A self-stabilizing 2/3-approximation algorithm for the maximum matching problem - Archive ouverte HAL Access content directly
Conference Papers Year :

A self-stabilizing 2/3-approximation algorithm for the maximum matching problem

Fredrik Manne
  • Function : Author
Morten Mjelde
  • Function : Author
Laurence Pilard
Sébastien Tixeuil

Abstract

The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and self-stabilizing literature. Previous work has resulted in self-stabilizing algorithms for computing a maximal ($\frac{1}{2}$-approximation) matching in a general graph, as well as computing a $\frac{2}{3}$-approximation on more specific graph types. In the following we present the first self-stabilizing algorithm for finding a $\frac{2}{3}$-approximation to the maximum matching problem in a general graph. We show that our new algorithm stabilizes in at most exponential time under a distributed adversarial daemon, and $O(n^2)$ rounds under a distributed fair daemon, where $n$ is the number of nodes in the graph.

Dates and versions

hal-01303005 , version 1 (15-04-2016)

Identifiers

Cite

Fredrik Manne, Morten Mjelde, Laurence Pilard, Sébastien Tixeuil. A self-stabilizing 2/3-approximation algorithm for the maximum matching problem. International Conference on Stabilization, Safety, and Security (SSS 2008), Nov 2008, Detroit, MI, United States. pp.94-108, ⟨10.1007/978-3-540-89335-6_10⟩. ⟨hal-01303005⟩
43 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More