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ABSTRACT
The growing interest of event-based systems has influenced
image processing field and is expected to be a groundbreak-
ing architecture for image and video compression. The hu-
man visual system is an efficient event-based biological sys-
tem which is a source of inspiration to design an event-based
codec. This paper introduces a bio-inspired encoding archi-
tecture for still images. A bio-inspired filter is first applied
to the input image and then the retinal-filtered image is fed
to an Integrate And Fire (IAF) sampler. The spike train pro-
duced by the IAF sampler is decoded in order to reconstruct
the still image at the receiver. We prove that the retinal filter
has a frame structure, so the reconstruction is almost perfect
provided that the IAF sampling is sufficiently fine.

Index Terms— Event-based systems, bio-inspired pro-
cessing, spatiotemporal filter, Integrate And Fire sampling.

1. INTRODUCTION

During the last few years many standards have been released
in image and video compression like JPEG, JPEG 2000 [1],
AVC [2] and HEVC [3], which are currently used in most of
the technological devices. However, the needs in real time
processing and compression change as well as the amount
and the resolution of data. As a result, it is necessary to start
using other kind of techniques to provide alternative coding
results. For instance, compression algorithms using an event-
based sampling could be a relevant alternative to minimize
the power consumption of the compression chain.

Fig. 1: Conventional coding principle.

The principle in signal compression is given by Fig. 1
where the input can be considered as 1D signal, 2D signal
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(still-image) or 3D signal (video). The transformation of the
signal is the first and the most important part which provides
more information about the time and the frequency of the
signal. There are several transformations utilized in signal
processing like wavelets, Fourier transform, Discrete Cosine
Transform (DCT), etc. The quantization step defines the loss
of information by eliminating some coefficients. The entropy
coding that follows the quantization, is a lossless compression
function that translates the intensity of pixels into codewords
whose lengths vary inversely to the frequency of pixels oc-
currence. The goal in compression is always to transmit or
store data in order to be able to reconstruct them later. Con-
sequently, there is always the synthesis pathway to deliver
an approximation of the input signal. The synthesis path-
way consists of entropy decoding, de-quantization and inverse
transformation to recover the input signal.

Instead of this conventional architecture, we propose an
other way to process and code the input signal using an event-
based sampling. In this paper, an event consists of a change in
the input signal, typically an augmentation or a reduction of
the input signal value. A biological event-based code is pro-

Fig. 2: Bio-inspired coding principle.

duced by the visual system which is part of the central ner-
vous system. This code results from the way the luminance
of light is captured, transformed and compressed by the in-
ner part of the eye, the retina. The retina seems to follow the
basic principles of compression by sending a spike (electrical
impulse) to the cortex when the activity level reaches a thresh-
old [4]. The very active regions of the input scene (those with
the most changes) will send a lot of spikes to the brain. Each
spike is a spatiotemporally correlated event. This spatiotem-
poral correlation is due to the layered structure of the retina
which consists of different kinds of cells. The amount of cells
decreases while they are nearer to the optic nerve [5, 6]. The



visual cortex is sensitive to the spatial position and also to the
time when the input intensity is high enough to emit a spike.
A sequence of spikes, which is called a spike train, seems to
be analogous to the binary code of the computers.

The goal of this paper is to study the retinal-filter from
the signal processing point of view and to produce an event-
based code exploiting the Integrate And Fire (IAF) sampling
(Fig. 2) [7]. In this paper, we are not dealing with an en-
tropy coding. An approximation of the retinal filtering has
been studied and applied on natural images in [8]. This is a
separable spatiotemporal filter structured as a Difference of
Gaussians (DoG) pyramid based on [9] and [10], each layer
of which is delayed due to an exponential temporal function.
We improve this filter by introducing a dependency between
time and space.

In section 2, we introduce our bio-inspired filter, both in
continuous and discrete time and space, which is applied on
natural images. The IAF sampling which produces the spike
trains is studied in section 3. The spike trains are decoded in
section 4. The reconstruction of the input image is studied in
section 5. The numerical reconstruction results are discussed
in section 6. In the last section, we conclude the paper.

2. BIO-INSPIRED TRANSFORMATION

The aim of this section is to model a bio-inspired non-
Separable sPAtioteMporal filter (non-SPAM). This filter is
inspired by the mechanism of photo-receptors and horizontal
cells which lie inside the retina. These cells act as edge de-
tectors and at the same time as movement detectors due to the
way they connect to each other. These are the features that the
non-SPAM filter tries to mimic by having a spatial behavior
which varies with respect to time. The non-separability of
space and time enables the filter to detect temporal variations
of luminance even in a uniform spatial region, which is not
the case for a separable spatiotemporal filter.

2.1. Bio-inspired Filter

The input image f(x, t), x ∈ R2, t ∈ R+ is spatiotempo-
rally convolved with the non-SPAM filter K(x, t). This spa-
tiotemporal convolution results in the function A(x, t) which
is called the “activation degree”:

A(x, t) = K(x, t)
x,t
∗ f(x, t) (1)

where
x,t
∗ is the convolution with respect to space and time.

The non-SPAM filter in continuous time and space is defined
as follows:

K(x, t) = C(x, t)− S(x, t), (2)

whereC(x, t) and S(x, t) are the center and the surround spa-
tiotemporal filters given by equations (3) and (4) respectively:

C(x, t) = wcGσC
(x)W (t), (3)

S(x, t) = wsGσS
(x)
(
W

t∗ EτS
)

(t), (4)

wc and ws are constant parameters, GσC
and GσS

are spatial
Gaussian filters standing for the center and surround areas re-
spectively, andEτS is an exponential temporal filter. The cen-
ter temporal filter W (t) is given by:

W (t) = EτG,n
t∗ (δ0 − wcEτC ) (t), (5)

where the gamma temporal filter EτG,n(t) is defined by

Eτ,n(t) =
tn exp (−t/τ)

τn+1
, (6)

where n ∈ N and τ is a constant parameter (Eτ,n(t) = 0 for
t < 0),EτC is an exponential temporal filter, δ0(t) is the dirac

function and
t∗ stands for the temporal convolution. In case

that n = 0, the gamma filter turns to an exponential temporal
filter. The convolution of the temporal filter W (t) with the
exponential filter EτS is related to the delay in the appearance
of the surround temporal filter with respect to the center one.

The input signal is a still-image which exists for a
long time, i.e., f(x, t) = f(x)1[0,∞](t) where f(x) is the
still-image and 1[0,∞] is the indicator function such that
1[0,∞](t) = 1 if 0 ≤ t ≤ ∞, otherwise 0. The following
proposition shows that the spatiotemporal convolution (1)
turns into a spatial convolution.

Proposition 2.1. For a still-image f(x, t) = f(x)1[0,∞](t),
(1) can be rewritten as:

A(x, t) = φ(x, t)
x∗ f(x), (7)

where φ(x, t) is a spatial DoG filter weighted by two temporal
filters Rc(t) and Rs(t):

φ(x, t) = wcRc(t)GσC
(x)− wsRs(t)GσS

(x), (8)

Rc(t) =

∫ t

u=0

W (u)du, (9)

Rs(t) =

∫ t

u=0

(W
t∗ EτS )(u)du. (10)

Proof. The proof is based on the straightforward calculation
of the spatiotemporal convolution (1).

The above proposition is crucial for the reason that it en-
ables the simplification and representation of the non-SPAM
filter like a time-varying DoG given in (8). The DoG filters
have been extensively studied in the past [10, 11, 12]. Propo-
sition 2.1 shows that the retinal-inspired filter can be mod-
eled by a spatial DoG filter which is multiplied by the tem-
poral filters Rc(t) and Rs(t), shown in Fig. 3, which act like
weights and modify its spatial spectrum with respect to time.
Let φ̂(ξ, t) be the Fourier transform of the non-SPAM filter
φ(x, t) with respect to x. Fig. 4 shows 5 different time sam-
ples of φ̂(ξ, t) at time t ∈ {t1, t2, t3, t4, t5} to illustrate the
frequency variations of the non-SPAM filter spectrum.
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Fig. 3: Temporal filters Rc(t) and Rs(t).
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Fig. 4: Non-SPAM spectrum. The non-SPAM is a 2D spa-
tially symmetric filter. This is a transversal cut of its spectrum
for 5 different time samples of φ̂(ξ, t).

Proposition 2.2. The function φ(x, t) is continuous and in-
finitely differentiable such that φ(x, 0) = 0 and

lim
t→+∞

φ(x, t) = φ(x)

where φ(x) is a DoG filter.

Proof. The proof is given in Appendix A.

In practice, φ(x, t) almost converges within a short time
delay ∆t. Hence, we assume that φ(x,∆t) ≈ φ(x) for all
x. The time interval [0,∆t] represents for how long the non-
SPAM filter spatially evolves with respect to time. Let us con-
sider that the time interval is decomposed into several time
bins and that the non-SPAM filter φ(x, t) is (almost) constant
over this time bin. It follows that the non-SPAM filter de-
composes the signal in a specific way depending on the value
of φ(x, t) over this time bin. Hence, the non-SPAM filter is
capable to decompose the input image into different time sub-
bands. After ∆t, all the time subbands have been used and all
the necessary information is obtained. The non-SPAM de-
composition of the input image, for 5 different time bins, is
illustrated in Fig. 5 representing the spatial evolution with
respect to time which starts with the extraction of the low fre-
quencies and ends up with the high frequencies.

(a) Original Image (b) Low-pass (t1) (c) Band-pass (t2)

(d) Band-pass (t3) (e) Band-pass (t4) (f) Band-pass (t5)

Fig. 5: Image decomposition obtained by the non-SPAM filter
for 5 different time bins.

2.2. Space and Time Discretization

For numerical purpose, we need to discretize the non-SPAM
filter. Let x1, . . . , xn ∈ R2 and t1, . . . , tm ∈ R+ be some sets
of spatial and temporal sampling points. As a consequence,
the continuous spatial convolution is approximated by the dis-
crete convolution for all xk and tj :

A(xk, tj) = φ(xk, tj) ~ f(xk)

=

n∑
i=1

φ(xk − xi, tj)f(xi), (11)

where f = (f(x1), . . . , f(xn)) is the discretized image.

3. EVENT-BASED CODING

The activation degree A(xk, t) of xk is fed to an IAF sampler
which is responsible for the construction of the neural code.
The IAF sampler produces some spikes which correspond to
events in our coding chain. This model is inspired by the
ganglion cells [4, 6, 13]. The ganglions are able to generate
spikes when the signal they receive exits a given threshold θ.
These cells are connected to each other and/or self-connected
such as they construct a neural network for sending feedback
messages concerning the stimulus. However, in this paper we
are using the “perfect IAF integrator” without considering any
feedback or leakage mechanism [14]. In addition, we assume
that there is one IAF sampler for each pixel.

Let (uk,i)i=1,...,nk
be the set of nk spike times at the out-

put of the IAF sampler of pixel xk. In continuous time, the
spike times satisfy:

1

κ

∫ uk,i+1

uk,i

A(xk, t)dt = θ (12)



with the convention that uk,0 = 0 for all k. The positive
value κ is the constant capacitance. The model (12) describes
that, for a given pixel xk, the activation degree A(xk, t) is
integrated until the integral reaches the threshold θ when a
spike is generated at time uk,i+1. After firing, the integration
is reset to zero and the process goes on until the next spike
is emitted, etc. The set of nk spike times (uk,i)i=1,...,nk

is
called a spike train. The produced code is asynchronous in
the sense that the time delays between the spikes (or events)
are not constant. Furthermore, each IAF sampler fires almost
independently of the other IAF samplers. Without any loss
of generality, the refractory period between two spikes is ne-
glected in this study.

Let us consider the time interval [tj , tj+1] which corre-
sponds to the j-th time subband. Let us assume that ∆tj =
tj+1 − tj is small enough to ensure that the activation degree
A(xk, t) ≈ A(xk, tj) = ak,j is almost constant over this time
interval. Then, it is clear from (12) that

uk,i+1 − uk,i ≈
κ θ

ak,j
. (13)

Hence, the spike train is periodic with the period Tk,j = κ θ
ak,j

,
which is equivalent to say the firing rate rk,j = 1/Tk,j is also
constant. Fig. 6 shows the behavior of the IAF sampler for a
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Fig. 6: Firing rate based on the activation degree.

constant input signal A(xk, t) ≈ ak,j during the time interval
[tj , tj+1]. The higher the activation degree is, the sooner the
IAF model will reach the threshold increasing the number of
spikes. This is why the IAF model stands as a quantizer since
the number of spikes produced during a given time interval
codes the magnitude of A(xk, tj).

In discrete time, the time interval [tj , tj+1] is oversampled
into a finer set of time samples tj,1, tj,2, . . . , tj,N where N
is a positive integer. Each spike time uk,i corresponds to a
discrete times tj,`. Given a spike at time uk,i, the next spike
time is the first time such that the sum

uk,i+1∑
tj,`=uk,i

A(xk, tj,`) ≥ κ θ (14)

exceeds the threshold κ θ. This mechanism is clearly a dis-
crete approximation of (12). The overlapping of spike gen-
eration between two consecutive time bins, say [tj , tj+1] and
[tj+1, tj+2], are assumed to be negligible.
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Fig. 7: Raster plot of the bio-inspired event-based code. Each
dot represents a spike. For each pixel, the total number of dots
forms its spike train.

Fig. 7 shows a raster plot in discrete time. It is obtained by
considering 100 different time bins to compute the spike train
of each pixel. As it is expected for the very first milliseconds,
there are no spikes since the intensity of the activation degree
is very low. Then, the firing rate becomes high because the
non-SPAM subband which is coded has been filter by a low-
pass filter: the main information in the input image is coded.
While time increases the number of spikes decreases because
they correspond to the details of the input image and most of
the data have already been coded.

4. EVENT-BASED DE-QUANTIZATION

The decoding pathway based on the event-based code is per-
formed by estimating the magnitude of the activation degree
Â(xk, tj) based on the number of spikes produced during
the time interval [tj , tj+1] for pixel xk. Let us assume that
∆t = ∆tj = tj+1− tj is constant for all j and that A(xk, tj)
is almost constant over [tj , tj+1]. Let nk,j be the number of
spikes counted during the time interval [tj , tj+1] for pixel xk.
From (13), it follows that

nk,j ≈
A(xk, tj) ∆t

κ θ

Then a good estimation Ã(xk, tj) over the time interval is
given by

Ã(xk, tj) = nk,j
κ θ

∆t
(15)

since κ, θ and ∆t are known. Of course, the estimation
Ã(xk, tj) differs from the original activation degreeA(xk, tj)
because of the quantization due to the spike generation mech-
anism. It is clear that Ã(xk, tj) ≈ A(xk, tj) when the number
of spikes is sufficiently high to ensure that the ratio (15) con-
verges to the value A(xk, tj). This means that the threshold
θ should be small enough with respect to the time interval
length ∆t and to the value A(xk, tj). In the rest of the paper,
these two conditions are assumed to be satisfied.



In practice, following the decoding approach proposed
in [8], the relation between nk,j and Ã(xk, tj) is stored in
a Look-Up-Table (LUT) constructed off-line. Hence, when
we receive nk,j spikes, we look for the corresponding value
Ã(xk, tj) in the LUT.

5. INVERSE BIO-INSPIRED TRANSFORMATION

Once the activation degrees A(xk, tj) are estimated from
the spike trains, the reconstruction of the input still-image
requires to inverse the non-SPAM filter. Due to the big redun-
dancy of the transformed coefficients, we exploit the frame
theory in order to prove that the filter is invertible. Let us
denote φ̂tj (ξ) the discrete Fourier transform of the vector
(φ(x1, tj), . . . , φ(xn, tj)) with respect to space x1, . . . , xn,
‖f‖ the Euclidean norm of the discrete input signal f , ϕk,j
the row vector of Rn defined by

ϕk,j =
(
φ(xk − x1, tj), . . . , φ(xk − xn, tj)

)
,

and Φ is the family of all vectors ϕk,j .

Proposition 5.1. The family of vectors Φ is a frame, i.e., there
exist two scalars 0 < α ≤ β <∞ such that:

α‖f‖2 ≤
m∑
j=1

n∑
k=1

|A(xk, tj)|2 ≤ β‖f‖2, (16)

where

α = min
ξ

{ 1

n

m∑
j=1

∣∣∣φ̂tj (ξ)
∣∣∣2} > 0,

β =

m∑
j=1

n∑
k=1

n∑
i=1

φ2(xk − xi, tj).

Proof. The proof is given in Appendix B.

Proposition 5.1 proves that the non-SPAM filter is a
frame, hence the filter is invertible and we can reconstruct
the input image. The optimal reconstruction results are given
when all the coefficients A(xk, tj) are available at final dis-
crete time tm.

In practice, the reconstruction is processed as follows. Let
us define Ã = [Ãt1 , . . . , Ãtm ] as a vector of size nm and
Φ = [φ1, . . . , φm] a matrix of size nm× n, where

Ãtj =

 Ã(x1, tj)
...

Ã(xn, tj)

 and φj =

 ϕ1,j

...
ϕn,j

 . (17)

At time tm, we propose to compute f̂tm which is the estima-
tion of f given by:

f̃tm = (Φ>Φ)
−1

Φ>Ã, (18)

where M−1 denotes the inverse of a matrix M and M> de-
notes its transpose. The dual frame, which is necessary to
have a perfect decoding at time tm [12, 15], is (Φ>Φ)−1Φ>.
Instead of computing the above matrix operator which can be
time consuming and resource demanding, we can note that
(18) is a solution of the following least squares problem:

f̃tm = arg min
f∈Rn

 m∑
j=1

‖φj ~ f − Ãtj‖2
 . (19)

Such a problem can be easily solved by using a gradient de-
scent algorithm.

6. NUMERICAL RESULTS

The numerical results are given in Fig 8. We define the Mean
Square Error as MSE(f, f̃tm) = ||f − f̃tm ||2/n, which mea-
sures the distortion between the original image f and the re-
constructed image f̃tm . For these experiments we used an
image of size n = 64× 64 on which we applied a non-SPAM
filter of m = 5 subbands. In these experiments, the parame-
ters of the IAF sampler are chosen such that the spikes lead to
a lossless quantization of the input signal (threshold θ = 104

and the constant capacitance κ = 1). Hence, we focus on
the results of the inverse bio-inspired transformation. As it is
expected the reconstructed image is very close to the original
one and the distortion is very small due to the proof in section
5. The MSE(f, f̃tm) = 0.3963 confirms the quality of the
reconstruction.

(a) Original
Image (64x64)

(b) Reconstructed
Image

Fig. 8: Frame-based reconstruction of the input image.

7. CONCLUSION

In this paper, we discussed a novel event-based architecture
for compressing a signal. We introduced a bio-inspired filter
which is invertible and able to extract all the necessary infor-
mation of a still-image. This filter is the input of an integrate
and fire sampler which produces a spike train for each pixel.
It is shown that the decoder allows a perfect reconstruction of
the input image.



In our future work we aim to improve this model utiliz-
ing a Leaky Integrate and Fire (LIF) sampler as a quantizer in
our model. The LIF is necessary to be adapted and studied in
our architecture because of the big redundancy of the infor-
mation that the non-SPAM filter produces and it needs to be
eliminated.

A. APPENDIX A

This appendix proves Proposition 2.2. It is shown that both
Rc(t) and Rs(t) can be defined in a closed form as polyno-
mial functions which are attenuated by exponential ones. The
calculation of Rc(t) and Rs(t) are based on the following
lemma.

Lemma A.1. Let ω a real value and t ≥ 0. Using an integra-
tion by parts, we obtain the following equality:∫ t

0

un exp (−ωu) du

=

(
n∑
k=0

− (n!)

(n− k)!ωk+1
tn−k exp (−ωt)

)
+

n!

ωn+1

= Pn(t) exp (−ωt) + Ω,

where Pn(t) is a polynomial function in t of order n depend-
ing of ω and Ω is a constant value.

A.1. Closed-form of Rc(t)

A straightforward calculation based on Lemma A.1 shows
that:

Rc(t) =

∫ t

u=0

W (u)du

=

∫ t

u=0

EτG,n
t∗ (δ0 − wcEτC ) (u)du

=

∫ t

u=0

un exp

(
−u
τG

)
τn+1
G

du− wc
∫ t

u=0

exp

(
−t
τc

)
τc

du

=
n∑
k=0

− (n!)

(n− k)!ak+1τn+1
G

tn−k exp (−at) + n!

−
n∑
k=0

m∑
l=0

n!wc

(m− l)!bk+1al+1τn+1
G τC

tm−l exp (−at)

+
n∑
k=0

n!wc

bk+1am+1τn+1
G τC

− n!wc

bn+1τn+1
G

+
n!wc

bn+1τn+1
G

exp

(
−t
τC

)
,

where a =
1

τG
, b =

τA − τG
τGτA

and m = n− k. Hence,

Rc(t) = Pn(t) exp

(
−t
τG

)
+ αc exp

(
−t
τC

)
+ γc

where Pn(t) is a polynomial function in t of order n and αc
and γc are two reals.

A.2. Closed-form of Rs(t)

A straightforward calculation based on Lemma A.1 shows
that:

Rs(t) =

∫ t

u=0

(W
t∗ EτS )(u)du

=

∫ t

u=0

EτG ∗ (δ0 − wAEτA) ∗ EτS (u)du

=

∫ t

u=0

EτG ∗ EτS (u)du− wA
∫ t

u=0

EτG ∗ EτA ∗ EτS (u)du

=
1

τn+1
G τS

(
n∑
k=0

m∑
l=0

n!

gk+1al+1(m− l)!
tm−l exp (−at)

−
n∑
k=0

n!

gk+1am+1
+
n!τS
gk+1

− n!τS
gk+1

exp

(
−t
τS

))

− wc

τn+1
G τCτS

(
n∑
k=0

m∑
l=0

p∑
r=0

− n!

(p− r)!bk+1gl+1ar+1
tp−r exp (−at)

+
n∑
k=0

m∑
l=0

n!

bk+1gl+1ap+1
−

n∑
k=0

n!τS
bk+1gm+1

(
1− exp

(
−t
τS

))

+
n!τS
bn+1φ

(
1− exp

(
−t
τS

))
− n!τC
bn+1φ

(
1− exp

(
−t
τC

)))
,

with

g =
τS − τG
τGτS

, φ =
τS − τC
τCτS

, ξ =
1

τS
+ φ =

1

τC
,

and p = m− l, m = n− k. It follows that

Rs(t)=Qn(t) exp

(
−t
τG

)
+αs exp

(
−t
τS

)
+βs exp

(
−t
τC

)
+γs

where Qn(t) is a polynomial function in t of order n and αs,
βs and γs are some reals. We can verify that γs = γc. Hence,
Rc(t) and Rs(t) converge to the same value as t→ +∞.

B. APPENDIX B

This appendix establishes that the non-SPAM filter is a frame.
First, we study the upper bound and next the lower bound.



B.1. Upper bound

We are using the Cauchy-Schwarz inequality to calculate the
upper bound of the non-SPAM frame:

m∑
j=1

n∑
k=1

∣∣∣A(xk, tj)
∣∣∣2 =

m∑
j=1

n∑
k=1

∣∣∣φ(xk, tj) ~ f(xk)
∣∣∣2

=

m∑
j=1

n∑
k=1

∣∣∣ n∑
i=1

φ(xk − xi, tj)f(xi)
∣∣∣2

=

m∑
j=1

n∑
k=1

∣∣∣ n∑
i=1

ϕk,j(xi)f(xi)
∣∣∣2

≤
m∑
j=1

n∑
k=1

(∣∣∣ n∑
i=1

ϕ2
k,j(xi)

∣∣∣∣∣∣ n∑
i=1

f2(xi)
∣∣∣)

=
( m∑
j=1

n∑
k=1

∣∣∣ n∑
i=1

ϕ2
k,j(xi)

∣∣∣)∣∣∣ n∑
i=1

f2(xi)
∣∣∣

=
(∣∣∣ m∑

j=1

n∑
k=1

n∑
i=1

φ2(xk − xi, tj)
∣∣∣)∣∣∣ n∑

i=1

f2(xi)
∣∣∣

= β
∥∥∥f∥∥∥2.

B.2. Lower bound

First of all, we use the Parserval Theorem to transform the
activation degree coefficients in Fourier domain:

m∑
j=1

n∑
k=1

∣∣∣A(xk, tj)
∣∣∣2 =

m∑
j=1

n∑
k=1

∣∣∣Atj (xk)
∣∣∣2

=

m∑
j=1

n∑
ξ=1

1

n

∣∣∣Âtj (ξ)
∣∣∣2 =

1

n

m∑
j=1

n∑
ξ=1

∣∣∣φ̂tj (ξ)f̂(ξ)
∣∣∣2

=
1

n

n∑
ξ=1

m∑
j=1

∣∣∣φ̂tj (ξ)
∣∣∣2∣∣∣f̂(ξ)

∣∣∣2.
Let us prove by contradiction that

m∑
j=1

∣∣∣φ̂tj (ξ)
∣∣∣2 6= 0 for all

tj . By definition, the equality

m∑
j=1

∣∣∣φ̂tj (ξ)
∣∣∣2 = 0

is equivalent to

m∑
j=1

∣∣∣wcRc(tj)Ĝc(ξ)− wsRs(tj)Ĝs(ξ)∣∣∣2 = 0,

which means that

wcRc(tj)Ĝc(ξ) = wsRs(tj)Ĝs(ξ), ∀tj . (20)

From Appendix A, one can show that, for t = 0, Rc(0) > 0.
In addition, the Fourier transform of a Gaussian is again a
Gaussian which means that ∀ξ, Ĝc(ξ) ≥ 0 and Ĝs(ξ) ≥ 0.
As a result, we can rewrite (20) as following:

wcĜc(ξ)

wsĜs(ξ)
=
Rs(tj)

Rc(tj)
, ∀tj . (21)

Let teq be the time when Rc(teq) = Rs(teq). We have the
following results:

• For 0 ≤ tj ≤ teq , one can show that Rc(tj) > Rs(tj).
As a result, Rs(tj)

Rc(tj)
< 1.

• For teq ≤ tj , one can show that Rc(tj) < Rs(tj). As a
result, Rs(tj)

Rc(tj)
> 1.

It follows from these results that Rs(tj)
Rc(tj)

is not constant with
respect to tj . Hence, the ratio on the left in (21) should vary
with respect to tj . This contradicts the fact that this ratio,
which is just a function of ξ, does not depend on tj . It can be
concluded that

m∑
j=1

∣∣∣φ̂tj (ξ)
∣∣∣2 > 0

for all ξ. Hence, it follows that

α = min
ξ

{ 1

n

m∑
j=1

∣∣∣φ̂tj (ξ)
∣∣∣2} > 0.

The value α is the lower bound given in Proposition 5.1.
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