence each
single photon obviously behaves as a particle.

In the second experiment (Figure 2), every single photon is detected as a
single particle by a single end detector. However, every photon registers at hor-
izontal end detector C, and none registers at vertical end detector D, thus dis-
playing an interference fringe. Thus, light emitted by the single photon source,
at discrete points in time, behaves like a wave. The electromagnetic field is co-
herently split on a beam splitter, where “coherent” means that the two subwaves
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(Huygens principle) have a constant phase difference (equal to π in this case.)
One observes an interference fringe i.e., the photon behaves like a wave.

Since at each beam splitter the photon has an equal chance to be reflected
or transmitted, it should randomly register with equal probability at one end
detector or the other. On the contrary, Grangier et al. experiment #2 demon-
strates that probabilities associated with each path do not add up, all photons
go to one detector only. From the point of view of probabilities, the quantum
phenomenon does not decompose into a statistical distribution in a space of
classical phenomena as in e.g., thermodynamics.

Thus, the very same photon, upon traversing the first beam-splitter, behaves
as a particle or as a wave, depending on which devices are to be found long
after it has traveled through this beam splitter. How can the single photon be
both split (i.e., a wave) and insecable (i.e., a particle) at the same time? This
seemingly contradictory situation is the Wave Particle Duality Paradox and is
one of the fundamental problems of Quantum Mechanics.

One problem with the photon is that as a light quantum it vanishes upon
detection. An third experiment, clarifying this matter, is Scully et al. experiment
[14] which, instead of photons, uses excited atoms as particles. A microwave
cavity, finely tuned on an atomic transition, is positioned on each channel of
a Young slit interference experimental device. Atoms are first brought to an
excited state using a laser beam, and then sent through the setup. Upon traveling
through the cavities, the excited atom returns to its ground state, emitting one
single photon. That photon remains trapped in the cavity. The presence of the
photon in one of the cavities characterizes the path taken by the atom, thus
providing which-way information and at the same time erasing the interference
fringes i.e., making the wave-like behaviour of the atom disappear. Scully et
al. experiment shows that the wave behaviour and the particle behaviour of
the atom cannot be observed simultaneously: the physical availability of which-
path information (particle behaviour) and the occurrence of interference (wave
behaviour) are mutually exclusive.

According to Feynman [10], p. 1-1, the wave particle duality phenomenon
“has in it the heart of quantum mechanics; in reality, it contains the only mys-
tery” of the theory “which cannot be explained in any classical way.”

1.2 Notations

Before we get to the heart of the matter, let us define some notations. The
basic experimental setup of Grangier et al. experiment #2 is a Mach-Zehnder
interferometer. It is constituted (Figure 3) of a single photon light source e, two
half-silvered mirrors (beam splitters) B1, B2, two mirrors M1,M2, and two de-
tectors C,D positioned on a rectangle as shown. The mirrors and beam splitters
are oriented diagonally, the first beam splitter silvered face upward, the second
beam splitter face down.
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Fig. 3. Mach-Zehnder interferometer

Each photon emitted at source e registers either at detector C or at detector
D. Experiment shows that detection frequencies PC and PD are given by

PC = 1 PD = 0 (1)

Every photon emitted at e registers at detector C (constructive interference)
and none at D (destructive interference).

Define propositional formulae:
a := “the photon takes the upper path a,”
b := “the photon takes the lower path b,”
i := “there is interference of probability waves.”
Such definitions implicitly assume that formulae a, b, i, . . . i.e., phrases such as
“the photon takes the upper path” have a clear and unambiguous meaning.
Given the propositional nature of the alphabet {a, b, i, . . .} thus chosen, we shall
use propositional logic throughout this paper.

Using these definitions, the experimental results [11, 14] reviewed above read
as follows. (For reasons that will become clear later, the corresponding propo-
sitional formulae are labeled using object variables belonging to some set V =
{z, t, f, g, . . .}.)
– Grangier et al. experiment #1: Upon leaving the first beam splitter, the

photon traverses the a path or the b path

z : a ∨ b (2)

and there is never joint detection.
In (2) expression z : a ∨ b means “z is a label of formula a ∨ b.” In that
expression, z ∈ V is a variable used as a label for bookkeeping purposes, colon
“:” is the labeling operation, and a, b are defined above. Labeling conventions
are the same in (3) through (5) below. A deeper meaning of this seemingly
innocuous labeling device will be revealed by Curry-Howard correspondence
in Section 2.2, p. 10, where z : a∨b will become an “inhabitation claim” and
z an “inhabitant” of formula a ∨ b. For the time being, we can safely ignore
this, and see it as a simple bookkeeping notational convention.
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– Grangier et al. experiment #2: There is interference

t : i (3)

where variable t ∈ V is a label for i, and i is defined above.
– Scully et al. experiment: There is interference if and only if no which-way

information is physically available

f : a→ ¬i g : b→ ¬i (4)

To these we add the obvious observation that absence of light (photon) on both
channels implies absence of interference, since there is nothing to interfere with

h : ¬a→ ¬b→ ¬i. (5)

Each of properties (2) through (4) is an experimental fact that holds true
of the photon; property (5) is commonsense: if there is no light, there is no
interference.

2 The wave particle duality paradox in Quantum
Mechanics

2.1 Paradox

A naive understanding of the light quantum leads one to assume that the photon
simultaneously verifies all properties (2) through (4) revealed by experiment, as
well as property (5). The ensuing logic paradox, first outlined in Section 1.1,
comes in the form of two distinct fallacies which we call the hard information
fallacy and the exhaustive disjunction fallacy. (A fallacy is an incorrect result
coupled with an apparently logical explanation of why the result is correct.)
As we shall see, each points out some fundamental aspect of quantum physical
systems, and this will explain our terminology.

The hard information fallacy Scully et al. experiment [14] establishes that the
physical availability of which-path information and the occurrence of interference
are mutually exclusive. This implies that if the photon is detected on channel
a, then one observes no interference. Similarly for b. Hence, by contraposition,
in the presence of interference, the photon determinately traverses neither chan-
nel a nor b. However, in the absence of photon on both channels, there is no
interference. Let us assume that there is interference. By the first implication,
one deduces that the photon traverses neither channel; by the second impli-
cation one concludes that there is no interference. By reductio ad absurdum,
we conclude that there is no interference. This logical conclusion is refuted by
Grangier et al. experiment #2.

The exhaustive disjunction fallacy Grangier et al. experiment #1 establishes that
the photon is a particle taking the a path or the b path. Scully et al. experiment
establishes that if the photon takes either path, then there is no interference. By
reasoning by cases, one concludes that no interference takes place. This logical
conclusion is refuted by Grangier et al. experiment #2.
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2.2 Ways out of paradox

The wave particle duality paradox has aroused many responses, ranging from
philosophy to physics. An obviously adequate solution is the one offered by the
Quantum Mechanics mathematical formalism itself, but which makes little log-
ical sense, as far as classical logic is concerned, suggesting, given other “strange
properties” of the quantum physical world, that understanding quantum me-
chanics might be beyond the ability of the human mind. R. Feynman writes [9],
p. 129

I think I can safely say that nobody understands quantum mechanics.

Physics based solutions Major solution proposals to the wave particle duality
paradox include Bohr’s complementarity principle, de Broglie’s pilot wave model
in Bohm’s theory [3] and Everett’s relative-state presentation of Quantum Me-
chanics [7]. Bohr’s complementarity principle states that some questions cannot
be asked simultaneously; thus here one must choose the question to be asked:
Which path does the photon travel? Is there interference? Both are relevant to
the physical reality of the quantum physical system considered, but they are
mutually exclusive.

Bohr’s solution is part of the Copenhagen interpretation of Quantum Me-
chanics and is the most widely accepted one among practicing physicists.

The meta-physical approach The question arises: Which fundamental math-
ematical properties of the quantum physical world are pointed out by the wave
particle duality paradox? In this work, we aim at exploring an alternative so-
lution to the paradox, based on mathematical logic. To this end, we draw
on two theoretical tools: (i) Wheeler’s dichotomy between phenomenon and
phenomenon-to-be [16, 17] and (ii) the logic of partial information [1].

(One observes in passing that probability theory, which constitutes a signif-
icant part of Quantum Mechanics, is silent about the hard information fallacy,
and the exhaustive disjunction fallacy.)

Hard vs. soft information in logic The logic partial information is an extension
of classical logic, inspired from the philosophical logic of scientific discovery of
Popper and Lakatos [13], for the purpose of reasoning with partial and tenta-
tive information, and geared towards the needs of practicing computer scientists.
In contrast with classical logic, which reasons on the basis of total, certain in-
formation, the logic of partial information separates knowledge in two broad
categories, hard knowledge and soft knowledge. Hard knowledge corresponds
to total, certain information, whereas soft knowledge statements correspond to
plausible, hypothetical information awaiting confirmation. (An ansatz is an in-
stance of soft knowledge in physics methodology.) Available and non-available
information are both relevant in the reasoning process in that non-available in-
formation has a direct, “positive” impact on the conclusions that can be drawn.
Previously established soft theorems may be withdrawn in the face of new hard
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information to the contrary. As an example, if Tweety is a bird and birds fly,
then one concludes that Tweety flies. However, upon learning that Tweety is a
penguin and penguins don’t fly, one withdraws the conclusion that Tweety flies.
Thus the hard vs. soft dichotomy is actually a hierarchy where soft knowledge
yields to hard knowledge.

Phenomenon vs. phenomenon-to-be in physics In Quantum Mechanics, experi-
ments conducted by Scully et al. and other experiments show that whether some
information is physically available has a direct impact on which physical pro-
cesses take place, e.g., which-way information precludes interference. Physically
available and non-available information are both relevant to the reasoning and
physical process. Along the same line of thought, Bohr [4, 5] and Wheeler [16] es-
tablish a sharp distinction between phenomena (i.e., observed phenomena) and
phenomena-to-be. According to Wheeler [16] p. 189, 202:

Until the act of detection the phenomenon-to-be is not yet a phenomenon
. . . No elementary phenomenon is a phenomenon until it is an observed
phenomenon.

Also, in Wheeler [17]:

No elementary quantum phenomenon is a phenomenon until, as Bohr
puts it [4], ”It has been brought to a close” by ”an irreversible act of
amplification.” . . .
We know perfectly well that the photon existed neither before the emission
nor after the detection. However, we also have to recognize that any talk
of the photon “existing” during the intermediate period is only a blown-
up version of the raw fact, a count.

Quantum mechanics vs. logic of partial information Each of the two theories
“quantum mechanics” and “logic of partial information” has two levels distin-
guished by “quality of information”:

1. in quantum mechanics: phenomenon vs. phenomenon-to-be,
2. in the logic of partial information: hard knowledge vs. soft knowledge.

For each level in both theories, we see here a formal analogy:

(i) between hard knowledge in the logic of partial information, and phenomena
(i.e., observed phenomena) in the sense of Bohr and Wheeler,
and

(ii) between soft knowledge and its treatment in the sense of the logic of partial
information on one hand, and phenomena-to-be in the sense of Wheeler and
their functioning in physics on the other.

Just as in the logic of partial information, a phenomenon-to-be in the sense of
Wheeler might be seen as a phenomenon awaiting confirmation in the sense of
the logic of partial information. If one were to equate “knowledge” and “hard
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knowledge” in a way similar to Bohr’s and Wheeler’s equation of “phenomenon”
and “observed phenomenon,” then just as in quantum mechanics, soft knowledge
might be seen as knowledge-to-be in the sense of Wheeler.

To further explore this analogy, and make it into a correspondence

(observed) phenomenon as hard knowledge

and

phenomenon-to-be as soft knowledge

between quantum mechanics and the logic of partial information, as in Fig-
ure 4, an algebraic tool for tracking information is needed. In formal logic,

phenomenon hard knowledge

phenomenon-to-be

QM

OO

soft knowledge

LPI

OO

Fig. 4. Correspondence between Quantum Mechanics and the Logic of Partial Infor-
mation

Curry-Howard correspondence [6, 12] offers a means to track proof-theoretic in-
formation in the reasoning process. This means is λ-calculus [15]. The question
then arises: using Curry-Howard correspondence and the logic of partial infor-
mation, can we formalize and/or learn more about fundamental concepts of
Quantum Mechanics?

In this paper, we consider a restricted form of this question, namely single
photon self-interference and the wave particle duality paradox in quantum me-
chanics. More precisely, we provide a formal logic description and analysis of
a specific physical phenomenon, the fact that a quantum particle can interfere
with itself. Such an approach is akin to Boolean logic providing a description
and analysis of an electric circuit. As a consequence, we obtain a logic solution
to the wave particle duality paradox.

For this purpose, we proceed as follows. The articulation point between
Bohr’s and Wheeler’s phenomenon dichotomy and the logic of partial infor-
mation is a generalization of Curry-Howard correspondence which will allow us
to express quantum physics processes as programs (in the sense of computer sci-
ence) written in a generalized λ-calculus which we now outline. In some sense,
the general idea here is that of an attempt at providing an abstraction of Quan-
tum Mechanics in terms of a (generalized) λ-calculus, in the same sense as, in
computer science, λ-calculus provides a complete abstraction of actual computer
programs.
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λ-calculus is a universal programming language (i.e., one which has an ex-
pressive power equivalent to that of Turing machines) with the simplest pos-
sible syntax. Its programs, called λ-terms, are defined as follows. Given a set
V = {x, y, . . .} of variables,

1. any variable x ∈ V is a λ-term.
2. application rule: If M,N are λ-terms, then so is (MN).
3. abstraction rule: If x ∈ V is a variable, and M is a λ-term, then (λx.M) is

a λ-term.

Intuitively, application (MN) designates the result of applying function M to
argument N , and λ-abstraction (λx.M) designates function x 7→ M taking x
as an argument and returning M as a result. This definition of λ-terms may be
abbreviated using the following grammar

Λ ::= V | (ΛΛ) | (λV.Λ) (6)

V ::= x | y | . . .

This grammar has two rules, each rule defining a subset of λ-terms. In each rule,
relation ::= indicates that the lefthand side, the definiendum, is defined in terms
of the righthand side, the definiens. The definiendum is Λ in the first rule, and
V in the second rule. Vertical stroke | indicates alternative choices. The first
rule reads as follows: a Λ (i.e., a λ-term) is defined as being either a V (i.e., a
variable) or a (ΛΛ) (i.e., a λ-term M applied to a λ-term N), or a (λV.Λ) (i.e.,
is some (λx.M) obtained by abstracting variable x ∈ V in some λ-term M). The
second rule reads: a V (i.e., a variable) is either x or y or etc.

Even though language Λ thus defined is universal, to facilitate expression in
this “assembly language of formal thought,” one introduces some higher level
constructs (data and control structures), namely: pairing 〈M,N〉, projections
πi(M), i = 1, 2, injections ini(M), i = 1, 2 and case analysis case(L ; M ; N).
This yields the enriched language of λ-terms defined by modified grammar

Λ ::= V | (λV.Λ) | (ΛΛ) | 〈Λ,Λ〉 | π1(Λ) | π2(Λ) (7)

| in1(Λ) | in2(Λ) | case(Λ ; λV.Λ ; λV.Λ)

V ::= x | y | . . .

λ-terms may be typed, just as expressions and functions in Fortran are typed
(e.g., as in type declaration “complex: x” which in Fortran 77 declares variable
x to be of type complex.)

Our set of logic formulae will be the customary set of propositional formulae,
defined by grammar

F ::= P | F | (F ∧ F) | (F ∨ F) | (F → F) (8)

where P is the set of propositional variables. We code negation of a formula ϕ
by implication ϕ→ F, where F stands for “falsehood”; ∧, ∨,→ are the common
logic connectives.
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A central connection between λ-terms and (propositional) formulae is pro-
vided by Curry-Howard correspondence [6, 12, 15]. Curry-Howard correspondence
establishes a one-to-one proofs-as-terms/formulae-as-types correspondence be-
tween formal proofs in logic using natural deduction of some formula ϕ, and
typed λ-terms of the type corresponding to formula ϕ. The suitable type struc-
ture is given here by

T ::= P | empty | (T × T ) | (T + T ) | (T → T ) (9)

where P is the set of base types (e.g., integer, real in Fortran), and × (cross
product), + (direct sum of types) and → (function type) are the customary
operations on types. One sees that each formula may be read as a type, and
conversely. In case some term t is of some type T (or alternatively term t codes
a proof of formula T ), we write t : T and we say that t is an inhabitant of T , and
we call the expression t : T an inhabitation claim. Such a notation was informally
introduced in Section 1.2 above. For example in (5), inhabitation claim

h : ¬a→ ¬b→ ¬i

may be read as a curried (in the sense of Currying) version of a two-argument
function h′ of type (¬a)× (¬b)→ (¬i):

h′ : (¬a)× (¬b)→ (¬i), (u, v) 7→ h′(u, v)

taking an element (proof term) u of type ¬a and an element (proof term) v
of type ¬b and yielding result h′(u, v) = (hu)v of type ¬i, i.e., a proof term
inhabiting ¬i.

In our particular case, we show that the wave particle duality paradox cor-
responds to the following two distinct typed λ-terms (10), (12) proving that no
interference takes place. These λ-terms correspond to the two fallacies (hard in-
formation and exhaustive disjunction) already discussed in Section 2.1. First we
have the hard information fallacy

h(λx.fxt)(λy.gyt) : ¬i (10)

which says that no interference takes place, and can be re-expressed as

h(λx.fxt)(λy.gyt)t : F (11)

Second, we have

case(z ; λx.fx ; λy.gy) : ¬i (12)

corresponding to the exhaustive disjunction fallacy, which can be re-expressed
as

(case(z ; λx.fx ; λy.gy))t : F (13)

Conclusion ¬i in the two inhabitation claims (10) and (12), stating that there is
no interference, is refuted by Grangier et al. experiment #2, whose correspond-
ing inhabitation claim is t : i. This refutation is at the heart of the wave particle
duality paradox.
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3 Formalism of quantum logic of partial information

In the face of this wave particle duality paradox, something has got to change.
What can be done in logic? Following the direction suggested by Bohr and
Wheeler, and the logic of partial information (Figure 4), we proceed as follows.
We first enrich the set of formulae, the set of λ-terms, and we lay down tools
for mirroring Feynman’s path integral [8, 10] and the no-joint-detection prop-
erty demonstrated by Grangier et al. experiment #1. We then analyze the three
experiments in the next Section. We finally show how to eliminate the fallacies.

3.1 Logic formulae and soft knowledge

First, to express the notion of “property-to-be,” we extend our set of logic for-
mulae with a new unary connective denoted by ? (star) :

If ϕ is a formula, then so is ϕ?.

where the intended meaning of ϕ? is “It is not physically excluded that ϕ be the
case, awaiting confirmation.” Whence grammar

F? ::= P | F | (F? ∧ F?) | (F? ∨ F?) | (F? → F?) | (F?)? (14)

defining the new set of propositional formulae replacing F .

3.2 λ-terms and soft information

By definition, star formulae ϕ? are tentative hypotheses conveying only soft, de-
feasible information; as a result, the existence of the corresponding proof λ-terms
is far from assured, and such terms may not exist at all. We therefore introduce
an additional set Ξ of parameters to serve as place-holders for possible, albeit
not sure inhabitants of such formulae ϕ?. As in the logic of partial information,
the value of such parameters will depend on the context in which the reasoning
takes place. Intuitively, parameters ξ ∈ Ξ may be seen as meta-variables whose
possible values range over the set of ordinary, “hard” λ-terms. This addition step
means extending the grammar definition of Λ as follows:

Λ ::= V | Ξ | (λV.Λ) | (ΛΛ) | 〈Λ,Λ〉 | π1(Λ) | π2(Λ) (15)

| in1(Λ) | in2(Λ) | case(Λ ; λV.Λ ; λV.Λ)

V ::= x | y | . . .
Ξ ::= ξ | ρ | . . .

Observe that, in contrast with variables ∈ V , parameters ∈ Ξ are never ab-
stracted over. They are always used as place-holders for missing information,
never for transmitting arguments of functions.

Elements of Λ containing no occurrences of parameters ∈ Ξ are called hard
terms, and correspond to hard, certain information. The other elements cor-
respond to soft information i.e., in a Wheeler’s style terminology, to (hard
information)-to-be, and are called soft terms.
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To tackle the Quantum Mechanics wave particle duality paradox, such an
extension of Λ is not sufficient, however, due to the interference phenomenon
pointed out by Grangier et al. experiment #2. We cannot express interference
using F? and Λ thus extended.

In physical optics, to account for light interference, one records the phase
changes as light propagates. In the case of Mach-Zehnder interferometer, accord-
ing to Fresnel rules, phase changes occur when light is reflected by the metallized
face of a mirror or beam splitter. The corresponding change is always equal to
+π i.e., corresponds to multiplying the current amplitude by eiπ = −1. To
simplify the exposition, since distances traveled on both paths of our rectangle
(Figure 3) are equal and introduce no optical path difference, we shall, without
loss of generality, ignore phase shifts undergone while the photon travels through
physical space.

In the current setting, we formalize light propagation as proof steps in natural
deduction. Whence, from the point of view of physics, when recording such proof
steps, one must take into account the phase shifts undergone by the light beam.
Since we are using Curry-Howard correspondence to record proofs as λ-terms,
the λ-terms used in natural deduction need to be generalized by the introduction
of phase shifts [2]. In the case considered here, it is enough to observe that all
phase changes are equal to π, whence correspond to a “multiplication by −1”
of the physical amplitude. No other phase shift values need to be considered for
the solution of the logic problem considered here.

This leads to the introduction of signed λ-terms, which are defined as follows.
A atomic signed λ-term is either a λ-term or a λ-term affected by a minus
sign, and one closes the set of signed λ-terms under the usual grammatical
constructions.

Putting all these elements together yields the following definition of signed
partial information λ-terms for quantum mechanics:

Λs ::= Λ | −Λ (16)

| (λV.Λs) | (ΛsΛs) | 〈Λs, Λs〉 | π1(Λs) | π2(Λs)

| in1(Λs) | in2(Λs) | case(Λs ; λV.Λs ; λV.Λs)

Λ ::= V | Ξ | (λV.Λ) | (ΛΛ) | 〈Λ,Λ〉 | π1(Λ) | π2(Λ)

| in1(Λ) | in2(Λ) | case(Λ ; λV.Λ ; λV.Λ)

V ::= x | y | . . .
Ξ ::= ξ | ρ | . . .

Again, elements of Λs containing no occurrences of parameters ∈ Ξ are called
hard terms, and correspond to certain information. The other elements corre-
spond to soft information and are called soft terms.

The rules of natural deduction are generalized accordingly and in addition,
for dealing with phases, one has equational rules on terms:

(−M)N =− (MN), (M(−N)) = −(MN), (−M)(−N) = (MN)
(17)
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3.3 Integral proofs

In Feynman’s presentation of quantum mechanics [8], the probability amplitude
to go to a given state is equal to the sum of all the amplitudes for all the evolution
paths leading to that state.

Let us define a context Γ as being a finite collection of

(i) variable inhabitation claims of the form x : ϕ, where x is a possibly signed
variable ∈ V and ϕ ∈ F?, providing the available hard information for the
problem at hand, together with

(ii) corresponding auxiliary tentative inhabitation claims ξ : ψ?, where ξ ∈ Ξ,
for star formulae ψ? ∈ F? providing soft information.

We define the integral proof of a formula ϕ as being the formal sum of all
(signed partial information) λ-terms proving ϕ, namely, s is the integral proof
of ϕ in context Γ , written

Γ  s : ϕ

if and only if s is the formal sum of all terms t such that t is a proof of ϕ in
context Γ , i.e.,

s =
∑
{t | Γ ` t : ϕ}.

We denote by 0 the empty formal sum.

3.4 Orthogonality

Finally, given a quantum physical system, let Γ be the context providing the
available information about that system.

By definition, we say that two formulae ϕ1, ϕ2 are orthogonal in context Γ
if and only if for any variables u, v ∈ V not occurring in Γ the following integral
judgments hold

Γ, u : ϕ1  0 : ϕ2 Γ, v : ϕ2  0 : ϕ1 (18)

in addition to those obtained through natural deduction, where Γ, u : ϕ1 is con-
text Γ augemented with inhabitation claim u : ϕ1, et cetera.
From the point of view of physics, the first judgment in this definition means
that e.g., whenever there is definite information u (obtained e.g., via some ob-
servation) that ϕ1 is the case, then ϕ2 is not being observed, since the the sum of
its inhabitants is zero. In other words, intuitively, “Γ, u : ϕ1  0 : ϕ2” says that
whenever ϕ1 has a hard inhabitant i.e., ϕ1 is a phenomenon, this implies that
the integral proof supporting (orthogonal) claim ϕ2 is vacuous, which means
that ϕ2 is neither a phenomenon nor a phenomenon-to-be, it is never observed
i.e., ϕ2 is just not there. Similarly for the second judgment.
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We are now in a position to summarize our main results. They consist of
formal proofs of the experimentally observed properties of the Mach-Zehnder
interferometer (Section 1.1), and of a logic solution to the wave particle duality
paradox in quantum mechanics. We present these in turn.

4 A logical analysis of the experiments

The Mach-Zehnder interferometer setup (Section 1.1) may be formalized as fol-
lows. Using the proposition notation given earlier (Section 1.2) the corresponding
context Γ is given by the following inhabitation claims (clauses):

x : e (19)

−P : e→ (e→ a)
? → a Q : e→ (e→ b)

? → b

−J : a→ a′ −J ′ : b→ b′

−P ′ : b′ → (b′ → c)
? → c Q′ : b′ → (b′ → d)

? → d

P ′′ : a′ → (a′ → d)
? → d Q′′ : a′ → (a′ → c)

? → c

together with the following tentative inhabitation claims, where parameters ρ
(resp. τ) stand for reflection (resp. transmission)

ρ1 : (e→ a)
?

ρ2 : (b′ → c)
?

ρ′2 : (a′ → d)
?

τ1 : (e→ b)
?

τ2 : (b′ → d)
?

τ ′2 : (a′ → c)
?

In addition to context Γ , we add the requirement that formulae a, b be or-
thogonal. This is to express the “no joint detection rule” from Grangier et al.
experiment #1. For our current purpose, this (incomplete) formalization will be
sufficient.

Context Γ yields the following two integral inhabitation claims

Γ  Q′′(J(Pxρ1))τ ′2 + P ′(J ′(Qxτ1))ρ2 : c
Γ  P ′′(J(Pxρ1))ρ′2 + (−Q′(J ′(Qxτ1))τ2) : d

(20)

which give a logic formalization of the transit of the photon through the inter-
ferometer, given emission x : e.

Using notation convention M −N := M + (−N), this simplifies into

Γ  Q′′(J(Pxρ1))τ ′2 + P ′(J ′(Qxτ1))ρ2 : c
Γ  P ′′(J(Pxρ1))ρ′2 −Q′(J ′(Qxτ1))τ2 : d

(21)

We need to define what it means to have interference fringes in the current
setting. We first define a standard interpretation I from signed λ-terms to real
numbers and real mappings of real variables; this definition follows from the
intended interpretation of our extended λ-calculus.

For any context Γ ′ containing context Γ defined in (19), we say that a pair of

integral inhabitation claims

(
Γ ′  t1 : c
Γ ′  t2 : d

)
defines an interference pattern under

interpretation I with domain set R of real numbers, if and only I(t1) 6= 0 and
I(t2) = 0.
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One then proves the following theorems.

Theorem 1. (Interference) Interference occurs in Mach-Zehnder interferometer
i.e., pair of integral inhabitation claims (21)

Γ  Q′′(J(Pxρ1))τ ′2 + P ′(J ′(Qxτ1))ρ2 : c
Γ  P ′′(J(Pxρ1))ρ′2 −Q′(J ′(Qxτ1))τ2 : d

defines an interference pattern under the standard interpretation, where Γ is the
context defined above (19). �

Theorem 2. (No joint detection) Upon being detected along one of channels
a, b, the photon is an insecable particle which is never detected on the other
channel. �

Theorem 3. (Which-way information) If hard information that the photon
travels the a path (resp. the b path) is added to context Γ , then no interference
takes place. �

Define a formula as being valid in context Γ if and only if it has a hard
inhabitant in Γ . Then one proves:

Theorem 4. (No exhaustive disjunction) Neither formula a ∧ b nor a ∨ b
is valid in context Γ (19) formalizing the Mach-Zehnder interferometer. �

Observe that the classical logic context brought to light earlier in Section 1.2

{z : a ∨ b, f : a→ ¬i, g : b→ ¬i, h : ¬a→ ¬b→ ¬i, t : i }

including the results of the three experiments, yielded two fallacies

h(λx.fxt)(λy.gyt)t : F

and
(case(z ; λx.fx ; λy.gy))t : F

in contrast with quantum logic of partial information context Γ (19).

5 Elimination of the wave particle duality paradox in
quantum mechanics

We now show how to eliminate the two fallacies. This elimination then resolves
the wave particle duality paradox.

5.1 Hard information fallacy

Recall that the hard information fallacy proceeded as follows in classical logic:

1. If the photon is absent on both channels, then neither a nor b is inhabited.
2. If neither a nor b is inhabited, then there is no interference.
3. If a (resp. b) is inhabited, then there is no interference.
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4. If there is interference then neither a nor b is inhabited. (This is by contra-
position of the third step 3.)

5. By putting together implications 4 and 2, one concludes that if there is
interference, then there is no interference.

6. We deduce, by reductio ad absurdum, that there is no interference.
7. This conclusion is refuted by Grangier et al. experiment #2.

In the new quantum logic of partial information setting we have outlined
in this paper, and using the theorems that have been established, we reason as
follows.

(i) If the photon is absent on both channels, then a has no hard inhabitant, and
b has no hard inhabitant. By absent on both channels, we mean Γ  0 : a,
and Γ  0 : b.

(ii) If the photon is absent on both channels a, b, then there is no interference
(by definition of interference).

(iii) If there is interference, then a has no hard inhabitant, and b has no hard
inhabitant (by Which-way information theorem).

(iv) However, if a has no hard inhabitant, and b has no hard inhabitant, then it is
not necessarily the case that a has no inhabitant and b has no inhabitant i.e.,
that there is no interference. Indeed, in the above context Γ (19) formalizing
Mach-Zehnder interferometer, neither a nor b has a hard inhabitant, since

Γ  −(Pxρ1) : a Γ  Qxτ1 : b (22)

and by Theorem 1 (Interference), one concludes that there is interference (as
confirmed and demonstrated by Grangier et al. experiment #2). Therefore,
due to the presence of soft inhabitants −(Pxρ1) and Qxτ1, we cannot apply
a reductio ad absurdum argument by combining (ii) and (iii), since (ii)
requires absence of inhabitant. The hard information fallacy vanishes.

The hard information fallacy stems from the implicit assumption that all in-
formation is hard, and hence that absence of hard information is equivalent to
absence of any information. This implicit assumption produces here the confu-
sion between e.g., “a has no inhabitant” and “a has no hard inhabitant” in steps
(2) and (3,4) of the hard information fallacy above.

Implicit assumption “All information is hard” is a “physical” fallacy, it is
refuted by Grangier et al. experiment #2, which demonstrates the occurrence
of interference. In terms of physics, the fallacy amounts to saying that “Every
phenomenon-to-be is a phenomenon.” This proves the logical necessity of the
sharp distinction between phenomenon and phenomenon-to-be pointed out by
Bohr and Wheeler, if one is to correctly reason about the quantum physical
system at hand. Using typed λ-term

h(λx.fxt)(λy.gyt)t : F

we have provided a formal logic form to an instance of this distinction being
violated.
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This solves the hard information fallacy. The hard information fallacy un-
derlines the fundamental character of the distinction between phenomenon and
phenomenon-to-be i.e., in other words, between hard and soft information in
quantum mechanics (Figure 4).

5.2 Exhaustive disjunction fallacy

The exhaustive disjunction fallacy is expressed by inhabitation claim

(case(z ; λx.fx ; λy.gy))t : F

where z : a∨b. “Experimentally observed facts” f : a→ ¬i and g : b→ ¬i in the
old syntax are expressed in our new setting by Theorem 3. The claim, inferred
from Grangier et al. experiment #1, that

“there is some hard information that disjunction a ∨ b is the case”

is not valid, since by reasoning by cases, the availability of which-way informa-
tion, even if it is unknown or left unrecorded, makes the interference disappear,
thus contradicting Grangier et al. experiment #2. Whence, in the framework of
Grangier et al. experiment #2, corresponding to Mach-Zehnder interferometer
(Figure 2) and formalized by context Γ (19), where interference occurs, i.e.,
where i holds, to refute fallacious conclusion ¬i, one must “cancel” the proof
that ¬i is the case, i.e., at the formal level of λ-calculus one must cancel inhab-
itant

(case(z ; λx.fx ; λy.gy))t

of F obtained when reasoning in classical logic. Since z, f, g are its only free
variables, and since f and g correspond to Which-way information theorem 3,
one must “cancel” free variable z i.e., one must give up exhaustive disjunction
z : a∨ b, which says that after going through the first beam splitter, the photon
is either on channel a or on channel b.

In the above context Γ formalizing Mach-Zehnder interferometer, one has
by Theorem 4 that exhaustive disjunction a ∨ b is invalid i.e., has no hard
inhabitant. Therefore, one cannot reason by cases and apply the result of Scully
et al. experiment—expressed here by Theorem 3—as in the fallacy, since that
theorem requires hard inhabitants in its premiss. The above inhabitant of F thus
vanishes.

Physically, exhaustive disjunction a ∨ b is refuted by experiment; it is not a
phenomenon, only a phenomenon-to-be. The production of interference, which
is what the quantum physical world does, therefore requires this physical non-
existence of any hard, total information regarding a ∨ b.

This solves the exhaustive disjunction fallacy.
Feynman [9] p. 144 concludes his discussion related to what is called here the

“exhaustive disjunction fallacy” as follows:

To conclude that [the photon] goes either through [channel a] or [channel
b] when you are not looking is to produce an error in prediction. That
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is the logical tight-rope on which we have to walk if we wish to interpret
nature . . . The question now is, how does it really work? What machin-
ery is producing this thing?” Nobody knows any machinery . . . The deep
mystery is what I have described, and no one can go any deeper today.

It has been shown in this paper how Feynman’s observation can be deduced in
mathematics, from the logic formalism presented here, thus shedding some light
on the nature of the “logical tight-rope” to be walked upon, and some of the
machinery behind it.

To sum up, the wave particle paradox in quantum mechanics points out two
fundamental properties of quantum mechanics: (i) the logical necessity of a dis-
tinction between phenomenon and phenomenon-to-be, and (ii) the physical non-
validity of exhaustive disjunction a∨b. Since by Grangier et al. experiment #1 a
and b are mutually exclusive, if they are interpreted, as in quantum computing,
as complementary Boolean values true, false, then the “exhaustive disjunction
fallacy” part of the wave particle duality paradox points out the non-validity of
the Law of the Excluded Middle Third A ∨ ¬A in quantum mechanics.

6 Conclusion

In this paper, we have presented a formalization, in terms of formal logic, of
single photon self-interference in quantum mechanics, as well as a logic solution
to the wave particle duality paradox. This solution uses a generalized Curry-
Howard correspondence. It is based on the logic of partial information and on
the sharp distinction between phenomenon and phenomenon-to-be pointed out
in quantum physics, by N. Bohr and J.A. Wheeler.

We have shown that one way to reintegrate quantum mechanics reasoning
and wave particle duality into logic, and eliminate its paradoxical character, is
to extend classical logic into a logic of partial information, since this is what our
experimental observations require.
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