Teichmüller Spaces
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We shall construct Teichmüller spaces alternatively by using quasiconformal mappings, we investigate the case of closed Riemann surfaces of genus g ( 2), and prove the Teichmüller theorem, which states that the Teichmüller space of a closed Riemann surface R of genus g ( 2) is homeomorphic to the open unit ball in the real (6g 6)-dimensional Euclidean space. This is another compacti…cation di¤erent from the Thurston's one [M ]. The base point of the proof is the existence and uniqueness of the extremal quasiconformal mappings called, Teichmüller mappings.

In the case of general Riemann surfaces, Teichmüller's mappings are still uniquely quasiconformal mappings, while formal Teichmüller mappings are not necessarily extremal. The proof of Teichmüller's uniqueness theorem states that a Beltrami coe¢ cient of a Teichmüller mapping is extremal. The original "proof" of Teichmüller's theorem is found in [T ], and the proof in this paper follows that in [B].

Teichmüller Space of a Riemann Surface

Let R be a …xed Riemann surface. For every quasiconformal mapping f : R ! S, where S is another Riemann surface, consider a pair (S; f ). We say that two pairs (S 1 ; f 1 ) and (S 2 ; f 2 ) are equivalent if f 2 f 1 1 is homotopic to a conformal mapping of S 1 onto S 2 . We denote by [S; f ] the equivalence class of (S; f ). The set of all such equivalence classes is the Teichmüller space T (R). Letting id the identity mapping of R, we call [id; R] the base point of T (R).

Teichmüller Spaces of a Fuchsian Group

Fix a Fuchsian model of R acting on the upper half-plane H. We can always assume that is non-commutative, and then the set of all …xed points of fidg contains at least three points. We may assume that each of the points 0; 1; 1 is a …xed point of an element 2 fidg. We always consider the lift e f : H ! H of a quasiconformal mapping f : R ! S which …xes each of 0; 1;and 1. We know, that this lift e f is detemined unique and is the restriction of a quasiconformal mapping of C to H. We call this e f the 1 canonical lift of f with respect to . Using the canonical lift, we have an injection homeomorphism e f : ! P SL (2; R)

de…ned by, e f ( ) = e f e f 1 :Then we have an isomorphism e f of onto another Fuchsian group 1 , and S = H= 1 . We express 1 as e f e f 1 Lemma 1 [S 1 ; f 1 ] = [S 2 ; f 2 ] in the Teichmüller space T (R) if and only if

e f 1 = e f 2
, where e f j is the canonical lift of f j , j = 1; 2. Proof. Supose that [S 1 ; f 1 ] = [S 2 ; f 2 ]. We may assume that S 1 = S 2 = S and f 1 is homotopic to f 2 by composing a suitable conformal mapping of S 1 onto S 2 . A homotopy between f 1 and f 2 is written as a 

= e f 1 ( )
Since each of 0; 1; and 1 is …xed by some 2 fidg, then e F 2 …xes also 0; 1; 1. Thus e F 2 is coincident with the canonical lift e f 2 of f 2 with respect to , and hence e f 1 = e f 2 . Conversely, assume that e f 1 = e f 2 = . Then, for every 2 we obtain e f j = ( ) e f j , j = 1; 2: For every t 2 [1; 2] and every z 2 H, letting g z be the geodesic (with respect to the Poincaré metric) connecting e f 1 (z) and e f 2 (z), we denote by f (z; t) the point which divides g z in the ratio t : (1 t).

Then

n e f t (z; 1 t) o 1 t 2
is a homotopy between e f 1 and e f 2 . Thus we have

e f t = ( ) e f t ; t 2 [1; 2]
Hence e f t is projected to a continuous mapping f t : R ! S and we have a homotopy between f 1 and f 2 .

De…nition 1 The reduced Teichmüller space of is the set

T # ( ) = ( e f : e f is a canonical qc mapping of C such that e f ( ) = e f e f 1 is a Fuchsian group )
On the other hand, we de…ne the Teichmüller space T ( ) of the Fuchsian group as follows: let QC ( ) be the set of all canonical quasiconformal mappings ! 2 C such that ! ! 1 are also Fuchsian groups. We say that ! 1 , ! 2 2 QC ( ) are equivalent if ! 1 = ! 2 on R. We denote by [!] its equivalence class. The Teichmüller space of is the set

T ( ) = f[!] : ! 2 QC ( )g Lemma 2 Suppose that R is compact. Two quasiconformal mappings f j : R ! S j (j = 1; 2) satisfy e f 1 = e f 2 if and only if e f 1 = e f 2 on R.
Proof. e f 1 = e f 2 on R implies that for every 2 ; Möbius transformations 

(R) = T # ( ) (as sets). Further if R is compact, then T (R) = T ( ). Proof. The mapping [S; f ] 2 T (R) ! e f 2 T # (
) is well de…ned, and injective. Next, for every such e f as in the de…nition of T # (R), we set

1 = e f ( )
. Then e f is projected to a quasiconformal mapping f : R = H= ! H= 1 , and hence determines a point [S; f ] 2 T (R). Thus the original mapping is also surjective, and we have the …rst assertion. The second follows by Lemma 2.

Teichmüller Distance

To introduce a topology on T (R), we de…ne the Teichmüller distance. Let [S; f ] 2 T (R), e f be the complex dilatation of the canonical lift e f with respect to . Then we have We denote by B (H; ) the set of all Beltrami di¤erentials, and we set

B (H; ) 1 = f 2 B (H; ) : k k 1 < 1g Similarly A measurable ( 1; 1)-form = (z) dz=dz on R such that k k 1 = ess sup z2R j (z)j < 1 is called a Beltrami di¤erential on R: We denote by B (R)
the set of all Beltrami di¤erentials on R, and we set

B (R) 1 = f 2 B (R) : k k 1 < 1g
De…nition 3 For any two points

p 1 = [S 1 ; f 1 ], p 2 = [S 2 ; f 2 ] 2 T (R), let F f 1 ;f 2 be the set of all quasiconformal mappings of S 1 onto S 2 which are homotopic to f 2 f 1 1 . The Teichmüller distance on R is given by d (p 1 ; p 2 ) = inf g2F f 1 ;f 2 log K (g)
where K (g) is the maximal dilatation of g Theorem 1 The Teichmüller space T (R) (and hence T # (R)) is complete with respect to the Teichmüller distance. Proof. Let fp n = [S n ; f n ]g 1 n=1 be any Cauchy sequence in T (R) with respect to the Teichmüller distance d. For every " > 0, the de…nition of d implies that we can …nd a su¢ ciently large N " such that for n, m N " , there is a quasiconformal mapping f n;m homotopic to f m f 1 n and satisfying n;m 1 < " where n;m = fn;m . In particular we can …nd a subsequence p n j 1 j=1 and a sequence f n j ;n j+1 1 J=1 of qc mappings such that n j ;n j+1 < 2 j j = 1; 2; 3; :::: Next, let p 0 the base point of T (R). Since fd (p 0 ; p n )g 1 n=1 is a bounded sequence, we may assume that K (f n ) < K for every n with a su¢ ciently large K > 1. Since

K f n j 1 ;n j 1 2 j 1 + 2 j 1 + 4:2 j
for every j, the mapping g j = f n j 1 ;n j f n j 2 ;n j 1 :::::::

f n 1 ;n 2 f n 1
is a quasiconformal mapping on R onto S n j , homotopic to f n and satis…es

K (g j ) K l 1 j=1 1 + 4:2 j
Hence fK (g j )g 1 j=1 is a bounded sequence. We denote by K 1 its supermum. Now, let e g j be the canonical lift of g j with respect to for every j.

Then j = e g j 2 B (H; ) and j 1 k 1 = (1 K 1 ) = (1 + K 1 ) < 1. Also we have 1 2 j j+1 1 j+1 j 1 j j+1 1 = n j ; n j+1 1 < 2 j
for every j. In particular,

j 1 j=1 is a Cauchy sequence in B (H; ). Hence = lim j !1 j exists in B (H; ) and satis…es k k 1 < k 1 Let e
f be the canonical -quasiconformal mapping H. Then we can show that e f 2 QC ( ). Let p = [S; f ] be the point in T (R) determined by e f . Since

tanh d p n j ; p 2 ! j 1 j 1 1 1 (k 1 ) 2 j 1 we see that p n j converges to p. Now, …x a point [R 1 ; f 1 ] in T (R) arbitrarly.
We can de…ne a mapping

[f 1 ] : T (R) ! T (R 1 ) [S; f ] ! S; f f 1 1 with base point [R 1 ; id]. Moreover, we have Proposition 2 The mapping [f 1 ] : T (R) ! T (R 1 ) is an isometrical homeomorphism with respect to the Teichmüller distance Proof. First, since f 1 1 : T (R 1 ) ! T (R) gives the inverse mapping of [f 1 ] , clearly this map is a bijection. Next, for any two points p = [S; f ], q = [S 0 ; g] 2 T (R), the family F f;g = F f f 1 1 ;g f 1 1 . Hence [f 1 ] is an isometry.
We call a mapping such as this

[f 1 ] : T (R) ! T (R 1 ) a translation of the base point [R 1 ; id] of T (R) :
2 Teichmüller Theorems

Holomorphic Quadratic Di¤erentials

In the case of closed Riemann surfaces of genus one, we know that any point in T 1 the Teichmüller space of genus 1, is sent to any other point in T 1 under the projection of an orientation preserving a¢ ne mapping of C. We shall discuss similar "canonical" mappings for the genus g 2.

Let w = f (z) = z+ z ( ; 2 C; j j > j j) be an orientation preserving a¢ ne mapping of C. Applying a suitable rotation to the z-plane, and a suitable rotation and stretching to the w-plane, we can write f (z) in the form

z ! Kx + iy = K + 1 2 z + K 1 2 z; K 1
Hence when we set k = (K 1) = (K + 1), the pull-back of the Euclidean metric jduj 2 on the w-plane under f has the form

K + 1 2 2 jdz + kdzj 2
Upon changing the local parameter z by a conformal mapping z = h (&), we see that jdz + kdzj 2 becomes

jh 0 j 2 d& + k (h 0 ) 2 (h 0 ) 2 d& De…nition 4 A family ' = ' j of holomorphic functions ' j on z j (U j ) for all coordinate neighbourhoods (U j ; z j ) of a Riemann surface R is called a holomorphic quadratic di¤erential on R if it satis…es ' k (z k ) = ' j z jk (z k ) : z 0 jk (z k ) 2 on U j \ U k where z jk = z j z 1 k
We express this formula simply as

' k (z k ) = ' j (z j ) (dz j =dz k ) 2 : We also write ' = ' (z) dz 2 . A holomorphic automorphic form ' (z) of weight 4 with respect to is a holomorphic function ' (z) on H such that ' ( (z)) 0 (z) 2 = ' (z) ; z 2 H, 2
Denote by A 2 (R) the complex vector space of all holomorphic quadratic di¤erentials on R. A holomorphic quadratic di¤erential corresponds to a holomorphic automorphic form of weight 4 with respect to a Fuchsian model of R acting on the upper half-plane H. We denote by A 2 (H; ) the complex vector space of all holomorphic automorphic functions of weight 4 with respect to .

Teichmüller Mappings

As a "locally a¢ ne" quasiconformal mappings of R, we take a mapping f such that for some k, 0 k 1, it satis…es f z = kf z for a suitable local coordinate z around almost every point of R. More precisely, we discuss a quasiconformal mapping f whose Beltrami coe¢ cient f satis…es

f = k ' j'j with a suitable ' 2 A 2 (R).
De…nition 5 Let a positive k < 1 and ' 2 A 2 (R) f0g be given. Then we call a quasiconformal mapping f a formal Teichmüller mapping of R for the pair (k; ') if the Beltrami coe¢ cient f = k'='. Here we regard conformal mappings also as formal Teichmüller mappings which corresponds to the case k = 0 or ' = 0. From here on, writing ' = ' (z) dz 2 : Set

A 2 (R) 1 = ' 2 A 2 (R) : k'k 1 = 2 Z Z R j' (z)j dxdy
Now we have a mapping

T : A 2 (R) 1 ! T (R) ' ! [S; f ]
where f : R ! S = f (R) is a Teichmüller mapping for ' 6 = 0 and f = id for ' = 0.

The main purpose of this section is to show that the mapping T is a surjective homeomorphism. For this purpose we use the Fricke space F g (homeomorphic to R 6g 6 via Fenchel-Nielsen coordinates). We have a bijective continuous mapping : T (R) ! F g and the mapping e T = T :

A 2 (R) 1 ! F g is continuous [IT ].

Teichmüller' s Theorems

The injectivity of the mapping e T follows from the following Teichmüller's uniqueness theorem. A proof of this theorem shall be given at the end of this paper.

Theorem 2 Let f be a Teichmüller mapping for an element ' 2 A 2 (R) 1 and let T (') = [S; f ]. Then every quasiconformal mapping f 1 : R ! S which is homotopic to f satis…es.

f 1 1 f 1
Moreover, the equality holds if and only if f 1 = f . Corollary 1 The mappings T and e T are injective. Proof. It su¢ ces to show the injectivity of T . Assume that T (' 1 ) = T (' 2 ) for ' 1 , ' 2 2 A 2 (R) 1 . Let f j be a Teichmüller mapping for ' j 2 A 2 (R) 1 and T ' j = [S j ; f j ] for j = 1; 2. Then the assumption implies that there is a conformal mapping h : S 1 ! S 2 such that h f 1 is homotopic to f 2 . Thus the theorem gives

f 1 1 = h f 1 1 f 2 1 : Similarly, since h 1 f 2 is homotopic to f 1 , we have f 2 1 f 1 1
Similarly, since h 1 f 2 is homotopic to to f 1 , we conclude that h f 1 1 = f 2 1 which implies that h f 1 = f 2 again by this theorem. In particular

f 1 = f 2 .Thus if ' 1 = 0, then ' 2 = 0. If ' 1 6 = 0, then k' 1 k 1 = k' 2 k 1 , and ' 1 = j' 1 j = ' 2 = j' 2 j a.e on R. Hence ' 1 =' 2 is positive a.e on R. Since ' 1 =' 2 is meromorphic, it should be a constant and then ' 1 = ' 2 . Lemma 3 The image e T (A 2 (R) 1 ) of A 2 (R) 1 is an open set under e T : A 2 (R) 1 ! F g and e
T is a homeomorphism onto its image. Proof. Since e T is continuous, then the last Corolary implies that e T is a continuous bijection. Since A 2 (R) 1 is homeomorphic to R 6g 6 , Brower's theorem on invariance of domains gives the assertion.

Lemma 4 The mapping T :

A 2 (R) 1 ! T (R) is a homeomorphic onto its image. Proof. Since T is injective, it follows that T 1 is well de…ned on E = T (A 2 (R) 1 ). Since T 1 = e T 1 , then T 1 is continuous. To show that T is continuous, …x a point ' 2 A 2 (R) 1 and set p = T (') = [R 1 ; f 1 ] : Consider a translation [f 1 ] : T (R) ! T (R 1
) of the base point, which sends p to the base point [R 1 ; id] of T (R 1 ). Then we know by Proposition 2 that [f 1 ] is a surjective isomerty. We de…ne a mapping

e T 1 = [f 1 ] 1 T 1 : A 2 (R 1 ) 1 ! F g
in the same way as in the case of e T . Since e

T (') = e T 1 (0), Lemma.3 implies that e T 1 1 e T = (T 1 ) 1 [f 1 ] T : A 2 (R) 1 ! A 2 (R) 1
is well de…ned in some neighbourhood of ' and is a homeomorphisme onto its image. Hence, T is continuous at ' if and only if this is also true for T 1 : A 2 (R) 1 ! T (R 1 ) (de…ned similarly to T by using Teichmüller mappings) at the origin. We take any sequence f n g n 1 in A 2 (R) such that k n k 1 ! 0 as n ! 1. Since the maximal dilatation of a Teichmüller mapping for n is equal to (1 + k n k 1 ) = (1 k n k 1 ) for every n, we have

d (T 1 (0) ; T 1 ( n )) log 1 + k n k 1 1 k n k 1 ! 0 as n ! 1
Thus T 1 is continuous at the origin. Since ' is arbitrary, we conclude that T is continuous.

Lemma 5 The spaces T (R) and F g are connected. Proof. Let [S; f ] 2 T (R) be a …xed point and set f = . For every t 0 t 1, let f t be a qc mapping whose Beltrami coe¢ cient is t : We set S t = f t (R). Then we have a continuous curve f[S t ; f t ]g 0 t 1 in T (R) which connects between the base point [R; id] and [S; f ]. Thus T (R) is arcwise connected.

Lemma 6 The mappings T , e T are surjective

T (A 2 (R) 1 ) = T (R) ; e T (A 2 (R) 1 ) = F g
Proof. It su¢ ces to show the assertion for T , since e T = T and :

T (R) ! F g is a bijection [IT ] : By Lemma 3 we get E = T (A 2 (R) 1 ) = 1 e T (A 2 (R) 1 )
which is an open set in T (R). Further Lemma 5 implies that T (R) is connected. Hence the assertion follows if we show that the boundaray @E in T (R) = ;.

Suppose that @E 6 = ;. For any

[S; f ] 2 @E there is a sequence f' n g 1 1 A 2 (R) 1 such that T (' n ) ! [S; f ], and k' n k 1 ! 1 as n ! 1. Let f n be a Teichmüller mapping for ' n . We set T (' n ) = [S n ; f n ].
By the assumption, there is a quasiconformal mapping h n of S n onto S which is homotopic to f f 1 n for every n such that hn 1 ! 0 as n ! 1. In particular, for a suitable k < 1, we get gn 1 k; n = 1; 2; ::::;

where g n = h 1 n f n . On the other hand, since g n is homotopic to f n Theorem 2 impies that gn 1

hn 1 = k'k 1 ! 0 (n ! 1)
This is a contradiction. Thus @E is empty.

As a corollary of Lemma 6, we obtain the following Trichmüller's existence theorem.

Theorem 3 For every quasiconformal mapping f : R ! S, there exists a Teichmüller mapping homotopic to f . Lemma 6 …nishs a proof of Teichmüller's theorem. Namely we have proved the following theorem.

Theorem 4 The mapping T : A 2 (R) 1 ! T (R) is a surjective homeomorphism. In particular, T (R) is homeomorphic to A 2 (R) 1 , and hence to R 6g 6 .

Corollary 2 The representations of the Teichmüller spaces of a closed Riemann surface of genus g 2 T (R), F g and R 6g 6 are homeomorphic to each other.

Proof of Teichmüller' s Uniqueness Theorem

Theorem 2 asserts that deformations of the complex structures with best "e¢ ciecy" are given by applying "local a¢ ne" mappings called Teichmüller mappings. One of the decisive properties of a¢ ne mappings is that they send lines to lines. In the case of Teichmüller mappings, it may be natural to consider geodesics with respect to some metric associated with the given Teichmüller mapping. We consider the "metric" ds 2 = j' (z)j jdzj 2 , where ' = ' (z) dz 2 is the element of A 2 (R) 1 corresponding to the given Teichmüller mapping. This "metric" degenerates at every zero of '. However the notions such as area and length can be introduced with no di¢ culty.

Geometry Induced by a Holomorphic Quadratic Di¤erential

Let ' be …xed in A 2 (R) 1 f0g. If p 0 2 R is not a zero of ', then ' 1=2 = ' (z) 1=2 dz has a single valued holomorphic branch in some neighborhood U of p 0 , and the function is de…ned by

& (p) = Z p p 0 ' 1=2 , p 2 U
gives a holomorphic mapping of U onto C. We call this mapping a 'coordinate around p 0 . Using a '-coordinate, a Teichmüller mapping for ' is represented locally as an a¢ ne mapping F given by

F (&) = & + k&; k = f 1
This follows from the assumption that (Proposition 4)

f = k ' j'j
The projection of a e '-segment to R is called a '-segment. Lemma 7 (Teichmüller) Let h : R ! R be a quasiconformal mapping homotopic to id. Then there is a constant M depending only on R, h and ' such that jh (L)j ' jLj ' M for every '-segment L.

Proof. Let e h be the canonical lift of h with respect to the canonical Fuchsian model of R. Then it su¢ ces to …nd a constant M such that

e h e L e ' jLj e ' M
for every e '-segment e L in H. Lemma 1 gives e h = e h for every 2 .

Hence, letting C z be the e '-geodesic connecting z and e h (z) for every z 2 H, and every 2 we have

C (z) e ' = Z C (z) je ' (u)j 1=2 du = Z Cz je ' ( u)j 1=2 d ( u) = Z Cz je ' ( u)j 1=2 d ( u) = jC z j e ' Since R is compact, then M = 2 n jC z j e ' : z 2 H o is …nite (Note that jC z j e '
is continuous with respect to z). Now, let a e '-segment e L be given with end points z 1 and z 2 . Then the curve C z 1 : e h e L :C 

+ M

A prototype of Teichmüller's uniqueness theorem is the following Grötzsch's theorem.

Theorem 5 (Grötzsch) Let f be an a¢ ne quasiconformal mapping of

a closed rectangle R = [0; r] [0; 1] to another rectangle S = [0; s] [0; 1] de…ned by f (z) = z + kz 1 k = Kx + iy
which is a K-quasiconformal on the interior of R, where K = s=r 1 and k = (K 1) = (K + 1) < 1: Then for every homeomorphism f 1 : R ! S which is (1 + k 1 ) = (1 k 1 )-quasiconformal on the interior of R, and maps 0, r, r + i, and i, respecively to 0, s, s + i, and i, it follows that k 1 k Moreover, the equality holds if and only if f 1 = f . Proof. First, we have

s = jf 1 (r + iy) f 1 (iy)j Z r 0 j(f 1 ) x (x + iy)j dx for almost y 2 [0; 1] , we get s Z Z R j(f 1 ) x j dxdy Since (f 1 ) x = (f 1 ) z + f 1 z . Schwarz inequality gives s 2 Z Z R j(f 1 ) z j + f 1 z dxdy 1=2 Z Z R j(f 1 ) z j + f 1 z j(f 1 ) z j f 1 z dxdy: Z Z R j(f 1 ) z j f 1 z dxdy (K 1 r) :s
where

K 1 = (1 + k 1 ) = (1 k 1 ). Hence K 1 K or equivalently that k 1 k.
Further, if the equality holds, then we obtain j(f 1 ) z j + f 1 z = j(f 1 ) z j f 1 z and f 1 z = k j(f 1 ) z j almost every where on R. Thus, f 1 = k a.e on R. This implies that g = f 1 f 1 is 1-qc, and hence conformal on the interior of S. Since g …xes all vertices of S, applying Schwarz're ‡exion principle repeatly we see that g can be extended to an element of Aut (C). Hence, with suitable complex numbers a and b, we have f 1 (z) = af (z) + b:

So, 0 = f 1 (0) = b and s = f 1 (r) = aKr = as. That is f 1 = f .
Thus an a¢ ne mapping as in the Grötzsch's Theorem is extremal. In the case of a closed Riemann surface R, we …nd that any Teichmüller mapping looks very similar to an a¢ ne mapping.

Proposition 4 Fix ' 2 A 2 (R), and let f : R ! S be a Teichmüller mapping for ', and set k = k'k 1 < 1. Then there exists a unique holomorphic quadratic di¤erential on S satisfying the following conditions:

1. If p is a zero of ' of order m, then f (p) is a zero of of the same order.

2. Let p be an arbitrary point of R which is not a zero of and & be a '-coordinate around p. Then there exists a -coordinate ! at f (p) such that ! f = &+k& 1 k : We call these ' and the initial di¤erential and the terminal di¤erential of f respectively. Proof. For a point p 2 R which is not a zero of ', we de…ne a mapping ! = ! p in a neighborhood of f (p) by ! f = &+k& 1 k . Then in some neighborhood U of p, we have

! f = k ' j'j
Since ! f = k'= j'j for every local coordinate ! on f (U ), we see that ! ! 1 is 1-qc, and hence conformal on f (U ). Thus ! is also a local coordinate around f (p). Now for a zero p of ' of order m, we have seen that ' = z m dz 2 with a suitable local coordinate z. De…ne ! as a continuous branch determined by

! f = z (m+2)=2 + kz (m+2)=2 1 k 2=(m+2)
Then we can see similarly that ! is a local coordinate in a neighborhood of f (p). Finally, consider (d! p ) 2 in a neighborhood of every point f (p) such that p is not a zero of ', where ! p = ! as above. Then we can show that these (d! p ) 2 give a single holomorphic quadratic di¤erential on S, which we denote by . From the construction, satisfy 1 and 2. The uniqueness of follows at once from 1 and 2.

Proof of Therem 2 [B], [A]

Assume the assumptions of Theorem 2 are satis…ed. Let be the terminal di¤erential of f . For every p 2 R which is not a zero of ', take a '-coordinate & around p and a -coordinate ! around q = f (p). Consider the horizontal dilatation

(f 1 ; p) = @ (! f 1 & 1 ) @ (0) , & = + i
of f 1 with respect to & and !. Then (f 1 ; p) is de…ned almost every where on R and is a measurable function. Recall that the "horizontal dilatation"

(f; p) = @ (! f & 1 ) @ (0) = 1 + k 1 k = K
for almost every p 2 R. Recalling the proof of Grötzsch's Theorem, we may regard the following inequality as one way to represente the fact that a Teichmüller mapping has the best "e¢ ciency" for deformation of the complex structure of R:

Z Z R (f 1 ; p) d d Z Z R Kd d (1) 
where d d = j' (z)j dxdy. Set g = f 1 f 1 and ! = + i . Then the "horizontal dilatation" of g

(g; q) = @ (! g ! 1 ) @ (0)
is de…ned a.e on S, it is measurable and satis…es

K (g; f (p)) = (f 1 ; p) (2) for almost every p 2 R. Since d d = Kd d , we have Z Z R (f 1 ; p) d d = 1 K Z Z R f 1 ; f 1 (q) d d = Z Z S (g; q) d d Hence, the inequality (1) is equivalently to Z Z S (g; q) d d Z Z S d d (3) 
Now, we assume the inequality (1), or (3), and prove Theorem 2. First, set

k 1 = f 1 1 , K 1 = (1 + k 1 ) = (1 k 1 ), b f 1 = ! f 1 & 1 , and 
J (f 1 ) (p) = b f 1 & (0) 2 b f 1 & (0) 2
Then we get

(f 1 ; p) 2 b f 1 Next, applying Schwarz'inequality to (3), we obtain Z Z S (g; q) 2 d d Z Z S d d Hence, (2) and (4) give Z Z S d d Z Z R (f 1 ; p) K 2 Kd d K 1 K Z Z R J (f 1 ) (p) d d = K 1 K Z Z S d d Thus K 1 K, and hence k 1 k. Finally, if k 1 = k, then both equalities in (4) should hold. Namely b f 1 & + b f 1 & (0) = b f 1 & (0) + b f 1 & (0) and b f 1 & (0) = k b f 1 & (0)
almost every where on R. This implies that f 1 = k'= j'j. Hence g is 1-qc on R. Since g is homotopic to id, the canonical lift of g on H is coincident with id. Then by Lemma 2 we have f 1 = f . Lemma 8 The inequality (3) : R R S (g; q) d d R R S d d holds Proof. First, we assume that 1=2 has a single valued global branch on S, say which is a holomorphic Abelian di¤erential on S. We de…ne the geodesic ‡ow fF t j t 2 Rg on S with respect to the "metric" j j. Set ! = p (q) = Z q p as a -coordinate around p which is not a zero of 1 . We continue the inverse mapping 1 along segments on R in both directions as far as possible. Then we get a locally biholimorphic mapping which is denoted by the same notation

1 p of a domain containing an open interval I p = (u 1 ; u 2 ) of R into S, 1 u 1 u 2 1.
We set H p = 1 p (I p ). This H p is called the -horizontal line passing trough p. When we trace along H p in one direction either H p ends at a zero of , or j!j tends to 1. In particular, restrictingdistance on H p , we can identify H p with a circle or with a subinterval I p R preserving-orientation and length. Let E be the set of p 2 S such that I p is a proper subinterval of R. Since has only a …nite number of zeros, we can say that E has area zero with respect to the "metric" j j. Thus for every p 2 S E, setting l p = 1 p jR , we obtain a mapping l p : R !H p ; l p (0) = p which is locally isometric with respect to the Euclidean metric on R and the metric j j on S. Now we shall de…ne the geodesic ‡ow fF t j t 2 Rg on S with respect to the metric j j. Let E be as before, and set = S E. We de…ne F t by setting F t (p) = l p (t) , t 2 R, p 2

Then we can see that F t is a bijective measurable self-mapping of , which represents the "parallel horizontal translation" by t with respect tocoordinate. In particular for every measurable subset X , it is easy to show that Z Z Ft(X)

d d = Z Z X d d
i.e F t is area-preserving with respect to the "metric" j j. Next, we set (g; q; t) = (g; F t (q)) ; q 2 ; t 2 R Then (g; q; t) is a measurable function on R. Since E = S has area zero with respect to j j, we get for every L Here we set L q = l q ([ L; L]), and hence jL q j = 2L .

Finally applying Teichmüller's Lemma, we conclude from (5) and (6) that Now, in the case where 1=2 has not a simple-valued global branch, we take any local branch of 1=2 and continue it analytically as far as possible. Then we can construct a two-sheeted covering surface e S of S, with a branch point at every zero of of odd order, such that 1=2 becomes a singule-valued (holomorphic Abelian) di¤erential on S, and we apply the argument above to this di¤erential on e S.

  On the other hand, since g is quasiconformal, and hence is ACL(absolutely continuous on lines), we see that Fubini's theorem gives.

& (0) + b f 1 & (0) 2 K 1 J (f 1 ) (p)a.e on R (4)

At a zero of ' of order m 1, it is proved that ' is written in the form ' = z m dz 2 for a suitable local coordinate z on some neighborhood U of p 0 . Hence we see that

cannot be single-valued in any neighborhood p 0 . Consider the metric ds 2 = j' (z)j jdzj 2 . Let e ' 2 A 2 (H; ) be the lift on the upper half-plane H with respect to a Fuchsian model of R. For every piecewise curve C on H, we set

We call this jCj e ' the e '-length of C. Denote by L z 1 ;z 2 the set of all piecwise curves connecting z 1 , z 2 in H. We put

'-geodesic if it satis…es jC 0 j e ' = d e ' (z 1 ; z 2 ) : Now, we describe how a e '-geodesic looks. Assume that there is a e 'geodesic C 0 between z 1 and z 2 in H. For every p 2 C 0 which is not a zero of e ', the length minimality implies that C 0 should be a segment near e & (p) on the &-plane, where e & is a e '-coordinate.

At a zero, p 2 C 0 of order m > 0 C 0 may be broken. However, the angle at p should not be less than 2 = (m + 2)

We call a closed arc L on H a e '-segment if, for every interior point p of L, L is mapped by a e '-coordinate at p to a segment. Then arg e ' (z (t)) z 0 (t) 2 is a constant modulo 2 along any e '-segment L : z = z (t) (0 t 1). Here we consider only closed Riemann surfaces. Then we can easily show that H is complete with respect to this e '-distance. In particular, for any two points of H, there exists a e '-geodesic connecting them. Proposition 3 For any distinct z 1 ; z 2 2 H the e '-geodesic connecting z 1 and z 2 is unique Proof. Let C 1 and C 2 be two e '-geodesics connecting z 1 and z 2 . Then C 1 and C 2 are simple. By replacing z 1 and z 2 with a suitable pair of points if necessaly we may assume without loss of generality that C 1 \ C 2 = fz 1 , z 2 g. Then C 1 [ C 2 bounds a Jordan domain D in H. As has been seen before, C 1 and C 2 consist of a …nite number of e '-segments. We give them an order with respect to the positive orientation of the boundary @D, and denote them by fL j g l j=1 (l 2). Let m j be the order of zeros of e ' at L j \ L j+1 for every j, where L m+1 = L 1 and we allow m j to be zero. Also let j > 0 be the angle between L j and L j+1 . By the argument principle, we can show that

where N is the number of zeros of e ' in D including multiplicity. On the other hand, we have

Further, we know that (2 (m j + 2) j ) = 2 (N + 2)

Since N 0, it follows that j should be not greater than 2 = (m j + 2) for at least three j 0 s. However, j 2 = (m j + 2) for every j not corresponding to z 1 or z 2 , which gives a contradiction.

Corollary 3 A e '-segment L is the unique e '-geodesic connecting its ends points.

The following lemma due to Teichmüller is crucial in the proof of Teichmüller's Theorem. The '-length jLj ' of a curve L on the surface R is de…ned by