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Fusion of MultiSpectral and Panchromatic Images
Based on Morphological Operators

Rocco Restaino Member, IEEE, Gemine Vivone, Mauro Dalla Mura Member, IEEE, and
Jocelyn Chanussot Fellow, IEEE

Abstract—Nonlinear decomposition schemes constitute an al-
ternative to classical approaches for facing the problem of
data fusion. In this paper we discuss the application of this
methodology to a popular remote sensing application called
pansharpening, which consists in the fusion of a low resolution
multispectral image and a high resolution panchromatic image.
We design a complete pansharpening scheme based on the use
of morphological half gradients operators and demonstrate the
suitability of this algorithm through the comparison with state
of the art approaches. Four datasets acquired by the Pleiades,
Worldview-2, Ikonos and Geoeye-1 satellites are employed for
the performance assessment, testifying the effectiveness of the
proposed approach in producing top-class images with a setting
independent of the specific sensor.

I. INTRODUCTION

The application of Mathematical Morphology (MM) to
image processing has been experiencing a considerable success
in a wide class of research fields, such as medical imaging,
document processing and remote sensing [1], [2]. Classical
tasks addressed with morphological approaches are texture
analysis, image segmentation and classification. Several stud-
ies have also shown that MM methods are also a viable option
for data fusion applications, e.g., for combining multi-focus
and multi-modal images [3], [4], [5].

It is well known that by combining several images of the
same scene, characterized by different conditions of acqui-
sition, allows to access a more precise description of the
imaged objects by overcoming the intrinsic limitations of each
modality considered separately [6]. A key example attracting a
large interest in recent years is the pansharpening, which refers
to the generation of synthetic high resolution multichannel
satellite images characterized by both a high spatial resolution
and spectral diversity. The products of pansharpening find
a widespread use in platforms such as Google Earth and
Microsoft Bing, as long as base data for scientific studies [7],
[8]. Two sensors acquiring a multispectral (MS) image with
low spatial resolution and a PANchromatic (PAN) image
with high spatial resolution are often available on board of
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the same satellite platform (e.g., Quickbird, Ikonos, SPOT,
Landsat) producing simultaneous acquisitions that enjoy the
favorable condition of being registered. Within data fusion
problems, pansharpening shows some specific characteristics,
as for example, the ratios in the different spatial resolutions
of the available images and the need to preserve the char-
acteristics of the MS data. These peculiarities have caused
the development of a vast dedicated scientific literature [8],
composed by both classical and novel approaches. Classical
approaches are in general based on relatively simple fusion
schemes and are characterized by a low computational com-
plexity [8]. Some recently proposed techniques depart from
the classical architectures, such as those based on sparse
representation theory [9], [10], [11], Bayesian inference [12],
or variational methods [13]. However, although some of these
latter approaches have shown promising results, they are still
unpractical in operational scenarios due to their significant
computational burden [14]. For this reason, the practical
interest is still focused on classical approaches that have been
well studied and assessed [8], [15].

A classical pansharpening algorithm is articulated in two
successive steps: i) the extraction of the spatial details from
the PAN image (that are not resolved in the MS) obtained by
subtracting to the PAN a low spatial resolution version of it,
and ii) the injection of the extracted details in the available
MS image. Component Substitution (CS) methods generate a
low resolution PAN image from a linear combination of the
available MS channels. The CS name arises from the equiva-
lence of this approach with the substitution of a component in
a transformed domain, as, for example, in the space generated
through the IHS (Intensity-Hue-Saturation) transformation, the
Principal Component Analysis (PCA) and the Gram-Schmidt
(GS) orthogonalization procedure. The CS methods produce
visually appealing images and are widely used for their com-
putational efficiency and their robustness to misregistration and
aliasing errors [16]. However their spectral accuracy is often
low and tends to get worse with the increase of channels [8].
An alternative technique for extracting the details is provided
by the MultiResolution Analysis (MRA) of the PAN image,
which is generally obtained by linear decomposition methods,
such as those based on wavelet [17], contourlet [18] and
curvelet [19] transforms or Laplacian pyramids [20]. This
approach often yields a good balance between the rendering of
spatial and spectral features, especially when the design takes
into account the characteristics of the MS sensor [8].

In this work we investigate non-linear MRA schemes,
implemented with morphological pyramids, which are non-
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linear decomposition schemes based on morphological opera-
tors [21], [22], [23], as an alternative to the conventional linear
MRA approach. Morphological pyramids have been proved
their usefulness in many image processing applications, such
as color image coding [24], volume rendering [25] and the
fusion of medical images [4], [26], [27]. To date, only the
preliminary works of Laporterie et al. [28], [29] and the contri-
bution of Bejinariu et al. [30] exploit the morphological signal
decomposition for solving the pansharpening problem. In all
the aforementioned works the assessment of the algorithm has
been limited to the visual analysis of the final products or to
a reduced quantitative evaluation as in [28].

The choice of the morphological operator to be used in the
definition of morphological pyramid is an aspect of utmost
importance since it directly affects the extraction of the details
from the PAN image. In this paper we study the use of
a detail extraction operator based on morphological half-
gradients [2], whose application to the fusion of simulated
images has shown preliminary encouraging results [31]. For
the sake of comparison, we extensively consider methods
based on morphological decomposition schemes that were
purposely proposed for data fusion, and we examine several
techniques designed for the enhancement of spatial details
for applications different to pansharpening. In many cases the
algorithms are modified to meet the requirements of pansharp-
ening. For example, the bias introduced by most morphological
operators [32], [33], [34] represents an undesirable feature that
has to be eliminated since it can cause a spectral distortion
in the results. In this paper we give a physical interpretation
of this approach. We show that, when using the High Pass
Modulation (HPM) injection scheme [35], the proposed data
fusion algorithm can be viewed as a particular instance of
the contrast-preserving approaches [36], in which, according
to the Weber’s definition [37], the background luminance is
estimated as the midrange value of neighboring pixels [38].

We fully evaluate the performance of the proposed algo-
rithm by employing four real data sets, acquired by four
different satellites, say Pleiades, Worldview-2, Ikonos and
Geoeye-1. The novel approach is thus appraised in comparison
to several high performance methods, belonging to the CS
and the MRA categories, in a wide class of working condi-
tions. More specifically we report here the assessment of the
algorithm at the nominal resolution of the available images,
confirming the results obtained in [31] with simulated data
sets at reduced resolution.

The paper is organized as follows. In Sect. II we present
the pansharpening problem, focusing on the solutions based
on MRA schemes. In Sect. III we present a brief review
of the MM concepts related to multiresolution schemes and
motivate the choice of the operator used for the proposed
algorithm. Sect. IV is devoted to the presentation of the results
on real data: after the quantitative evaluation of the possible
alternatives based on nonlinear decomposition schemes, the
proposed pansharpening algorithm is compared to state of the
art approaches. Concluding remarks are finally reported in
Sect. V.

II. THE PANSHARPENING PROBLEM

The pansharpening process aims at producing
a High spatial Resolution MS (HRMS) image
HRMS = {HRMSk}k=1,...,N , with N bands, by
combining an available low spatial resolution MultiSpectral
(MS) image MS = {MSk}k=1,...,N and an available high
resolution PAN image P.

A key result of the pansharpening literature [8] is that
almost all classical algorithms consist in adding the detail
image D = {Dk}k=1,...,N extracted from the PAN image
to the available MS image, upsampled to the target scale,
say M̃S =

{
M̃Sk

}
k=1,...,N

. Commonly, the PAN image

P is firstly equalized with respect to MSk, yielding the P0
k

image. As a consequence, the k-th band of the fusion product
M̂S =

{
M̂Sk

}
k=1,...,N

can be described by the following

equation:

M̂Sk = M̃Sk + gkDk = M̃Sk + gk
(
P0

k −Plow
k

)
, (1)

in which {gk}k=1,...,N are the injection gains and Plow
k

denotes, for each k = 1, . . . , N , a low resolution version
of the PAN image that, in general, can be different for
each band. Both {gk}k=1,...,N and {Plow

k }k=1,...,N constitute
distinguishing features of the various pansharpening methods.

The most common choices for the former are given by

gk = 1, k = 1, . . . , N, (2)

leading to the additive injection scheme or High-Pass Filtering
(HPF) scheme [39], [35], and

gk =
M̃Sk

Plow
k

, k = 1, . . . , N, (3)

which is called multiplicative injection scheme or High-Pass
Modulation (HPM) scheme [35].

Instead, the approach used for obtaining Plow
k differen-

tiates CS and MRA methods. In the former case Plow
k is

achieved as a linear combination of the MS image channels.
In MRA methods the low resolution PAN images Plow

k is
derived from the available PAN image through a pyramidal
decomposition, which consists in producing a sequence of
approximations with successively reduced amount of spatial
details (i.e., versions of the original image at progressively
lower resolutions). For each k = 1, . . . , N , the procedure
starts from the initial image P0

k and, at each decomposition
level l, the approximation Pl

k is obtained by applying the
decomposition operator T l

k to the approximation at level l−1,

Pl
k = T l

k

[
Pl−1

k

]
, l = 1, 2, . . . L. (4)

A rather general form for the decomposition operator in-
cludes the analysis operators ψl

k and a downsampling step by
a factor R, that we denote as R↓, namely it can be written as

T l
k = R↓ψl

k. (5)

In linear pyramids the analysis operator is implemented
through the convolution of the image with a low pass mask
hlk, i.e., ψl

k[·] = hlk ∗ ·. Examples of analysis operators suited
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to pansharpening applications are average and Gaussian filters
and wavelets [8].

Decimated or multiscale pyramids are characterized by a
downsampling step with R > 1 and thus produce approxi-
mations with smaller and smaller sizes. In that case a widely
used option consists in choosing the same analysis operator
at every scale, i.e., ψl

k = ψk and in using R = 2 (dyadic
decompositions). In undecimated or single-scale pyramids
no downsampling is performed (i.e., R = 1) and thus the
approximations have the same size at each level. Different
operators are required at the various levels, in order to analyze
the image with different spatial resolution.

In pansharpening algorithms described by Eq. 1 the low
resolution panchromatic image Plow

k retains the information
at the coarsest resolution and is thus obtained by upsampling
(if needed) the approximation PL

k to the size of the original
PAN image P. For that reason the required image is obtained
according to the formula

Plow
k = (R↑)LPL

k , (6)

where R↑ denotes an upsampling step by a factor R and (R↑)L

indicates that R↑ is applied L times. Note that for undecimated
decomposition scheme, the upsampling step coincides with the
identity operator, i.e. R↑ = id.

The objective of the pansharpening algorithms is the recon-
struction of the spatial details missing in the MS image but
resolved in the PAN. Therefore, the way the spatial details are
extracted from the PAN image is crucial since it directly affects
the rendering of the spatial information in the pansharpened
image. When considering an approach based on image decom-
position as the one proposed in this paper, the consistency of
the spatial details extracted in the decomposition levels is a
fundamental characteristic. Moreover, the preservation of the
radiometric balance of the MS image across the spectral chan-
nels in the fused image is another complementary requirement.
For the above-mentioned reasons, pansharpening algorithms
are typically evaluated on their capability in both rendering
the spatial details and avoiding spectral distortions, which are
usually tested by comparison with the original PAN and MS
image, respectively.

III. NONLINEAR PYRAMIDAL SCHEMES

Pyramidal decomposition scheme is a versatile tool for
grabbing the fine spatial information contained in the panchro-
matic image. The focus of this work is the investigation of
the alternatives offered by nonlinear operators for completing
the signal decomposition, with reference to the pansharpening
problem and its specific requirements.

A. Basics of morphological operators

Morphological operators act by probing a scalar image
I : E ⊆ Z2 → V ⊆ Z through a set called Structuring
Element (SE) B [2]. The SE is defined by its spatial support
NB(x) that is the neighborhood with respect to the position
x ∈ E in which B is centered and by its values. Flat SEs are
characterized by unitary values and the only free parameters
for defining B are the origin and NB .

The two basic operators are the Erosion εB [I] and Dilation
δB [I], defined, for each point x ∈ I, as:

εB [I] (x) =
∧

y∈NB(x)

I (y) ; δB [I] (x) =
∨

y∈NB(x)

I (y) , (7)

in which
∧

S and
∨

S denote the infimum and supremum value
within the set S, respectively. The application of an erosion
(resp. dilation) has as filtering effect the suppression of bright
(resp. dark) regions smaller than B and the enlargement of
dark (resp. bright) ones. The concepts of bright and dark
regions refer to the local contrast in the sense that a region
has intensity values greater or lower with respect to the
surrounding ones, respectively. For convenience, we introduce
also Opening and Closing that correspond to the two possible
sequential compositions of erosion and dilation:

γB [I] =δB̆ [εB [I]] , ϕB [I] =εB̆ [δB [I]] , (8)

with B̆ denoting the SE obtained by reflecting B with respect
to its origin. An opening removes bright regions smaller than
B whereas a closing suppresses dark ones.

A number of morphological operators can be obtained by
combining these four elementary bricks (see for example [1],
[2]). In the following we focus on the operators aimed to ex-
tract the image details, or equivalently, on their complementary
operators that reduce the resolution, thus representing possible
candidates for the MRA analysis steps.

The internal gradient ρ−B [I] = I − εB [I] and the external
gradient ρ+B [I] = δB[I]− I are the residuals of the application
of erosion and dilation.

Analogously, the top-hat transforms are the complementary
operators of opening and closing, hence showing the residuals
of the filtering:

WTHB [I] = I− γB [I], (9)
BTHB [I] = ϕB[I]− [I] , (10)

in which WTH and BTH are the acronym of White Top Hat
and Black Top Hat, respectively.

Finally the alternate use of erosion and dilation switched
by a decision function is called Toggle Contrast (TC) map-
ping [2]:

TCB [I] =

{
δB[I], if ρ+B[I] < ρ−B(I),
εB [I], otherwise. (11)

The result of a TC mapping is obtained by selectively toggling
between the result of a dilation or erosion according to the
result which is closest to the original image. TC mapping has
been useful for image sharpening [2].

B. Some existing nonlinear analysis operators

Nonlinear multiresolution schemes constitute a wide class
of signal decompositions [21], [22], [23] that allow for an
accurate extraction of the details from an image, which is a
fundamental aspect of pansharpening. The crucial choice for
their implementation is the definition of the analysis operator,
which determines how the reduction of the resolution is
obtained among levels. Several choices are available in the data
fusion literature and others can be easily derived from other
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similar applications. In the following we present the analysis
operators ψ that have been object of investigation during the
current study and indicate by ψ = id− ψ the complementary
operator that coincides with the detail extraction operator
(except for the upsampler present in decimated schemes).

Morphological decomposition schemes were firstly pro-
posed in [40], exploiting the use of a morphological filter,
i.e., an idempotent and increasing operator [1]. In particular,
the analysis operator was constituted by the sequence of an
opening and closing (CO), namely it was defined as:

ψCO,B = ϕBγB . (12)

Similarly to many other elementary morphological opera-
tors, ψCO,B introduces a bias on the image values [32], [33],
[34], i.e., the mean value of the filtered image is not preserved
with respect to the original image. This constitutes a critical
aspect for pansharpening application, since it can prejudice the
quality of the final product. A solution to this problem consists
in combining multiple operators in order to reduce the shift
effect [41]. Taking advantage of the opposite bias entailed by
the two morphological filters ϕBγB and γBϕB [34], the Linear
Combination of OC and CO (LOCO) operator defined as

ψLC,B = 0.5(ϕBγB + γBϕB) (13)

was proposed in [41] and there used for denoising applications.
The same rationale motivated the choice of Laporterie et

al. [42], [43], which employed the semi-sum of opening and
closing

ψTH,B = 0.5(ϕB + γB). (14)

This operator is also known as pseudomedian filter [41] and is
closely related to top-hats. Indeed, its complementary operator
ψTH,B can be easily rewritten as ψTH = 0.5(WTHB −BTHB)
and has been widely used for enhancing the contrast of the
images [2].

Analogously to top-hat transforms, the toggle contrast map-
ping defined in Sect. III-A can be used to implement a
pyramidal decomposition scheme. In particular Bai et al. [44]
constructed a detail extraction operator as the difference of
the Dilation Toggle Contrast operators DTCB = max(TCB −
id, 0) and the Erosion Toggle Contrast operators ETCB =
max(id− TCB , 0), namely the analysis operator was defined
according to the formula:

ψTC,B = id− ψTC = id− 0.5 [DTCB − ETCB ]

= id− 0.5 [max(TCB − id, 0)−max(id− TCB, 0)] .
(15)

Note explicitly that the factor 0.5 was not present in the orig-
inal paper [44], but is required by the specific pansharpening
application in order to preserve the dynamical range of the
details.

In a successive paper Bai et al. proposed to enforce the
detail extraction capability by joining the effects of top-hats
and toggle contrast operators [5]. Thus, the analysis operator,
that we indicate with the subscript TT , assumed the expression

ψTT,B = id− 0.5 [(WTHB − BTHB)− (DTCB − ETCB)] ,
(16)
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Fig. 1: Examples of application of morphological gradients
obtained through a flat SE with NB = {−1, 0, 1}, to a one-
dimensional function f : (a) function f , (b) internal gradient
ρ− = f − ϵB [f ]; (c) external gradient ρ+ = δB [f ] − f ; (d)
proposed analysis operator ψHG = 0.5(ρ− − ρ+) = 0.5(f −
ϵB [f ]) + 0.5(f − δB [f ]).

in which, for the same reason, we added again the factor 0.5
with respect to the original definition.

Finally we report a different example of nonlinear decom-
position scheme. The Multiscale Median Transform (MMT)
is a very simple instance proposed in [45] for astronomical
applications. The analysis operator is defined as

ψME,B =MedB , (17)

with MedB denoting a median filter with support NB . We
use the subscript B for indicating that the median value is
calculated on the pixel neighborhood NB , for uniformity of
notation.

C. Analysis operator based on half-gradients

In this work we propose to use the half gradients for detail
extraction. Fig. 2(b) and Fig. 2(c) illustrate the effect of the
internal and external gradients with a flat SE B with neigh-
borhood NB = {−1, 0, 1} on the piecewise-constant mono-
dimensional signal f depicted in Fig. 2(a). In the presence
of discontinuities both half-gradients assume positive values
that constitutes an approximation of the norm of the signal
gradient [2]. The positive values of the internal gradient ρ−[f ]
follow the positive discontinuities and precede the negative
ones, while those of ρ+[f ] experience the opposite behavior.
As a result, the difference of the two gradients represents a
suitable detail extraction operator ψHG,B , since it reproduces
the variations of the function with respect to the local mean.
In particular we use the following definition

ψHG,B = 0.5(ρ− − ρ+) = 0.5(id− ϵB)− 0.5(δB − id), (18)

in which the factor 0.5 is applied to preserve the property of
approximating the image gradient norm.
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The corresponding analysis filter is given by

ψHG,B = id− ψHG,B (19)

= id− [0.5(id− ϵB)− 0.5(δB − id)] (20)
= 0.5(ϵB + δB), (21)

namely, it corresponds to the semi-sum of dilation and erosion.
According to the definitions reported in Eqs. (7), ψHG calcu-
lates the semi-sum of the minimum and the maximum value
(or the midrange [38]) of the function within the neighborhood
NB .

This remark is particularly significant for pansharpening
methods based on the HPM injection method. In this case
the fusion equation (1) specifies as

M̂Sk = M̃Sk + M̃Sk
P0

k −Plow
k

Plow
k

(22)

and can be put in strong relation with the local contrast of
the PAN image [36]. Indeed, using the Weber’s definition of
contrast [37]

CW =
L− Lb

Lb
(23)

in which L is the pixel luminance and Lb the background
luminance, Eq. (22) can be rewritten as

M̂Sk = M̃Sk (1 + CW ) , (24)

where the low pass version of the PAN image acts as the
background luminance. Therefore the application of ψHG,B

corresponds to estimate the background luminance as the
midrange values within a neighborhood set by the SE B. This
approach has been already employed in [46] and is particularly
advisable when small neighborhoods are considered. Indeed
the midrange is a very efficient and robust estimator of
the location parameter of platykurtic (with broad curvature)
distributions [47], [48]. The latter are characterized by a small
value (≤ 2.2) of the normalized fourth central moment of
the distribution, or kurtosis K. For instance, the midrange is
the optimal estimator in the case of a uniform distribution
(K = 1.8); in fact its variance decays as 1/N2, while that
of the sample mean as 1/N [49]. We tested the adequacy of
the platykurtic assumption by examining the distribution of
the PAN values standardized with respect to the mean and the
standard deviation calculated in given neighborhoods NB . For
all the available images the condition K ≤ 2.2 was largely
verified for neighborhoods containing up to 6 pixels.

D. Effect of the detail extraction operators: A toy example

With the aim of illustrating the main features of the different
definitions, we report in Fig. 2 the results of applying the
operators described in Sect. III-B and the proposed method
presented in Sect. III-C to the one dimensional signal depicted
in Fig. 2(a). On the left column plots the effect of the analysis
operators ψ is drawn with red dash lines together with the
original signal f (in solid blue lines); on the right column the
plots report the output of the details extraction operators ψ =
id− ψ (solid red lines). We implement all the morphological
operators by employing a flat SE with neighborhood NB =

{−1, 0, 1} that is also used for computing the output of the
median filter.

The test signal has been designed to present both a fast
dynamic (first half of its domain) and slower variations (second
half). In the second part the function discontinuities are spaced
by intervals of constant values with length greater than the
support of the SE B. The comparison of the operators’
behavior over the whole domain evidences that in general ψHG
is able to extract the most significant amount of details. We
underline that this is a very important feature for image fusion
since smaller details in the PAN might appear as intensity
variations with a spatial support of few pixels. Remarkably, all
the discontinuities of the test signal are detected by the pro-
posed operator. Moreover, the amplitude of signal variations is
correctly extracted by the operator allowing the preservation
of the dynamic of the signal. We will see in the following
that in pansharpening this is a necessary feature to limit
spectral distortions in the results. Among the other operators,
the TC defined by Eq. (15) is less sensitive to the local signal
variations, being zero almost everywhere. On the contrary, ψLC
and ψTH (and the very similar ψTT) are able to reproduce the
details with sufficient accuracy, but only in the first half of
the observation interval, where the signal varies over intervals
smaller than the SE length. In fact, in the second half of the
signal support only ψHG is able to detect the signal variation,
while the output of the others is identically null.

IV. EXPERIMENTAL RESULTS

In this section we compare the behavior of the different
analyzed algorithms on real images. Due to the unavailability
of the target HRMS image, the assessment of pansharpen-
ing algorithms is typically performed with two companion
protocols [8]. The reduced resolution assessment involves
the degradation of both the original MS and PAN images.
This procedure has to be completed according to the Wald
protocol [50], namely the MS image has to be degraded
by filtering through a system mimicking the response of the
sensors and by decimating by a factor equal to the resolution
ratio r. We employed a Gaussian filter with the same gain
at the Nyquist frequency of the specific sensor for the MS
images and an almost ideal filter for the PAN image [51].
This methodology allows the exploitation of a wide range
of quality indexes, since the original MS image acts as the
target image for the fusion process. We selected the Spectral
Angle Mapper (SAM) [52] as a measure of the spectral quality
and two comprehensive indexes, the Q2n-index [53], [54],
and the Erreur Relative Globale Adimensionnelle de Synthèse
(ERGAS) [55] for evaluating both spatial and spectral quality.
Optimal values are 0 for the SAM and the ERGAS and 1 for
the Q2n. On the other hand, the reduced resolution assessment
is based on the scale invariance assumption that cannot be
undoubtedly assumed in the real practice. For that reason
it has to be supplemented by the full resolution assessment
that employs the available images at the original resolution.
Since the target HRMS image does not exists at that level,
indexes with no reference have to be employed. In this work
we separately assess the spectral and spatial quality of the
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Fig. 2: Examples of morphological analysis operators (left column) and corresponding detail extraction operators (right column),
based on a flat SE with NB = {−1, 0, 1}: from top to bottom: Half Gradients (HG), Top-Hat (TH), Toggle Contrast (TC),
Top-Hat + Toggle (TT) [5], LOCO (LC) and Median (ME).

pansharpened image, by employing the SAM index for the
former and the Spatial Correlation Coefficient (SCC) [56] for
the latter. The optimal value of the SCC index is 1.

The employed data sets are described in the first subsec-
tion, while the performance assessment of the algorithms are
reported in the following subsections. We firstly compare the
different analysis operator that are eligible for implementing
the morphological pyramid decomposition and then evaluate
the chosen scheme together with some of the most credited
algorithms present in the literature.

A. Datasets

We employ the four data sets illustrated in Fig. 3 for
assessing the performance of the proposed algorithm. They
are characterized by the same radiometric resolution of 11-bits
and resolution ratio r = 4, but were acquired by four different
platforms, namely Pléiades, WorldView-2 (WV-2), Ikonos and
Geoeye-1, whose name is used for denote the different data
sets. We use the Pléiades and WorldView-2 (WV-2) data sets
for the evaluation of the algorithms at reduced resolution and
the Ikonos and Geoeye-1 data sets for the comparison at full
resolution.

The Pléiades data set (Figs. 3(a) and 3(e)) is well-known
since it was used for the 2006 contest [15] and for the reference
pansharpening review [8]. It consists of four MS bands with
size of 1024× 1024 and resolution of 60 cm, acquired on an
urban area of Toulouse (France) by an aerial CNES platform.
Due to the unavailability of the panchromatic sensor the PAN
image was synthetically obtained from the MS images [15].

The WV2 data set (Figs. 3(b) and 3(f)) is composed by
a MS image with eight channels (red, green, blue, and near-
infrared 1, coastal, yellow, red edge, and near-infrared 2) and
a PAN image collected on an urban area of Rome (Italy). The
PAN image size is 300× 300 pixels and the spatial resolution
of the PAN and MS images is 0.5 m and 2 m, respectively.

The images of the Ikonos data set (Figs. 3(c) and 3(g)) are
related to another urban area of the city of Toulouse (France).
The IKONOS sensor acquires four bands (blue, green, red
and near infrared) in the visible and near infrared range,
together with a panchromatic channel. The spatial resolution
is 4 m × 4 m for the multispectral bands and 1 m × 1 m
for the panchromatic channel and the employed PAN image
is composed by 512× 512 pixels.

The Geoeye data set (Figs. 3(d) and 3(h)) was acquired
over Hobart, Australia, and consists of a high resolution PAN
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(a) Pleiades MS (b) WV2 MS (c) Geoeye MS (d) Ikonos MS

(e) Pleiades PAN (f) WV2 PAN (g) Geoeye PAN (h) Ikonos MS

Fig. 3: Data sets from left to right: (a,e) Pleiades; (b,f) WV2; (c,g) Ikonos; (d,h) Geoeye. The PAN sizes are 1024 × 1024,
300× 300, 512× 512, 512× 512, respectively.

image and a four-channel MS bands (blue, green, red and near
infrared channels). The data set was provided by Geoeye1 and
is characterized by a spatial resolution of 0.5 m and 2 m pixels
for the PAN and MS image, respectively. The PAN size is
512× 512.

B. Comparison of the morphological operators

The first outcome of the investigation of real data is a visual
comparison of the details extracted by the nonlinear operators
described in Sects. III-B and III-C. We employed the PAN
image belonging to the Geoeye data set and in particular we
focus on the area delimited by the red rectangle in Fig. 3(h).
The operators exploited the same SE B (whose neighborhood
NB was also used for the MMT). In particular we selected a
3×3 disk-shaped SE that was shown to achieve the best results
in a preliminary study [31]. Its use has been also suggested
in [24] since its cross-type structure prevents to privilege a
particular direction, avoiding, at the same time, block-type
effects typical of square SEs.

Even though the test does not constitute a quantitative
analysis, Figs. 4(a-f) allow to confirm that ψHG is able to
extract more information, yielding a defined detail image,
as it was argued in the analysis of one dimensional signals
described in Sect. III-D. We further apply an edge extraction
operator E based on the Canny method [57] to highlight the
differences among the methods. Figs. 4(g-l) demonstrate that
the proposed operator is able to detect a greater number of

1Geoeye: Geoeye-1 GeoTM 11bit 0.5mm + 2.0 Bundle - Hobart Aust 1,
02/05/2009(2009).

object contours, which are also reproduced with an appreciable
continuity.

The capability of extracting the shape of the objects with a
remarkable accuracy is a major feature of the methods based
on MM that has fostered their success in many applications,
as for example noise filtering and segmentation [2]. For that
reason we extend this test also to some linear filters that
are widely used in pansharpening [51]. We compare the
details and the edges extracted by the proposed operator
with the complementary operator ψGF [f ] = id − ψGF [f ]
of a Gaussian low pass Filter ψGF matched to the MTF of
the Geoeye-1 PAN sensor (namely with gain at the Nyquist
frequency GNyq = 0.16) and with the complementary operator
ψAT [f ] = id−ψAT [f ] of the Starck and Murtagh (S&M) filter
ψAT ) [58] that is used in the 1-D “à trous” implementation of
the wavelet decomposition [59]. Although the linear methods
(and in particular the one based on the GF) reproduces a more
intelligible detail image (see Fig. 4(g-h)), the application of the
Canny operator shows that the morphological filter permits a
more accurate detection of the contours.

Actually, the choice of the most suitable morphological
operator has to be supported by a quantitative analysis on the
field. For this reason the second experiment is dedicated to the
assessment of a MRA-based pansharpening scheme, based on
the cited nonlinear operators. We fixed the algorithm archi-
tecture by employing a decimated/interpolated decomposition
exploiting dyadic subsampling and bilinear interpolation in the
analysis and synthesis phase, respectively. The number L of
decomposition levels is set to L = log2(r), where r is the
resolution ratio between the MS and the PAN image (in our
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(a) ψHG[P] (b) ψTH[P] (c) ψTC[P] (d) ψTT[P]

(e) ψLC[P] (f) ψME[P] (g) ψGF[P] (h) ψAT[P]

(i) EψHG[P] (j) EψTH[P] (k) EψTC[P] (l) EψTT[P]

(m) EψLC[P] (n) EψME[P] (o) EψGF[P] (p) EψAT[P]

Fig. 4: Application of the detail extraction operators and of the Canny edge detector to the area highlighted by the red rectangle
in the Geoeye data set (Fig. 3(h)): (a-h) details extracted by the different morphological operators, by the Gaussian Filter (GF)
and by the “à trous” algorithm (AT); (g-l) corresponding detected edges.

tests for all data sets r = 4 and thus L = 2). The details were
injected according to the HPM method expressed by Eq. 3. The
tested algorithms thus differ only for the MRA decomposition

operator

TXX = 2↓ψXX, (25)

where XX indexes the adopted analysis operator by ranging
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TABLE I: QUANTITATIVE RESULTS OBTAINED BY USING THE DIFFERENT DECOMPOSITION OPERATORS TXX WITH 3×3 DIAMOND-SHAPED SE, DYADIC
DECOMPOSITION AND BILINEAR INTERPOLATION FOR THE EXPANSION. FOR EACH DATASET, THE BEST RESULT AMONG OPERATORS IS MARKED IN BOLD,
THE SECOND ONE IS UNDERLINED AND THE THIRD IS WRITTEN IN ITALIC CHARACTERS.

Reduced resolution Full resolution
Pleiades dataset WV2 dataset Ikonos dataset Geoeye dataset

Q4 SAM ERGAS Q8 SAM ERGAS SAM SCC SAM SCC
TTH 0.9475 4.1691 3.5730 0.8935 3.9691 3.7878 1.6438 0.8316 1.2515 0.9467
TTC 0.9305 4.1639 3.8519 0.8723 4.0576 3.9235 1.7059 0.8262 1.2724 0.9342
TTT 0.9491 4.1284 3.4937 0.8951 3.9447 3.6673 1.5710 0.8696 1.2504 0.9469
TLC 0.9437 4.1706 4.1003 0.8806 4.0066 4.4131 1.8183 0.8012 1.2659 0.9425
TME 0.9446 4.1908 3.6040 0.8899 4.0188 3.8625 1.6614 0.8152 1.2558 0.9444
THG 0.9503 4.0258 3.2933 0.9014 3.8773 3.2884 1.3970 0.9108 1.2408 0.9499

in the set {TH,TC,TT,LC,ME,HG}.
Table I reports the values of the adopted quality indexes

for the reduced and full resolution assessment protocols. The
superiority of the proposed operator based on half gradients is
evident in all data set and for all the indexes. The algorithm is
thus able to produce images with both better spectral accuracy
and huger details’ content, as it is particularly evident by the
values of the full resolution indexes, which separately assess
the two features. Also the algorithms employing the top-hat
transform, namely TTH and TTT, allows to obtain images with
appreciable quality.

C. Comparison to pansharpening literature

After the results obtained through the analysis reported in
Sect. IV-B, a dyadic MRA pansharpening scheme using the
HPM injection method and the decomposition operator

THG = 2↓ψHG (26)

constitutes the proposed algorithm and will be henceforth
denoted as MF-HG. In this section we compare its perfor-
mance to those achievable to the (few) existing pansharp-
ening approaches based on morphological operators and to
the principal classical approaches belonging to both the CS
and MRA classes. As a reference, we further reports the
results obtained by using the same algorithm without the
morphological analysis filter. In other words the approach
employs the decomposition operator

T1 = 2↓id (27)

and will denoted as MF-1, since it also corresponds to the
use of a morphological operator with SE of size 1.

The pansharpening literature has not been populated by
many methods employing MM. We consider here an approach
proposed for a general problem of data fusion and one
specifically intended to pansharpening. The method designed
in [3] for the fusion of images acquired by heterogeneous
sensors employs the analysis operator defined by Eq. 12 with
the use of a square SE. More specifically, the author proposed
the use of an undecimated approach, and thus the SE support
has to be progressively larger for performing a multiresolution
analysis of the image. Accordingly, the employed operator is
given by

T l
TO = ψl

CO,Bl = ϕBlγBl , (28)

in which Bl indicates a squared SE with side 2l. We tested
this approach with both the HPF and HPM injection schemes
defined by Eq. 2 and Eq. 3, as suggested in the cited pa-
per [3] and in other works of the same author [40], [60].
We indicate this methods as MF-TO-HPF and MF-TO-HPM,
respectively. The Top-Hat transform described by Eq. 14 was
used in a MRA scheme based on HPF injection model in the
work of Laporterie et al. [28], which was expressly devoted
to pansharpening application. The downsampling was included
in the decomposition operator that can thus be written as

T l
LA = 2↓ψTH,B = 2↓0.5(ϕB + γB). (29)

We use a linear-shaped 1×2 SE B that was shown to represent
the best option [28] and denote the algorithm as MF-LA.

Among the classical approaches we selected for each class
three representative algorithms that achieve high performances
(namely the best results) for most datasets [8]. With the
inclusion of the pure upsampling scheme, denoted as EXP
method, the seven employed algorithms were:

• EXP: MS image interpolation, using a polynomial kernel
with 23 coefficients [20]

• PCA: Principal Component Analysis [39]
• GS: Gram Schmidt (Mode 1) [61]
• PRACS: Partial Replacement Adaptive Component Sub-

stitution [62]
• SFIM: Smoothing Filter-based Intensity Modulation [63],

[64], based on High-Pass Modulation injection scheme
and 5 × 5 box filter (i.e., mean filter) for details extraction

• AWLP: Additive Wavelet Luminance Proportional [56],
using the 1-D “à trous” algorithm [59] based on the S&M
filter [58]

• MTF-GLP-HPM: GLP with MTF-matched filter [51]
and HPF injection model [65]

Table II provides a synopsis of the numerical results, report-
ing the values of the algorithms’ elaboration times and of the
quality indexes related to both the reduced and full resolution
assessments. In the following we analyze these results and
report some remarks arising from the visual inspection of the
fused products.

A first consideration can be drawn from the analysis of the
computational burden, that can be derived by the first column
of Table II. It reports the seconds required by the compared
algorithms for completing the fusion of a PAN image and a 4-
channel MS image of size 512×512px on an Intel R⃝CoreTMI7
3.2GHz processor. The approaches based on morphological



10

TABLE II: QUANTITATIVE RESULTS. FOR EACH DATASET, THE BEST RESULT AMONG OPERATORS IS MARKED IN BOLD, THE SECOND ONE IS
UNDERLINED AND THE THIRD IS WRITTEN IN ITALIC CHARACTERS.

Reduced resolution Full resolution
Pleiades Dataset WV-2 Dataset Ikonos Dataset Geoeye Dataset

Ti
m

e
[s

]

Q4 SAM ERGAS Q8 SAM ERGAS SAM SCC SAM SCC
EXP 0 0.7782 4.6742 6.0826 0.7248 4.9263 5.4171 1.8568 0.4846 1.2561 0.5750

C
S

PCA 0.2 0.8122 6.1435 6.0028 0.8169 5.2153 4.4128 2.5136 0.9336 1.3533 0.9500
GS 0.1 0.8448 5.3304 5.0468 0.8335 4.8592 4.0144 2.4635 0.9354 1.3485 0.9502
PRACS 0.4 0.9325 4.5157 3.6523 0.8878 4.6678 3.6768 1.7454 0.9221 1.2575 0.8735

M
R

A
-L AWLP 0.4 0.9426 4.3356 3.5219 0.9011 4.5146 3.3572 1.5710 0.9112 1.2514 0.9338

SFIM 0.1 0.9007 4.3599 4.2923 0.8758 4.2457 3.7591 1.7518 0.8600 1.2165 0.8906
MTF-GLP-HPM 0.2 0.9488 4.1541 3.2741 0.9092 3.8871 3.1005 1.4506 0.9120 1.2136 0.9506

M
R

A
-M

F

MF-1 0.1 0.9271 4.2091 3.9832 0.8684 4.0964 4.0899 1.8057 0.7877 1.2755 0.9300
MF-TO-HPF 0.4 0.9207 4.5680 4.1687 0.8674 4.5915 4.1589 2.0149 0.8689 1.3165 0.8877
MF-TO-HPM 0.4 0.9194 4.4705 4.3820 0.8606 4.4041 4.8072 2.1155 0.7638 1.2888 0.8782
MF-LA 0.1 0.9390 4.2324 3.6285 0.8815 4.3085 3.7357 1.6095 0.9007 1.2576 0.9421
MF-HG 0.1 0.9503 4.0258 3.2933 0.9014 3.8773 3.2884 1.3970 0.9108 1.2408 0.9499

operators require an effort comparable to classical widespread
algorithms, thus constituing a viable alternative for practical
applications.

1) Reduced resolution assessment: The Pleiades and WV2
data sets are employed for this study and in both cases the
proposed algorithm achieves remarkable results, often ranking
between the first and the third position. It is clear that this
novel approach represents a huge step forward with respect to
existing methods based on MM.

More specifically, the Pleiades data set includes a synthetic
PAN image generated by processing the MS channels, as
described in Sect. IV-A. This procedure generates a narrow
band synthetic PAN image and it has the advantage of not
introducing a bias in the evaluation of the algorithms, as it
happens for the optimal degradation procedure based on mim-
icking the sensor MTF. The target MS image, or Ground Truth
(GT), of the Pleiades data set is reported in Fig. 5(a), showing
a scene with many small objects. The results obtained by the
MF-HG algorithm are remarkable since it scores the best in
terms of quality indexes values. The visual analysis confirms
the conclusions drawn from the quantitative evaluation. Thanks
to the availability of the GT image, in the reduced resolution
assessment procedure the visual inspection of the final product
(portrayed in Fig. 5) can be performed by analyzing the
injected details. In Fig. 6 the differences between the final
products and the upsampled MS image M̃S are reported. The
comparison of the details injected by the tested algorithm
(Fig. 6(b-f)) with the reference ones (Fig. 6(a)) evidences the
balance between the spatial precision and the spectral fidelity
that can be obtained by the proposed MF-HG method.

The WV2 data set provides supplementary information, due
to the increasing number of channels. As expected, best results
are achieved by the MRA methods, since a proper substitution
of a single component is more difficult in this scenario. Also
in this case the MF-HG attains appreciable results. In fact
only the algorithms, whose detail extraction filter matches the
filter used in the synthetic degradation procedure, yield higher
values of the comprehensive Q8 and ERGAS indexes, while
the best result in terms of spectral accuracy is still obtained

by the MF-HG approach.

2) Full resolution assessment: The use of the full resolution
assessment protocol is required for analyzing the performance
of the algorithms at the effective working scale. However
the lack of the GT makes more difficult the quantitative
evaluation of the final products. Many indications derived at
reduced resolution can be drawn also at full resolution. The
two data sets represent completely different scenes, since the
Ikonos data set (depicted in Fig. 3(c,g)) refers to an urban
area characterized by many streets and building, namely by
a large amount of geometric forms and contours. On the
contrary the images composing the Geoeye data set (depicted
in Fig. 3(d,h)) were acquired over a rural area and thus contain
several objects with vague shape. In both tests the perfor-
mances of the MF-HG algorithm are much better than those
of the existing approaches based on morphological operators.
Actually they are aligned with the results achieved by the best
MRA schemes, as it can also be confirmed by a visual analysis
of the extracted details that are represented in Fig. 7. Indeed
the spectral accuracy is very high for both data sets. In terms of
spatial correlation coefficient the method is outperformed only
by the CS methods, that usually obtain greater SCC values due
to the substitution of the whole intensity information in the
final product. However, the overall performance of the MRA
methods is surely more valuable, since the improvements of
the spatial accuracy obtained by the CS approaches is paid
with a significant loss of the spectral quality of the images,
especially for the Ikonos data set.

By giving a closer look to the comparison among the MRA-
based methods, it is evident that the proposed MF-HG method
achieves performance very similar to the approaches that em-
ploy the knowledge of the sensor MTF, without requiring any
information regarding the peculiar acquisition device. A more
direct competitor is thus the AWLP that uses a fixed system
(the S&M filter) for carrying out the wavelet decomposition
and that is outperformed by the proposed MF-HG approach.
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(a) GT (b) PRACS (c) AWLP

(d) MTF-GLP-HPM (e) MF-LA (f) MF-HG

Fig. 5: Final products of the pansharpening algorithms on the Pleiades data set: (a) GT; (b) BDSD; (c) AWLP; (d) MTF-GLP-
HPM; (e) MF-LA; (f) MF-HG.

V. CONCLUSIONS

In this work we studied the application of nonlinear image
decomposition schemes based on morphological operators to
data fusion, and in particular to the problem of pansharpening.
Although the properties of morphology-based methods are
widely exploited for applications as segmentation and denois-
ing, only a limited number of data fusion approaches have
taken advantage by their ability in dealing with shapes.

The effective application of MM to pansharpening requires
the choice of a suitable spatial detail extraction operator that
we designed as the difference of the two half-gradients. We
evidenced that it allows to highlight all the spatial changes
of the input image, preserving the dynamics of the signal
variation and a local zero mean value, as required by pan-
sharpening applications. A comprehensive fusion architecture,
encompassing the choice of the MRA implementation options
and of the detail injection method was here proposed and
evaluated. Four data sets acquired by four different sensors
were used for the algorithm assessment, using both the reduced
and full resolution quality evaluation protocols.

The results show that the proposed method greatly out-
classes the existing pansharpening algorithms based on math-
ematical morphology. Actually it achieves top-class perfor-

mance, aligned with that of best pansharpening algorithms,
without requiring specific knowledge of the used sensor, as
for example the MTF shape.

As possible future developments, we plan to consider other
tools provided by mathematical morphology that can be suit-
able in data fusion problems, as for example the levelings
operators.
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(a) GT (b) PRACS (c) AWLP

(d) MTF-GLP-HPM (e) MF-LA (f) MF-HG

Fig. 6: Details extracted by the pansharpening algorithms on the Pleiades data set: (a) GT; (b) BDSD; (c) AWLP; (d) MTF-
GLP-HPM; (e) MF-LA; (f) MF-HG.
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(a) PRACS (b) AWLP (c) MTF-GLP-HPM

(d) MF-TO-HPM (e) MF-LA (f) MF-HG

Fig. 7: Details extracted by the pansharpening algorithms on the Geoeye data set: (a) BDSD; (b) AWLP; (c) MTF-GLP-HPM;
(d) MF-TO-HPM; (e) MF-LA; (f) MF-HG.
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Villalobos, G. Herrera-Ruı́z, D. Vargas-Vázquez, J. J. Garcı́a-Escalante,
and A. Lara-Guevara, “Morphological background detection and en-
hancement of images with poor lighting,” IEEE Trans. Image Process.,
vol. 18, no. 3, pp. 613–623, Mar. 2009.

[47] E. L. Crow and M. M. Siddiqui, “Robust estimation of location,” J. Am.
Statist. Assoc., vol. 62, no. 318, pp. 353–389, Jun. 1967.

[48] H. L. Harter, “The method of least squares and some alternatives: Part
iv,” Int. Stat. Rev., vol. 43, no. 2, pp. 125–190, Aug. 1975.

[49] P. R. Rider, “The midrange of a sample as an estimator of the population
midrange,” J. Am. Statist. Assoc., vol. 52, no. 280, pp. 537–542, 2005.

[50] L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of
different spatial resolutions: Assessing the quality of resulting images,”
Photogramm. Eng. Remote Sens., vol. 63, no. 6, pp. 691–699, Jun. 1997.

[51] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF-
tailored multiscale fusion of high-resolution MS and Pan imagery,”
Photogramm. Eng. Remote Sens., vol. 72, no. 5, pp. 591–596, May
2006.

[52] R. H. Yuhas, A. F. H. Goetz, and J. W. Boardman, “Discrimination
among semi-arid landscape endmembers using the Spectral Angle Map-
per (SAM) algorithm,” in Proc. Summaries 3rd Annu. JPL Airborne
Geosci. Workshop, 1992, pp. 147–149.

[53] L. Alparone, S. Baronti, A. Garzelli, and F. Nencini, “A global quality
measurement of pan-sharpened multispectral imagery,” IEEE Trans.
Geosci. Remote Sens., vol. 1, no. 4, pp. 313–317, Oct. 2004.



15

[54] A. Garzelli and F. Nencini, “Hypercomplex quality assessment of multi-
/hyper-spectral images,” IEEE Trans. Geosci. Remote Sens., vol. 6, no. 4,
pp. 662–665, Oct. 2009.

[55] L. Wald, Data Fusion: Definitions and Architectures — Fusion of images
of different spatial resolutions. Paris, France: Les Presses de l’École
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