
HAL Id: hal-01303218
https://hal.science/hal-01303218

Preprint submitted on 16 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplified analysis of a generalized bias-test for fabrics
with two families of inextensible fibers

M Cuomo, F Dell ’Isola, Leopoldo Greco

To cite this version:
M Cuomo, F Dell ’Isola, Leopoldo Greco. Simplified analysis of a generalized bias-test for fabrics with
two families of inextensible fibers. 2016. �hal-01303218�

https://hal.science/hal-01303218
https://hal.archives-ouvertes.fr


Simplified analysis of a generalized bias-test for fabrics with two

families of inextensible fibers

M. Cuomoa,c, F. dell’Isolab,c, L. Grecoc

aDipartimento di ingegneria Civile e Architettura (DICAR), Università degli Studi di Catania,
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Abstract

Two tests for woven fabrics with orthogonal fibres are examined using simplified kine-
matic assumptions. The aim is to analyse how different constitutive assumptions may
affect the response of the specimen. The fibres are considered inextensible, and the
kinematics of 2D continua with inextensible chords due to Rivlin is adopted. In addi-
tion to two forms of strain energy depending on the shear deformation, also two forms
of energy depending on the gradient of shear are examined. It is shown that this energy
can account for the bending of the fibres. In addition to the standard Bias Extension
Test, a modified test has been examined, in which the head of the specimen is rotated
rather than translated. In this case more bending occurs, so that the results of the
simulation carried out with the different energy models adopted differ more that what
has been found for the BE test.

Keywords: generalized continua, second gradient elasticity, woven composites,
normalisation method, bias test.

1. Introduction and Background

In the past decades there has been an impressive progress in the development of new
materials for mechanical related applications. The design and the modeling of new ma-
terials has become one of the leading challenges for the research in engineering, together
with the need of improving existing structural analysis methods in order to take ad-
vantage of all the innovations introduced. Fibre composite materials have traditionally
introduced strong innovation in the manufacturing industries, ranging from transporta-
tion to construction industries. Long fibre composites are constituted by unidirectional
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fibres, and their major effect is to improve the mechanical properties of the material
in that direction, causing significant anisotropy. New generations of composites have
been developed, that can offer advantages over the unidirectional fibre-reinforced mats
commonly used. Woven and non woven fabrics are now extensively used in several ap-
plications, either as reinforcement and as structural material per se (see, e.g.,[1, 2, 3]).
On the other hand, this type of ‘material’ is present in nature also in some biological
tissues [4, 5, 6, 7]. Woven fabrics guarantee dimensional stability, balanced properties
in the reinforcement plane, high impact resistance, good drapeability, and suitability
for manufacturing of doubly curved components.

Woven fabrics are produced by mechanically bonding together two or more fibre
bundles (also known as yarns) in a specific architecture. The fabric’s integrity is main-
tained by the mechanical interlocking of the fibres. According to the type of weave, 2D
or 3D fabric can be obtained.

Usually high performance materials are used for the fibres (e.g. carbon, glass, high
polymers, and so forth), so that woven fabrics can be considered almost inextensible in
the warp and weft directions, and mainly deform for shear presenting a strong geometric
hardening. More complex is the behaviour of three dimensional woven fabrics, for which
the deformation in the transverse direction depends not only on the geometry of the
fabric, but also on friction and interlocking among them. Friction and slippage of fibres
is also a major issue in plane fabrics, when the deformation becomes large. In this
context, some significant studies are dealt with in [8, 9].

The characterization of the mechanical response of woven composites and its mod-
eling is one of the most challenging and debated issues in material engineering. The
problem is very complex since it involves many non standard tasks, primarily due to
the fact that the material we are dealing with is not a simple material in the sense
that its micromechanics strongly influences the observable behaviour, and cannot be
disregarded in the simulations. Some relevant aspects related to parameter identifica-
tion of similar complex materials are analysed in [10, 11]. Besides, other significant
issues as contact-impact problems or damage evolution and identification are studied
in [12, 13, 14, 15, 16].

Tests for evaluating the stiffness of fabrics are suggested by many standards, like
ASTM D 3518 and D4255, EN ISO 13934-1, etc. Since shearing is the most impor-
tant deformation mode of plane woven fabrics test have been specifically developed
for characterizing their shear response. Three methods are most commonly used for
determining the fabric shear properties, each one of them having benefits and draw-
backs, the Direct Shear (one rail or two rails set-ups are employed) (DS), the Picture
Frame test (PF), and the Uniaxial Bias Extension test (BE) [17, 18, 19, 20]. In all
these methods, the phenomena of shear locking and specimen buckling (wrinkling)
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may occur, so that particular care has to be taken in interpreting the results (see,
e.g., [21, 22, 23, 24, 25, 26, 27, 28, 29] for some analytic and numerical tools which
are useful to address this issue). Also biaxial extension tests are performed on woven
composites, in which case locking does not occur. In the DS test in order to avoid
wrinkling some amount of tension has to be applied. A nearly homogeneous shear state
is reached in the PF test but it is extremely sensitive to specimen misalignment issues
[30, 31]. By contrast, the BE test is relatively insensitive to specimen misalignment
but a non-homogenous deformation state is produced in the sample, making more dif-
ficult to interpret the results. In addition, at high shear strains, a critical shear angle
is reached when the threads in the central part of the specimen are so closely packed
that any increase in tension causes lateral compression and consequently wrinkling. At
higher extension, the shear deformation locks, and sliding of the threads is observed
[32]. However, the BE test, being very simple to perform, since it does not require any
special fitting and can be performed on any standard extension testing apparatus, is
probably the most used test.

The Bias Extension test is an extensional test on a strip of the woven fabric consti-
tuted by two families of fibres oriented at 45◦ with respect to the axis of the specimen,
clamped at the ends (see figure 1). The load elongation curve is recorded, and in
order to obtain information on the shear stiffness, or on the shear stress exerted in
the specimen, it is necessary to treat the data obtained from the testing apparatus.
Normalisation methods have been proposed for interpreting the data from the test,
based on simplifying assumptions related to the kinematic response and to the material
behaviour.

Figure 1: Initial configuration of the sample (top) and its current configuration (bottom) in a BE test.
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Theories have been proposed to normalise the data for rate-independent fabrics and
also for viscous fabrics [17, 33, 34, 35, 36, 37, 38]. Starting from a simplified kinematics,
the shear strain in the sample is related to the external extension, then equating the
external power to the internal one a relation between the shear stress and strain is
obtained. In addition to the kinematic assumption, extra hypotheses are introduced on
the internal power in order to get the desired result. Most but not all the normalisation
theories proposed ignore the effects of shear tension coupling (that is, the fact that the
shear stiffness of biaxial woven fabrics appears to increase with increasing tensile stress
along the fibre directions probably due to friction) [38, 39, 40, 41, 42].

A numerical simulation of the test is a critical task in order to develop a realistic
mechanical model of the composite material, able to be employed in the analysis of
more complex geometries. The hypotheses introduced in the normalisation procedures
do not appear to be realistic enough, so that the results obtained on the basis of these
methods are little more then conventional. A numerical analysis of the extension bias
test was discussed in [43, 44]. A 2D continuum was employed to which homogenized
material properties were attributed, that accounted for the presence of two families of
strictly inextensible fibres. In literature there are many examples of homogenization
procedures which have the purpose of obtaining a bulk macro model starting from
a proper kinematical description at micro-scale (see, e.g., [45, 46, 47, 48, 49, 50, 51,
52, 53]). The results of Pipkin and Rivlin concerning the deformation of nets with
inextensible chords were used in order to derive the kinematics of the model [54, 55, 56].
It was found that first gradient deformation model produce sharp discontinuities in the
fiber rotations, that are not observed in the experiments. Therefore it was suggested,
in accordance with what proposed by [57, 58, 59, 60, 61, 62, 63] to employ higher order
deformation models (see, e.g., [64, 65, 66]), able to simulate the bending energy stored
in the fibers at the mesolevel. Several energy models were analysed, with the intent
of matching the experimental observations. In the same spirit, it is possible to exploit
the micro-polar surface theory; indeed, higher order deformation models with proper
assumption [67] can be interpreted in the framework of micro-structured or micro-polar
materials (see, e.g., for further details [68, 69, 70, 71, 72, 73, 74]). As a note, we remark
that to perform numeric simulations involving higher gradient models, ad hoc tools are
to be employed because standard C0 FEM are not optimized for this purpose (see,
e.g., [75, 76, 77, 78, 79]).

It was found, however, that qualitatively the response of the specimen to the ex-
tension was similar for all the energy models employed, so that in a real experiment
it would be difficult to differentiate among them, and primarily to assess the relative
relevance of the second order bending energy in the deformation process.

The Bias Extension test, indeed, allows to simulate one mode of deformation only,
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for a very particular geometry. The consideration of geometrical settings with differ-
ent boundary conditions can be useful to discriminate among the possible constitutive
models applicable to the material. Aim of this work is to analyse the simulations of
a generalized bias test. In it the geometry of the sample is the same as for the stan-
dard test, but a boundary displacement different than a simple extension is applied.
Specifically, a rotation of the free end of the specimen around one of the corners will be
examined (see fig 15). As it will be shown, and as will be discussed in a forthcoming
paper [44] the response of the specimen may present phenomena that are not present
in the standard bias test, as the complete closure of the angle formed between the two
families of fibers in a limited zone of the specimen, that may give rise to instabilities.
The numerical analysis and the predictions obtained with the simulations yield there-
fore valuable information for interpreting the experimental results, and for indicating
the critical geometrical quantities that need to be measured during the test. In the
paper it will be performed a geometrically simplified analysis of both the standard BE
test and the newly proposed test, including on the analysis the effect of the second
gradient energy.

First the assumptions employed for the model will be presented, and briefly dis-
cussed. Them the standard BE test will be examined, in order to extend the normali-
sation procedures proposed in the literature for including the effect of second gradient
deformation. The analysis of the new test will follow a similar reasoning. For the tests
examined will be presented the predictions obtained using some simple strain energy
models, on the assumption that no damage occurs.

2. Assumptions of the model

We consider a plane balanced composite constituted by two orthogonal families of
woven fibres. We introduce the following assumptions regarding the material model:

H1 An average equivalent thickness is considered for the composite, that we assume
to be constant throughout, so that the material can be treated as an equivalent
2D continuum.

H2 The fibres are inextensible.

Introducing a local reference frame attached to the fibre directions, and denoting
by P = {ξ1, ξ2} the coordinates of a point of the specimen in this frame (see figure
2), its basis vectors are

D1 :=
dP

dξ1
, D2 :=

dP

dξ2
(1)
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From the inextensibility assumption it follows that these directors can undergo
only a rigid rotation upon deformation of the continuum. Denoting by d1,d2 the
deformed directors it follows that:

d1(ξ
1) := R1(ϑ1(ξ

1)) D1 = cos(ϑ1(ξ
1)) D1 + sin(ϑ1(ξ

1)) D2,

d2(ξ
2) := R2(ϑ2(ξ

2)) D2 = sin(ϑ2(ξ
2)) D1 + cos(ϑ2(ξ

2)) D2.
(2)

where R1 and R2 are in plane unit rotation operators, depending on the rotation
angles ϑ1, ϑ2. It was proved by Rivlin [56] that in the present hypotheses the two
rotation angles depend only on the respective parametric abscissa, as highlighted
in equation (2). The constrained gradient deformation tensor becomes

FR := (R1(ϑ(ξ1)) D1)⊗D1 + (R2(ϑ(ξ2)) D2)⊗D2, (3)

We have therefore di · di = 1, i = 1, 2, and we define

γ = d1 · d2 = sin (ϑ1 + ϑ2) . (4)

The Cauchy strain tensor is than

C := D1 ⊗D1 + γD1 ⊗D2 + γD2 ⊗D1 + D2 ⊗D2, (5)

while the Green strain tensor is given by

E :=
γ

2
(D1 ⊗D2 + D2 ⊗D1) . (6)

Next assumptions regard the material constitutive behaviour.

H3 It is assumed that the material deforms elastically, that is, no damage or any other
kind of dissipation mechanism is considered. Therefore there exists an internal
energy given by the elastic strain potential. This assumption could be relaxed in
the case that only monotonic load histories are considered, like is the case in the
present work. However, for the sake of simplicity, we keep the assumption in the
present form.
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Figure 2: Initial configuration B0 and its inextensible director.

H4 According to the discussion of section 1, the strain energy is assumed as the sum
of two independent contributions, the first that depends on Green’s strain tensor
(first gradient energy), the second that depends on the gradient of the strain
(second gradient energy):

F := α1

∫
B

g1 (E) dB + α2

∫
B

g2 (∇E) dB (7)

where α1 and α2 are constitutive weight parameters.

In the case of in plane deformation, the only non-vanishing invariant of Green’s
tensor is the second invariant I2 := γ2

2
, so that any isotropic first gradient energy

functional must be a function of γ2. Since the basis vector are constant the only
non-vanishing terms of the gradient of the strain tensor ∇E are
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(∇E)121 = (∇E)211 =
cos(ϑ1 + ϑ2)

2

dϑ1

dξ1
,

(∇E)122 = (∇E)212 =
cos(ϑ1 + ϑ2)

2

dϑ2

dξ2

(8)

The second gradient energy term is assumed to be a function of the norm of the
strain gradient, so that we have:

F =α1

∫
B

g1
(
γ2
)
dB + α2

∫
B

g2 (‖∇E‖) dB

‖∇E‖ =cos2 (ϑ1 + ϑ2)

[(
dϑ1

dξ1

)2

+

(
dϑ2

dξ2

)2
] (9)

2.1. Energy models

In the following developments, in order to test the influence of different consti-
tutive models on the overall response of the specimen to the imposed displacement,
some energy models will be used, selected in such a way as to be representative of the
deformation phenomena occurring in the material.

Two forms are considered for the first gradient strain energy. In the first case,
the strain energy g1 is taken quadratic in γ, i.e. g1,1 = 1

2
kγ2; this corresponds to an

hyperelastic continuum. In the second one, the strain energy is directly related to the

square of the relative rotation of the fibres, g1,2 = 1
2
k
(
π
2
− cos−1 γ

)2
= 1

2
k (ϑ1 + ϑ2)

2.
The latter mechanism can be related to the friction existing between the fibres in the
contact point. Due to the initial curvature of the fibres, an increment in the tensile
stress of the fibres results into an increase of the contact force between the fibres, hence
to an increase of the friction resistance to relative rotation. Experimentally it appears
that this effect results in a non linear dependency of the shear force on the tensile stress
of the fibres, but, due to the lack of specific information, this effect is here disregarded.

Also for the second gradient strain energy, two models are considered. In the first
case, the strain energy g2,1 is taken directly proportional to the square of the norm
of the gradient of the strain tensor, equation (8). In the second case, g2,2 is taken
proportional to the square of the gradient of the rotations of the fibres, that is, in the
expressions (8) of the strain gradient it is assumed cos(ϑ1 + ϑ2) = 1.
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2.2. Geometry of the specimen and simplified kinematics

In the paper, we consider a standard specimen employed in the BE tests, that is, a
strip of composite with the fibres at 45◦ from the specimen axis. The ratio between the
length and the width of the specimen (the slenderness ratio) is denoted by λ = H/W
(see figure 2). The lower end of the specimen is fixed, while the upper end is subjected
to rigid translations (case 1) or to a rigid rotation around the corner (case 2).

The origin of the reference frame x, y is set in the centre of the specimen, with the
y axis aligned along the specimen axis.

In order to obtain, for the cases considered in next sections, a close form solu-
tion for the deformation field, an additional hypothesis is introduced, whose validity is
by far more approximated than the kinematic assumption of inextensible fibres. The
geometric assumption is that the fibres remain straight, except along lines where con-
centrated kinks may occur. This assumption is commonly employed in the discussion
of experimental results [35, 17, 42].

As a consequence, the specimen gets subdivided in discrete regions of constant shear
deformation, shown in figure 3 for the cases H/W < 4 and 4 < H/W < 6. Note that in
regions 0 and 6 the shear is zero (since they are triangles whose sides do not elongate),
that is those regions can only undergo a rigid motion.
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Figure 3: Bias Extension Test. Geometry of the specimen. In italics are indicated the numbers of the
regions of homogeneous deformation.

10



3. The standard Bias Extension Test

The free end of the sample is subjected to a translation v along the y-axis. the
deformation of the sample depends on the slenderness ratio H/W, which determines
the number of internal regions in which the shear is homogeneous, as shown in figure
4. For 2 ≤ H/W < 4 only one region of homogeneous shear can exist in the interior
of the specimen (region 3), so that in this case, due to symmetry considerations, the
deformed configuration of the specimen is uniquely determined by geometric conditions,
as illustrated in figure 4(a). For 4 ≤ H/W < 6 at the interior of the specimen there exist
three regions with different constant deformation (regions 3,7,12), plus the transition
zones, figure 4(b), so that the deformation is not uniquely determined by geometric
considerations and it has to be determined through a mechanical analysis. For greater
slenderness ratios more regions of homogeneous deformation occur. We shall examine
separately the cases of 2 ≤ H/W < 4 and 4 ≤ H/W < 6 in order to highlight the
influence of the slenderness of the specimen on the results of the test.
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Figure 4: Bias Extension Test. Simplified kinematics.
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Region γ Series expansion θ1 + θ2
3 d(d+2H−2W )

(H−W )2
2d

H−W + d2

(H−W )2
π
2
− arccos(2γ3)

1
d+H−W−

√
(H−W )2−2d(H−W )−d2
2(H−W )

d
H−W + d2

(H−W )2
+ d3

2(H−W )3
π
2
− arccos(2γ1)

Table 1: Shear deformation for the Bias Extension Test. H/W < 4

3.1. Case 2 ≤ H/W < 4

First we analyse the case 2 ≤ H/W < 4. As shown in figure 4(a), the centre
point E undergoes a displacement of v/2 along the y-axis, and the shear deformation in
the specimen is constant in the central area (region 3), while in the triangular regions
1,2,4,5 the relative rotations between the two families of fibres is half than in the central
area. The rotation angle of the fibres in the central area can easily be obtained by the
condition that the projections on the specimen axis of the fibre segments BC, OM, ED,
EI, and of the parts of the fibres contained between points C,D and I,M be equal to
the distance between points O and B in the deformed configuration, i.e.

2‖BC‖ cos θ + 2
H − 2W√

2
cos θ = H −W + v

cos θ =
v +H −W√

2(H −W )
=

v√
2W (λ− 1)

+
1√
2

(10)

so that

γ = cos

[
2 cos−1

(
v√

2W (λ− 1)
+

1√
2

)]
(11)

This formula is often used in the interpretation of the experimental results. The
shear deformations C12 = d1 · d2 in the two regions of homogeneous strain 1 and 3 are
reported in table 1, together with their power expansion up to the order 3, showing
that γ1 = γ3/2 up to the second order. A limit locking displacement is attained in this
case, when the fibres in the central region get aligned, that is when γ3 = 1, given by

vlim =
(√

2− 1
)

(H −W ). (12)

Denoting by F the reaction force at the clamped end of the specimen and equating
the external power to the internal power it is obtained the following expression:
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F v̇ =T (γ3)γ̇3 + T (γ1)γ̇1

F v̇ =

(
T (γ3)2

d+H −W
(H −W )2

+

T (γ1)
d+H −W +

√
(H −W )2 − 2d(H −W )− d2

2(H −W )
√

(H −W )2 − 2d(H −W )− d2

)
v̇

(13)

where T is the shear force per unit length (that is, integrated over the thickness)
in the sheet. From expression (13) the relationship between the shear force and the
shear strain can be estimated. Expression (13) is not the same usually reported in
experimental works (see e.g. [17]) since the full non linear expression has been used in
this case. Notice that the shear force T as obtained is a component of the the second
Piola-Kirchhoff stress tensor. Analogous expressions can be obtained using other stress
measures.

The use of formula (13) is limited to the hypotheses under which it has been ob-
tained, that is, homogeneous deformations within the specimen regions, straight and
inextensible fibres, absence of instability or damage. These conditions of course are not
met in actual experiments, so that only rough estimates can be obtained. We want
now to investigate what is the influence of different constitutive models on the load
displacement curve obtained within the current hypotheses, in order to evaluate up to
what extent valuable information can be obtained from the approximated model. The
forms of energy introduced in section 2 are used. The first gradient energy is simply
obtained integrating the elastic potential over the volume, and, since the shear strain
is constant in each region of the sample, the internal energy is given by:

Ed1 =

∫
V

F1dV =
6∑
i=1

Aitig1(γi) = 4AT t g1(γ1) + AB t g1(γ3) (14)

having indicated with t the thickness of the sample, assumed constant, with AT = W 2/4
the area of a triangular region, and with AB the area of the central region of the sample.

For a given end displacement the deformation field minimizes the potential energy

min
θ1,θ2

(
Ed (γ(θ1, θ2))− F

(
uLy (θ1, θ2)− v

))
(15)

where in the last term the Lagrange multiplier F for the constrained end displacement
uLy is the reaction force exerted on the specimen. The end displacement uLy is given by
an integral expression, reported in [44]. Evaluating the derivative of the deformation
energy with respect to the imposed displacement v we find:
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∂Ed
∂v

=
∂Ed
∂θi

∂θi
∂v

= F
∂uLy (θi)

∂θi

∂θi
∂v

(16)

But, since by the implicit function theorem applied at the constraint uLy (θ)− v = 0, we

get ∂θi
∂v

=
(
∂uLy
∂θi

)−1

, it follows

F =
∂Ed
∂v

(17)

that is the statement of Castigliano’s theorem. Notice that expression (17) is valid
whatever be the form of the strain energy, therefore it holds also in the case a second
gradient energy is used.

In figure 5(a) the load displacement curve is plotted for the two first gradient energy
forms considered in section 2.1, g1,1, g1,2, normalized with respect to the slope at the
origin (that is, the initial slope in both cases is set equal to 1).

The energy g1,1, quadratic in the shear strain, presents a smaller initial stiffness
with respect to the other case, but in both cases the reaction diverges when the locking
displacement is approached. Qualitatively there is little difference between the two
cases, that in an experiment could hardly be appreciated.

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2
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R
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g1,2

g1,1

(a) Force vs. displacement for the extension
Bias Test. H/W < 4. First gradient energy

0.0 0.2 0.4 0.6 0.8 1.0

0
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v

R
�k

g2,2

g2,1

(b) Force vs. displacement for the exten-
sion Bias Test. H/W < 4. Second gradient
energy

Figure 5: Bias Extension Test. Simulations of the test with first (a) and second (b) gradient strain
energy

The deformation of the specimen close to the limit displacement is represented in
figure 6. It can be appreciated how the central zone of the specimen becomes very
narrow, with the fibres aligned, close to what is observed in the experimental results.
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In [44] a detailed numerical analysis of the Bias Test was carried out, from which
resulted that the shear strain is not constant in the central region of the specimen,
contrarily to what have been assumed in the present analysis. In figure 7 is presented
the relative rotations of the fibres in two points of region 3, i.e., at the centre of the
specimen (point E) and at point O as obtained from the numerical analysis (that are
not equal), compared with the prediction of the simplified model here presented. Two
cases are reported for the numerical results, one for which the strain energy potentials
depends on the relative rotation of the fibres and the other for which the strain energy
potential depends on the shear γ. The numerical results show little difference from the
idealized model, as it is also found in experimental results.

Experimental results on woven fabrics subjected to the BE test show that sharp
kinks such as those present in the deformation of figure 6 are not observed in the ex-
periments [35], since the fibres bear some flexural rigidity that prevents their curvature
to become infinitely large. In [44], it has been proposed to account for this effect in-
troducing an additional term in the strain energy depending on the gradient of the
shear, that, as indicated in equation (8), is proportional to the bending curvatures of
the two families of fibres. In the limit the bending deformation may be the dominant
deformation mode, corresponding to a model of fibres free to rotate but not to bend. In
the simplified model presented, in which the shear is piecewise constant, the gradient
of the shear may be accounted for considering the relative rotation of the fibres along
the edges of the regions of uniform shear, where indeed the experimental results show
that the bending of the fibres is more severe. The internal energy then becomes

Ed2 =
nl∑
j=1

Ljtjg2(∆γj) = 4
√

2Wtg2 (γ1 − γ3) (18)

The contribution to the second gradient energy arise along lines ABG and IOQ,
where the rotation θ1 experiences a jump, and along lines FBC and NOP, where the
rotation θ2 is discontinuous.

The load displacement curves obtained solving problem (15) with the strain energy
(18) are plotted in figure 5(b). Also in this case the results are normalized with respect
to the initial slope. While the results obtained with the energy g2,2 are similar to
those obtained considering first gradient deformation only, the load displacement curve
obtained for the energy g2,1 presents a limit point, and then an unstable branch, due
to the fact that, as noted previously, when the fibres tend to align the gradient of
the shear strain vanishes, and the strain energy reaches a maximum for a value of the
imposed displacement 1

2

(√
3− 1

)
(H − W ), close to the locking limit (see figure 8).

The reduction in the stiffness of the specimen can account for to the onset of instability
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in the sample that results into wrinkling. If this hypothesis is correct, the source of
instability is a phenomenon related to the second gradient deformation.

The results obtained with all the energy models analysed are summarized in figure
9(a). Apart from the unstable curve obtained with the energy g2,1, no sharp difference
exists between the other results, rather the load vs. displacement curve obtained with
the first and second gradient strain energies quadratic in the relative rotations perfectly
coincide. This is a consequence of the Rivlin kinematics of the inextensible network, for
which case the rotation of the i-th fibre depends only on the coordinate ξ1. Figure 9(b)
shows how the first and second gradient shear energy can combine in order to model a
more or less severe transition of the load-displacement curve from the unstable to the
stable behaviour close to the locking point.
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Figure 7: Bias Extension Test H/W=3: comparisons of the theoretical angle incremental evolution
with the numerical formulation in [44].
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0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

v

R
�k

g2,2

g2,1

g1,2

g1,1

(a) Force vs. displacement for the Bias Ex-
tension Test. H/W < 4. First and second
gradient energy models

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v

R
�k

Α1=0.9 Α2=0.1

Α1=0.8 Α2=0.2

Α1=0.7 Α2=0.3

Α1=0.6 Α2=0.4

(b) Force vs. displacement for the Bias Ex-
tension Test. Strain energy α1g1,1 +α2g2,1.
H/W < 4.

Figure 9: Bias Extension Test. Load vs. displacement.
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3.2. Case 4 ≤ H/W < 6

The schematic deformation of the sample is depicted in figure 4(b). In this case
the shear takes different values in region 3 and in regions 7 and 12. Other regions
of homogeneous shear are the triangular areas 1, 2, 4, 5 and 8, 9, 10, 11. Hence
the deformation of the specimen is not determined by geometric considerations only,
since the coordinates of points V,Z are unknown, and have to be found solving the
minimization problem (15).

The results of the calculations are presented in figures 10(a) and 10(b) for the first
and second gradient energy models respectively after normalization with respect to
the initial slope. The load displacement curves are analogous to those obtained for to
the previous case of the less slender sample. The limit displacement corresponding to
the locking condition is the same as in the previous case ((

√
2 − 1)(H − W )). The

results for the first and second gradient energies quadratic in the rotations (models
g1,2 and g2,2) also in this case are almost coincident —the small difference is due to
the non homogeneity if the shear throughout the specimen. All the curves appear
similar except for the second gradient energy model depending on the shear strain, that
present an unstable behaviour, figure 11(a). An enlargement of the load-displacement
curve for the latter case is shown in figure 11(b), from which it can be seen that for
the slender specimen snap-back occurs. The behavior in the case the second gradient
energy dominates, is the more unstable the more slender is the sample, giving rise to a
sort of size effect.
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Figure 11: Bias Extension Test. Load vs. displacement. Summary of the results.

In order to verify whether the calculated deformation deviates from uniformity along
the specimen, we plot the calculated values of the relative rotations θ1 + θ2 in regions
3, 7. Recall that on the case of the specimen with H/W < 4 these two shears were
equal. In all graphs is plotted half of the angle formed between the fibres, that goes
from 45◦ to 0◦. The results obtained with the first gradient energy models are plotted
in figure 12. For both first gradient models the relative rotation of the fibres is almost
uniform throughout the specimen, as occurs in the case H/W < 4, and some difference,
leading to a neck in the central area, occurs only for displacements close to the limit
one. Comparing these plots to those reported in figure 7, it can be observed that the
deviation from uniformity of the rotation angles obtained numerically follows the same
trend as the one found with the idealized kinematics. In the case of the second gradient
energy models, however, the relative rotation of the fibres is not uniform, as represented
in figure 13, and the difference is particularly relevant when instability arises (figure
13(a)). Figures 14 reports the deformed shapes of the specimen for a displacement close
to the limit one obtained using the modelks g1,2, g2,2. It can be seen that for the first
gradient model the deformation is almost uniform in the central zone, while for the
second gradient model a neck appears in the central zone with a smooth variation of
the shear angles along the specimen. This difference in the deformation could be useful
in the interpretation of the experimental results.

22



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

v�vim

Θ
1
+
Θ

2

Θ7

Θ3

9g1,1=

(a) BE Test. Relative rotation of the fi-
bres in central regions vs. displacement.
H/W > 4. First gradient energy g1,1.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

v�vim

Θ
1
+
Θ

2

Θ7

Θ3

9g1,2=

(b) BE Test. relative rotation of the fi-
bres in central regions vs. displacement.
H/W > 4. First gradient energy g1,2.

Figure 12: BE Test. relative rotation of the fibres in central regions vs. displacement. H/W > 4.
First gradient energy models.
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H/W > 4. Second gradient energy g2,1.
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Figure 13: BE Test. relative rotation of the fibres in central regions vs. displacement. H/W > 4.
Second gradient energy models.
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3.3. Concluding remarks for the analysis of the BE Test
The load-displacement curve evaluated with the simplified kinematics adopted, once

properly scaled, is independent on the slenderness ratio of the specimen. In the case
the dominant strain energy depends on the gradient of the shear deformation an un-
stable behaviour is obtained. For all the other cases the response of the specimen is
qualitatively very similar whatever strain energy is used.

Some difference is observed in the deformation of the specimen obtained with the
first energy model, which is almost uniform along the whole sample, and with the second
energy models, that presents a neck. The effect appears to be the more evident the
greater is the slenderness of the specimen.

In consideration of the rather insensitivity to the different strain energy models of
the response of the specimen subjected to the BE test, it appears that this test alone
is not able to give sufficient indications on the constitutive model most appropriate for
the material under investigation. More tests are needed, involving different deformation
modes.

In the following sections a generalized Bias Test will be proposed and analyzed using
the same simplified geometric assumptions adopted in this section. It will be shown
that qualitative differences may arise in some aspects of the deformation, which can
help in the interpretation of the experimental results.

4. Modified Bias Test

In this section is examined the test represented in figure 15. The specimen, having
the same shape and fibre orientation as the standard specimen for the BE test, is
clamped at one end, while the opposite end is rotated of an angle φ around the corner A.
Region “0” undergoes a rigid rotation, so that the coordinates of point B are determined
by the rotation. As can be seen from the picture, each region of the specimen undergoes
a different shear strain (apart from regions 0, 9 that do not deform, see figure 3 for the
numbering of the regions).

We limit the analysis to the case of 2 ≤ H/W < 4. In the hypothesis that the fibres
remain straight within each region, the deformation of the specimen can be determined
as a function of the coordinates of the central point “E”, that can be obtained minimiz-
ing the potential energy. The relative rotation of the fibres in region 3a and 3b can be
obtained in a similar way to expression (10), considering separately the projection of
the fibres on the axes BE and OE (the positions of the points B, O are known). Then
the deformation so obtained for the sides of the regions 3a and 3b are rotated into the
global reference system (rotation which depends only on the position of point E).

A limit rotation is attained when the relative rotation in the region 1 is equal to
π/2, that is, when the fibres get totally aligned and no further stretching is allowed.
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The limit value of the rotation angle depends on the position of point E (and thus on
the solution of the minimization problem) and on the aspect ratio of the specimen. It
ranges between 60◦ and 80◦, the greater the more slender is the specimen.
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Figure 15: Modified Bias Test. Schematic of the geometry of the test. H/W < 4

Using a procedure analogous to the one illustrated for the BE test, the response of
the specimen to a monotonically increasing rotation was calculated for the four energy
forms defined in section 2.1. The reaction moment M at the rotating edge was obtained
similarly to (17) as

M =
∂Ed
∂φ

(19)

The results are summarized in figure 16, limited to a maximum rotation of 60◦. All
the results have been normalized with respect to the initial slope. The top two curves
refer to the results obtained with the first gradient energy (in the highest curve the
energy used is g1,2, in the other is g1,1.) The bottom two curves refer to the second
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gradient energy, the lowest curve shows the results for the energy g2,1, which presents
a limit point followed by an unstable behaviour.

With respect to the case of the standard BE test the moment-rotation curves ob-
tained present a greater difference among them, that can help to evaluate from experi-
mental results what the most adequate constitutive relation might be.
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Figure 16: Modified Bias Test. Moment rotation curves obtained with four choices for the strain
energy. H/W < 4

The deformed shape of the specimen for a rotation close to the limit one obtained
using the energy g2,2 is presented in figure 17. It can be observed that according to the
simplified hypotheses used in this work the shear in the central part of the specimen
is nearly uniform. This is confirmed by the plots of figure 18 that show the relative
rotation of the fibres in the central regions 3a and 3b, for the four cases examined. In
all of them, the two rotations are almost equal, except for the case of the strain energy
depending on the square of the shear, for very great values of the rotation angle.

Although the shears in the central region have been found to be almost uniform, the
specimen does not undergo simple stretching, rather it presents bending, This effect can
be appreciated from the trajectories of point E plotted in figure 19 for the four cases
examined (solid lines) compared with the trajectory that the point would have if no
bending were present, that is if the point E were always aligned to points B, O (dashed
line). It can be seen that the greater deviations from the no bending condition occurs
for the simulations obtained using the second gradient energy, and for large values of the
rotation. Apparently, The case that presents more bending is when the strain energy
is taken to depend directly from the curvature of the fibres. Also this appears to be a
useful consideration for interpreting experimental results.
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Figure 17: Modified Bias Test. Deformed shape of the specimen, quadratic second gradient energy
g2,2. H/W < 4
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(a) Modified Bias Test. Relative rotation
of the fibres in central regions vs. rotation.
First gradient energy g1,1.
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(b) Modified Bias. Relative rotation of the
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(c) Modified Bias Test. Relative rotation
of the fibres in central regions vs. rotation.
Second gradient energy g2,1.
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(d) Modified Bias Test. Relative rotation
of the fibres in central regions vs. rotation.
Second gradient energy g2,2.

Figure 18: Modified Bias Test. Relative rotation of the fibres in central regions vs. rotation. All
energy models.
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5. Conclusions

A simplified mechanical analysis of two tests performed on a strip of woven fibres
with orthogonal yarns aligned at 45 ◦ with the specimen axis. The fibres have been
considered inextensible, so that the material experiences only shear deformation. A
simplified kinematics has been adopted, such that the shear deformation is piecewise
constant in the specimen. Two kinds of test have been examined, the standard Bias
Extension Test and a modified version of it. It has been obtained the deformation and
the force vs. displacement curve adopting four different constitutive models for the
material. In the simulations the strain energy has been assumed quadratic in the shear
deformation or in the relative rotation, so that the non linearity of the behaviour is of
geometric nature only. In addition to first gradient energy models, it has been assumed
that the deformation energy of the material can depend also on the strain gradient.
This assumption allows to account for the bending of the fibres during the deformation,
and thus to account in a simplified way for the microstructure of the composite.

The Bias Extension test has been examined first. It has been found that when the
bending energy (the second gradient energy) is predominant, instabilities occur, and
this could be related to the loss of stability observed in the experiments.

A modified Bias test has been analysed, in which the end of the specimen is rotated
around one corner. It has been observed that the deformation depends on the slender-
ness of the specimen, and that the predictions of the energy models tested differ among
themselves. In this case, bending has shown to arise in the specimen, in addition to
stretching associated with the rotation of the fibres.

Plots of the relative rotations of the fibres at the centre of the specimen and at the
vertex of the undeformed region have also been presented, since those angles are usually
measured during the experiments.

The results of the simplified analyses presented will help to interpret the results of
more detailed simulations obtained with Finite Element Analysis that will be presented
in a future work.
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[76] Cazzani, A., Malagù, M., and Turco, E. “Isogeometric analysis
of plane-curved beams”. Mathematics and Mechanics of Solids doi:
10.1177/1081286514531265. (2014).
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