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Abstract—Several data from real world applications involves
overlapping classes. Data is allowed to belong to multiple classes
with different membership degrees. In this paper, we explore a
different concept characterizing social networks, documents, and
most of biological and chemical datasets: data could have multiple
classes, but dominant classes are better noticed than dominated
classes. For example, a document could discuss economy and
politics, but it would be more focused on politics. A molecule
could have multiple odors, but experts could notice some odors
better than others. We are interested in this type of data, where
a dominance relation exists between classes. Experts could easily
make mistakes because dominated classes are hardly noticed.
Data incoherence is a serious problem but not the only one. There
is too much irrelevant and redundant attributes. Unfortunately
this increases the computational time of generating classifiers.
Our first challenge is to find an adapted model to overlapping
classes considering dominance relations. The second challenge is
to find the most relevant attributes. Finally the third challenge is
to ensure that the approach gives results in an acceptable time.
We address those challenges by taking advantage of the rough set
theory, which is suited for incoherent data and allows multiple
classes and attributes selection. The proposed approach works
in a parallel and decentralized way to reduce the computational
time. We tested it on real chemical data and the collected results
are very promising.

I. INTRODUCTION

Classification is a supervised machine learning method
where data labels are already known. The process uses a
training dataset as input, generates a classifier and then pre-
dicts a class label for each unlabeled data. A test dataset is
used to compute the classifier accuracy and to validate the
predictive model. Sometimes data could have more than one
label, this problem is known as overlapping classification. In
this paper we first discuss the state of the art for overlapping
classification in Section II, then we present our proposed
approach in Section III, and finally we discuss our experiment
results in Section IV.

II. STATE OF ART

In the following, we first discuss mathematical tools applied
to overlapping classifications, then we discuss some algorithms

designed for dimensionality reduction. Finally we present
some tools designed for distributed data classification as a
solution to reduce the computational time.

A. The overlapping problem

Building a good classifier is the objective of the classifi-
cation process. Traditional classifiers work well with simple
data with only one possible class, but they produce bad results
for complex data with multiple possible classes. The fuzzy
sets theory developed by [1] is a popular and a powerful tool
for solving the classes overlapping problem. By means of a
membership function, data is allowed to be assigned to all
classes with different membership degrees that range between
0 and 1. In recent work [2], a new neuro fuzzy-classification
technique is proposed. Experiments proved that this approach
produces better results than Radial Basis Function Neural
Network [3] or Adaptive Neuro-fuzzy Inference System [4]
algorithms. However, even with medium data sizes n, if the
size k of possible classes is large, then setting and transposing
a n × k matrix would be very time consuming. The rough
sets theory (RST) developed by [5] is a good choice when the
objective is reducing the computational time. The RST-based
approaches are usually easy to distribute. Each class is defined
by means of upper and lower approximations. Depending on
the classification certainty, a data is allowed to belong either
to exactly the lower approximation of a single class, or to
the upper approximation of multiple classes. The RST covers
many application domains, especially biology and medicine:
In [6] a RST-method is proposed to generate classification
rules for Breast cancer data, and more recently in [7] a RST-
method has been applied to generate classification rules for
Hepatitis C virus dataset. Mixture model approaches are an
interesting alternative to fuzzy set and rough set theories. Each
class is represented by a distribution. Each data is assumed to
be generated by one or more distributions. The objective is to
find the relevant parameter values to suit distributions as much
as possible. The Expectation-Minimization (EM) [8] algorithm
is often used to determine those values. Recently, in [9] a



Gaussian mixture models is proposed to detect overlapped
speeches, and the proposed approach was successfully tested
on artificial and real datasets. A less flexible alternative could
be hierarchical algorithms such as the pyramidal classification
[10], the week and the k-week hierarchies [11]. The pyramidal
classification allows overlaps only between adjacent classes.
The week hierarchies assumes that the intersection of 3 classes
is equal to the intersection of just 2 of them. The k-week
hierarchies are a generalization of the week hierarchies. They
assume that the intersection of k+1 classes is equal to the
intersection of just k of them. Those hierarchical classification
algorithms reduce clearly the solutions search space. Unfor-
tunately, without any preliminary knowledge about data we
could not decide if k-week hierarchies could be adapted to
our problem or not. We decided to use rough sets because no
preliminary knowledge about data is required, and because
the classification could easily be distributed to reduce the
computational time.

B. The attributes selection problem

Rough set approaches are based on a discernibility relation.
Each minimal attributes subset discerning data is called a
reduct. Reducts computation could be done by generating a
discernibility matrix and simplifying the extracted boolean
function, or by using the concept of positive regions to add
or delete attributes from candidate reducts. In [12] attributes
selection is performed based on dependency, relevance, and
significance criteria. In [13], normalized mutual information
and attribute importance criteria are used. The more used
attribute for the discernibility purpose is a simple criteria for
the attributes selection operation. We have decided to use it
because it’s not a bad heuristic, and the positive region method
could always be applied on the previously selected attributes
instead of the set of all attributes.

C. The computational time problem

The RST discernibility function and positive region based
methods are computationally expensive. Heuristics and new
approaches are needed to obtain results in acceptable time. The
MapReduce framework can be used to distribute the feature
selection task [14], [15]. The MapReduce framework [16]
was successfully tested on very large datasets from different
domains [17], [18], [19]. The most known implementations of
MapReduce are Hadoop and MongoDB. They are powerful
tools but they were designed to handle unstructured data. We
consider only structured data in this paper. Neo4j seems to
be the right choice for our problem. It’s a graph database
server designed for big data. A graph database is easier
to distribute than a relational database because there is no
relational constraints to care about. A graph database has also
the advantage of an easy generation of decision trees, and a
simple modeling of dominance relations by means of edges.
This motivates us to build a distributed graph based approach
using the RST.

III. THE PROPOSED ROUGH CLASSIFICATION APPROACH

In this section, we introduce a mathematical formulation of
our problem and we review the necessary mathematical foun-
dations of the RST, then we present our proposed approach.

A. Problem formulation and preliminary knowledge

Let M = {m1, . . . ,mz} be the set of available machines,
A = {a1, . . . , ap} be the set of attributes, (qj)1≤j≤p be
the number of possible values for each attribute aj , (Wj =
{wj1, wjqj})1≤j≤p be the set of possible values for each
attribute aj , C = {c1, . . . , ck} be the set of classes, X be
the set of data, Xt = {x1, . . . , xn} ⊂ X be the training
set, and Xv = X − Xt be the validation set. Each data
xi is described by values (vi1, . . . , vip, ci1, . . . , cis), vij ∈
Wj ∀j ∈ [1, p], cih ∈ C ∀h ∈ [1, s]. A data xi could belong
to one or more classes from C according to different ranks
from R = {r1, . . . , rs}. A class at a rank rh dominates its
successor at the rank rh+1.The dominance relation gives us
information about classes which never coexist, classes always
together, strong (dominant) and weak (dominated) classes. Our
objective is to find out simple classification rules, taking into
consideration the dominance relation, and using the minimal
subset of needed attributes.

A rough class is defined by means of upper and lower
approximations. The set of all data which can be classified
with certainty as belonging to a class ch is called the lower
approximation of ch, denoted by ch∗. The set of all data
which can be possibility classified as belonging to ch is
called the upper approximation of ch denoted by ch

∗. The
set ch′′ = ch

∗ − ch∗ containing elements which cannot be
classified neither as members of ch nor as members of ch
is called the boundary region of ch. The class ch is crisp if
ch
′′ = ∅, otherwise ch is rough. A rough class can be described

by means of some coefficients:
• Quality coefficient of the lower approximation: α(ch) =
|ch∗|/|ch| where |.| denotes cardinality.

• Quality coefficient of the upper approximation: β(ch) =
|ch|/|ch∗|.

• Imprecision coefficient: γ(ch) = |ch∗|/|ch∗| = α(ch) ×
β(ch).

Let Xh,l = {xi ∈ Xt, cih = cl} be the set of data having the
class label cl at the rank rh. In order to discern for a rank rh, a
class cl from all other classes using a RST-approach, we could
compute a symmetric |Xt−Xh,l|×|Xh,l| matrix D, called the
discernibility matrix. Where Di,j = {ak ∈ A, vik 6= vjk} con-
tains the set of all attributes that could be used to discern data
xi ∈ Xt −Xh,l from data xj ∈ Xh,l. Once the discernibility
matrix is constructed, we could extract the called discernibility
function f = ∧

i<j
( ∨
ak∈mi,j

(ak)), where ∧ and ∨ denotes the

conjunction and the disjunction operators respectively. Each
possible simplification of f is called a reduct. The intersection
of all reducts is called the core. A reduct represent a minimal
attributes set to discern two datasets. It is used to generate
rules based on attributes values. For a specific reduct, a rule
for a rank rh is in the form: if ( ∧

aj∈ reduct
(aj = vj)) then cl.



The set of all rules defines the classifier we are looking for. In
our proposed approach we generate a decision tree, and since
generating all reducts is a NP Hard problem, we generate a
single subset of attributes, with good chances that it could be
a reduct. We give the needed details in III-B.

B. The proposed approach

Our proposed approach includes 10 steps that are sum-
marized in (Fig. 1). First, the Main Server (M.S) read the
initial data (Fig. 1 step 1) and generates the training (Xt)
and validation (Xv) sets (Fig. 1 step 2). Next, each DataBase
Server (DB.S) receives a subset of the training set (Fig. 1
step 3) and do some preprocessing tasks, like generating new
attributes and discretizing values (Fig. 1 step 4). Each DB.S
generates a graph from the prepared data (Fig. 1 step 5). The
graph database includes data and classes nodes, and two types
of edges: Edges to link data with noticed classes, and edges
to link dominant classes with dominated classes. Each DB.S
generates discernibility edges between specific data pairs(Fig.
1 step 6). Classes discernibility edges (Fig. 1 step 7) and the
decision tree (Fig. 1 step 8) are then generated for each rank
rh ∈ R. Finally The M.S generates the global decision tree
(Fig. 1 step 9) and validates the model using the validation set
(Fig. 1 step 10). Details are given for main steps below.

1) Training set and validation set selection (step 2): In
order to build a good classifier without need to a cross valida-
tion step, the proposed approach try to generate a training set
Xt containing all classes arrangements (ci1, ..., cis), i ∈ [1, N ]
existing in the initial data set X . The main server count
how many times each arrangement appears in the initial data.
The parameter λ = |Xv|/|X| defines how many data with a
specific classes arrangement should go to the validation set
Xv . We start the selection process from the most frequent
arrangement, and we stop when Xv reaches the wanted size.

2) Generating Data discernibility edges (step 6): In order
to quickly count how many times each attribute was used to
discern data, we generate for each data pair (xi, xi′)i<i′ a
vector bii′ = (bii′1, ..., bii′p) of booleans instead of a set of
selected attributes. The vector bii′ (Fig. 2 step 6) is defined
as follows: ∀j ∈ [1, p] bii′j = 1 if vij 6= vi′j , and bii′j = 0 if
not.

3) Generating class discernibility edges (step 7): Some
classes could never be noticed at a rank rh. Also some classes
could be noticed only if another class is noticed before at
rank rh−1. Considering this, we generate classes discernibility
edges (Fig. 2 step 7) between classes for a given rh and a
given class cf at rh−1. ch,fl = Xh,l ∩Xh−1,f denotes the set
of data having the class cl at the rank rh and the class cf at
the rank rh−1. For each pair (ch,fl , ch,fl′ )l<l′ , we count how
many times an attribute aj , was used to discern data belonging
to ch,fl from data belonging to ch,fl′ . The following vectors are
then generated for each DB.S:

• (ωh,f
ll′j )1≤j≤p = (

n−1∑
i=1

xi∈c
h,f
l

n∑
i′=i+1
x
i′∈c

h,f

l′

bii′j)1≤j≤p

• (ωh,f
j )1≤j≤p = (

∑
1≤l<l′≤k

ωh,f
ll′j )1≤j≤p

• (ωh
j )1≤j≤p = (

k∑
f=1

ωh,f
j )1≤j≤p

4) Generating local decision tree (step 8): The M.S col-
lects ωh vectors from all z DB.S (Fig. 2 step9). ωh(d)
denotes the vector ωh generated by the DB.S d. The M.S
generates (Ωh)1≤h≤s vectors as follows: (Ωh

j )1≤j≤p =

(

z∑
d=1

ωh
j (d))1≤j≤p. The most used attribute âhj to discern data

at the rank rh corresponds to the attribute with the highest
value in the Ωh vector: âhj = arg( max

1≤j′≤p
(Ωh

j′)). Usually we

need to select more than one attribute to discern data and
classes. Let Âh be the set of selected attributes at rh, and
Ĵh = {j ∈ [1, p], aj ∈ Âh} be the set of corresponding
indexes.

We then create a node Fh,l (Fig. 2 step8) with parameters:
• rh: current rank.
• cf : noticed class at the rank rh−1.
• ch,f = ∪

1≤l≤k
ch,fl : The set of data to discern.

• Lh,f = {l ∈ [1, k], ch,fl 6= ∅}: Indexes corresponding to
possible classes at the rank rh considering the class cf
at the rank rh−1.

F nodes help us at the aggregation step and they allow us to
evaluate some coefficients at the validation step. Referenced
classes in Lh,f should be discerned using the selected attribute
âhj . For each value (wje)1≤e≤qj we create a node Fh,f,wje

with the parameters described below:
• c

h,f,wje

l = {xi ∈ ch,fl , vij = wje}: The set of data to
discern at the node Fh,f,wje .

• Lh,f,wje = {l ∈ [1, k], c
h,f,wje

l 6= ∅}: Indexes corre-
sponding to the set of classes to discern at Fh,f,wje .

Next, for each node Fh,f,wje , we repeat our method from
step 7 (Fig. 2 step 7) using Fh,f,wje parameters instead of
Fh,f parameters. Each time we select a new attribute âhj′ to
discern data and classes, we add âhj′ to Âh. We stop when
classes referenced by Lh,f,wje cannot be discerned using the
set of available attributes ( max

1≤j≤p
(Ωh

j ) = 0).

Usually in a decision tree, classes are discerned by a
selected attribute values at each step, until only isolated classes
are kept at the bottom of the decision tree. The proposed
approach is different because if only one decision tree couldn’t
discern a class (cl)1≤l≤k using the current subset of selected
attributes, then all decision trees should be extended by select-
ing an additional attribute, even if some of decision trees could
discern cl without the additional attribute. This redundancy is
important to facilitate the global decision tree generation.

A node Fh,f,wje on which we stop denoted by F̂h,f,wje

represent a rule node. We create edges to all classes referenced
by each rule node (F̂h,f,wje)1≤e≤qj . If a rule node references
exactly one class, then it represents a crisp rule. Otherwise it
represents a rough rule. Finally we link each class cf ′ where
f ′ ∈ L̂h,f,wje with a new node Fh+1,f ′

, and we repeat our



Fig. 1: The proposed approach: main steps

Fig. 2: The proposed approach: steps details

method from step7 starting at Fh+1,f ′
instead of Fh,f . We

stop if one of those conditions holds:
• h = s: We reached the last rank.
• f ′ = 0: cf ′ is the empty class, and then c0 is the

corresponding class for all next ranks (rh′)h≤h′≤s.
5) Generating global decision trees (step 9): After gener-

ating all local decision trees using the same attributes for each
rank, we generate the global decision tree as follows:
• We generate global F nodes: FG

h,f,wje taking into con-
sideration all data to discern from all z DB.S: ch,f,wje

G =
∪

1≤d≤z
ch,f,wje(d), and all classes to discern from all z

DB.S: Lh,f,wje

G = ∪
1≤d≤z

Lh,f,wje(d).

• We copy all edges linking F nodes from the z local
decision trees (without duplicates) to the global generated
decision tree.

A partial view of 2 local decision trees is shown in (Fig. 3).
The resulting global decision tree is shown in (Fig. 4).

6) Model validation (step10): Some classes could overlap
with too much other classes at different ranks. This make
the decision tree larger and less efficient. A solution could

Fig. 3: Local decision trees

be to build another classifier for those classes with higher
overlap degrees. The overlap parameter θ(cl) for a class cl
represents the proportion of classes that could overlap with cl.
We introduce the parameters defined below:



Fig. 4: Global decision tree

data r1 r2 r3 r4 r5 r6

x1 HERBAC

x2 FLORAL FRUITY

x3 FRUITY TEA HERBAC

x4 BALSAM FRUITY FLORAL HERBAC

x5 HERBAL FRUITY FLORAL ORANGB JASMIN

x6 FRUITY ROSE BALSAM WINEY LEAFY FLORAL

TABLE I: Molecules dataset: A view of initial data

• the set of classes which overlap at rules nodes
with a class cl considering only the DB.S d:
L̂cl(d) = (

⋃
1≤h≤s

⋃
1≤f≤k

⋃
j∈Ĵh

⋃
1≤e≤qj

{L̂h,f,wje −{l}, l ∈

L̂h,f,wje and 2 ≤ |L̂h,f,wje |}).
• The parameter L̂cl considering all the z DB.S: L̂cl =
∪

1≤d≤z
L̂cl(d).

• X l = ∪
1≤h≤s

Xh,l: The set of data having the class cl at

any rank (rh)1≤h≤s.
The overlap parameter θ(cl) is then defined as: θ(cl) =
|L̂cl |/|C|. The lower and the upper approximations of each
class cl are computed on each DB.S d as follows:
• cl

′′(d) = ∪
1≤h≤s

∪
1≤f≤k

∪
j∈Ĵh

∪
1≤e≤qj

{ĉh,f,wje ∩ ch,fl , 2 ≤

|L̂h,f,wje |}.
• cl∗(d) = X l − cl′′(d).
• cl

∗(d) = cl∗(d) ∪ cl′′(d).
The M.S aggregate the previous parameters as follows:

cl′′ = ∪
1≤d≤z

cl
′′(d), cl∗ = ∩

1≤d≤z
cl∗(d), cl∗ = cl∗ ∪ cl′′.

Finally, the rough coefficients described in III-A are computed.
Next, we let the global decision tree decide classes for data

in Xv . Depending on classes precision parameter, we could get
in addition of the correct classification, some other possible
classifications for each data.

IV. EXPERIMENTS

The proposed approach has been experimented on molecules
data from [20] (TABLE. I). 2000 molecules were used as a
learning dataset and 400 molecules were used to validate the
model. Each molecule could have one or more odors. The
maximum number of odors is 6 per molecule.

rank selected attr compared discernible indiscernible
1 13 1805296 1798832 6464
2 13 111431 110656 775
3 12 66025 65607 418
4 12 12706 12607 99
5 8 1128 1120 8
6 5 61 60 1

TABLE II: Selected attributes

rank rules crisp rules rough rules avg rough classes per rule validation

1 1627 412 1215 4,15 100%

2 1913 408 1505 5,07 32%

3 1669 337 1332 4,83 23%

4 1017 240 777 4,18 56%

5 413 128 285 3,52 87%

6 95 53 42 2,62 98%

TABLE III: Rules validation

Using a local network with 1 server and 10 similar com-
puters, we could sample data to 4 samples of 500 elements.
4 computers were used to store and compute discernibility
inside each sample. The left 6 computers were used to compute
discernibility between elements from each 2 different samples.
Unfortunately initial data don’t contain descriptive attributes,
but we could generate 15 attributes from only the name and
formula of each molecule. Amoung them there is a boolean
attribute determining if a molecule is cyclic or not, frequences
of some atoms, and the molecular weight. Numerical attributes
were discretized to have less than 10 equal range values.
Since we didn’t address the discretization problem, this is the
simplest discretization strategy for us even if it’s not the best
one.

At the attributes selection step, only 2 attributes were
discarded, and a considerable number of data pairs could not

class α β γ θ

GREEN 0,21 0,21 0,04 0,85

FRUITY 0,26 0,23 0,06 0,78

HERBAC 0,24 0,22 0,05 0,78

. . . . . . . . . . . . . . .

LILAC 0,67 0,57 0,43 0,11

MOSSY 0,5 0,36 0,18 0,1

SULFUR 0,9 0,84 0,76 0,06

TABLE IV: Classes evaluation

rank classes α β γ θ
r1 54 0,24 0,23 0,08 0,45
r2 70 0,75 0,59 0,48 0,30
r3 72 0,71 0,72 0,54 0,23
r4 57 0,79 0,83 0,69 0,12
r5 25 0,92 0,94 0,88 0,04
r6 5 0,97 0,97 0,94 0,16

TABLE V: Classes evaluation by rank



Time (min)

Sequential and centralized method Distributed and parallel method Saved time

Data discernibility 1844 108 97%

Classes discernibility 1855 55 94%

Total 3699 163 95,6%

TABLE VI: Computational time reduction

be discerned using the selected attributes (TABLE II). The
attributes we could generate were not relevant. We obtained
too much rough rules (Table III). Some classes overlap with
almost all other classes (θ ↑) by means of many data (β ↓)
(TABLE IV. The results is that classes could not be well
discerned and the average of classes imprecision coefficient γ
was very low (TABLE V). By using both the selected attributes
and the information about the class in the previous rank, we
could reduce the average of rough classes per rule(TABLE III).
The classifier could always find the correct class for the first
rank, because even if classes at r1 are rough in a high degree,
experts don’t make mistakes while noticing them. Noticed
classes at r1 are correct. The difficult task for experts is to
determine classes at next ranks, The giving classes could be
wrong. That explain why the accuracy of ranks r2 and r3 is
low. The accuracy of ranks (rh)4≤h≤6 is higher because there
is not too much data having more than 4 classes.

In order to evaluate the computational time gain of the
proposed approach, we run it on a single machine in a
sequential and centralized way, and we turned it on similar
11 machines (10 Database servers + 1 main server). The
generated global decision tree by aggregation of local decision
trees and the generated decision tree by the centralized method
were similar. TABLE. VI shows that the distributed approach
could save 95, 6% of the centralized approach computational
time. This is because except some few simple operations, all
operations in the proposed approach could be executed in a
parallel and decentralized way.

V. CONCLUSION AND FUTURE WORKS

In this paper, an adapted framework to rough classifications
with dominance relations is proposed. The proposed approach
work on a distributed and parallel way, and as shown in
experiments, the computational time is clearly reduced. Using
Neo4j server, we could build a special decision tree adapted to
our problem definition. Experiment on a real chemical dataset
shows that thanks to dominance relations, our model can
find the correct classification among some few other possible
classifications. In our future works, we will try to reduce
the number of needed attributes, by integrating the positive
region concept to our model. We also plan to find a good
discretization strategy adapted to our problem. Finally, more
accurate results would be obtained by generating more descrip-
tive attributes, and by aggregating decision trees corresponding
to each rank. The aggregation should be weighted because
decision trees at lower ranks are more accurate.
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