
HAL Id: hal-01303000
https://hal.science/hal-01303000v1

Submitted on 10 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Near Admissible Algorithms for Multiobjective Search
Patrice Perny, Olivier Spanjaard

To cite this version:
Patrice Perny, Olivier Spanjaard. Near Admissible Algorithms for Multiobjective Search. 18th
European Conference on Artificial Intelligence ECAI-08, Aug 2008, Patras, Greece. pp.490-494,
�10.3233/978-1-58603-891-5-490�. �hal-01303000�

https://hal.science/hal-01303000v1
https://hal.archives-ouvertes.fr

Near Admissible Algorithms for Multiobjective Search
Patrice Perny and Olivier Spanjaard1

Abstract. In this paper, we propose near admissible multiobjective
search algorithms to approximate, with performance guarantee, the
set of Pareto optimal solution paths in a state space graph. Approxi-
mation of Pareto optimality relies on the use of an epsilon-dominance
relation between vectors, significantly narrowing the set of non-
dominated solutions. We establish correctness of the proposed algo-
rithms, and discuss computational complexity issues. We present nu-
merical experimentations, showing that approximation significantly
improves resolution times in multiobjective search problems.

1 INTRODUCTION

Heuristic search in state space graphs was initially considered in the
framework of single objective optimization. The value of a path is
defined as the sum of the costs of its arcs and the problem amounts
to finding one path with minimum cost among all paths from a source
node to the goal. This problem is solved by constructive search algo-
rithms like A∗ [6] which provide the optimal solution-path. In this
case preferences are measured by a scalar cost function inducing a
complete weak-order over sub-paths. However, preferences are not
always representable by a single criterion function. For example, in
path planning problems for autonomous agents, the action allowing
a transition from a state to another might have an impact in term
of time, distance, energy consumption etc, thus leading to different
points of views, non-necessarily reducible to a single overall cost [3].
More generally, multiobjective search is very useful in many appli-
cations requiring computer-aided problem solving (e.g., engineering
design, preference-based configuration). It justifies the interest for
search algorithms like MOA∗ [12], the multiobjective extension of
A∗, and its recent refinement by Mandow and Pérez-de-la-Cruz [8].

Besides these works on exact algorithms, several ε-admissible
variations of the A∗ algorithm have been proposed in the literature
(e.g. [11, 4]). These algorithms guarantee to find a solution that is
within a factor of (1 + ε) of the best solution. They realize a com-
promise between time and space requirements on the one hand, and
optimality of the returned solution on the other hand. These varia-
tions have proved to perform well, achieving a significant reduction
of the number of iterations (up to 90% for ε = 0.1) to solve in-
stances of the traveling salesman problem [11, 4]. Near admissible
algorithms might also prove their efficiency in multiobjective search.
At least, the introduction of tolerance thresholds in dominance con-
cepts is worth investigating, with possibly a twofold benefit: not only
it might simplify the search by increasing pruning possibilities, but it
also might possibly reduce the size of the potential output (the set of
non-dominated elements). This latter point is crucial as can be seen
in the following example derived from Hansen [5].

1 LIP6, Univ. Pierre and Marie Curie, 104 av. du Président Kennedy 75016
Paris, France, email: firstname.lastname@lip6.fr. This work has been sup-
ported by the ANR project PHAC which is gratefully acknowledged.

Example 1. Consider a simple biobjective state-space graph with a
setN = {0, . . . , q} of nodes, 0 being the initial node and q being the
goal node. At each node n ∈ N\{q}, two actions a1, a2 are feasible:
action a1 leads to node {n + 1} with cost (2n, 0) whereas action
a2 leads to the same node with cost (0, 2n). By construction, there
exists 2q distinct solution-paths from 0 to q in this graph with costs
(k, 2q−1−k) for k = 0, . . . , 2q−1. For example the sequence of q
times action a1 yields a solution path with cost (2q − 1, 0) whereas
the sequence of q times action a2 yields a solution path with cost
(0, 2q−1). In that graph, all the paths from 0 to q have the same sum
of costs but distinct costs on the first objective (due to the uniqueness
of the binary representation of an integer). The images of all these
paths in the space of objectives are on the same line (orthogonal to
vector (1,1)) and therefore, they are all Pareto-optimal.

In such family of instances, with q nodes and only 2 actions and
2 objectives, we can see that the number of Pareto-optimal paths
grows exponentially with q. For instance, if q = 16 we have 65536
Pareto-optimal solution paths. This example shows that the exact de-
termination of the Pareto set might induce prohibitive computation
times. Moreover, producing the entire list of Pareto optimal solu-
tions is probably useless for the Decision maker. In such cases, two
approaches might be of interest: 1) focusing the search on a specific
compromise solution; 2) approximating the Pareto set while keep-
ing a good representation of the various possible tradeoffs in the
Pareto set. The first approach requires additional preference infor-
mation from the Decision Maker concerning, for example, the rela-
tive importance of criteria, the compensations allowed, and the type
of compromise sought. When this information is not available, the
second approach is particularly relevant. In this direction, several
studies have been proposed, relying on the concept of ε-dominance
introduced as an approximation of Pareto dominance in various mul-
tiobjective problems [14, 10, 2, 7, 1]. Despite the growing interest
for these concepts, the potential of ε-relaxation of dominance con-
cepts has not been investigated, to the best of our knowledge, in the
framework of multiobjective search on implicit state space graphs.
This is precisely the aim of this paper which is organized as follows.
In the first two sections, we recall some useful results. In Section 2
we introduce formal material for the approximation of the Pareto set.
In Section 3 we provide a simple reformulation of a multiobjective
search algorithm to determine the exact Pareto set, and we prove its
pseudopolynomiality. Then, we show how to modify this algorithm
to get more efficient and near admissible versions. Finally, we pro-
vide numerical experimentations in the last section.

2 PARETO SET AND ITS APPROXIMATION
Considering a finite set of objectives {1, . . . ,m} any solution-path
can be characterized by a cost-vector (c1, . . . , cm) ∈ Zm+ where ci
represents the cost of the path with respect to objective i. Hence, the

comparison of paths reduces to the comparison of their cost-vectors.
The set of all cost-vectors attached to solution-paths is denoted X .
We recall now some definitions linked to dominance concepts:

Definition 1. The weak Pareto dominance relation (4p-dominance
for short) on cost-vectors of Zm+ is defined by:

x 4p y ⇐⇒ [∀i ∈ {1, . . . ,m}, xi ≤ yi]

Thus x dominates y, which is denoted by x 4p y, when x is at
least as good as y with respect to all objectives. For any dominance
relation 4 defined on a set X , we will use the following definitions:

Definition 2. Any element x ∈ X is said to be 4-optimal in X if,
for all y ∈ X , y 4 x ⇒ x 4 y. If x is not 4-optimal then it is said
to be 4-dominated.

Definition 3. A subset Y ⊆ X is said to be a 4-covering of X if for
all x ∈ X there exists y ∈ Y such that y 4 x. Whenever no proper
subset of Y is a 4-covering of X , then Y is said to be a minimal
4-covering of X .

The aim of multiobjective search is to find a 4p-covering of the
set of solution-paths. As shown in Example 1, such a set can be very
large. This difficulty can be overcome by resorting to an approximate
dominance concept called ε-dominance relation [5, 14]:

Definition 4. The ε-dominance relation on cost-vectors of Zm+ is
defined by: x 4ε y ⇐⇒ x 4p (1 + ε)y

As an illustration, consider the left part of Figure 1 concerning a
bi-objective problem where every feasible solution is represented by
a point x = (x1, x2) in the bi-objective space. Within this space,
point p1 (resp. p2) 4ε-dominates all the points within coneC1 (resp.
C2). The notion of 4ε-covering arises then naturally. Indeed, the set
{p1, p2} is a 2-points 4ε-covering of X since X ⊆ C1 ∪ C2. Note
that a smaller ε yields a finer 4ε-covering of X , as illustrated on the
right part of Figure 1, where a 5-points 4ε-covering of the same set
X is given.
x2

x1 x1

x2

C2

C1

p2

p1

Figure 1. ε-coverings for two values of ε.

Note that, for a given ε, several minimal 4ε-covering subsets of
different sizes exist. For example, consider X = {x, y, z} with x =
(800, 950), y = (880, 880) and z = (950, 800) and set ε = 0.1.
The set {x, z} is an 4ε-covering subset of X since 800 ≤ 968 =
(1 + 0.1) × 880 and 950 ≤ 968 and thereby x 4ε y. Furthermore,
neither x 4ε z nor z 4ε x, and therefore {x, z} is minimal. Note
that {y} is also a minimal 4ε-covering subset. On the one hand we
have indeed y 4ε x since 880 ≤ 880 = (1 + 0.1) × 800 and
880 ≤ 1045 = (1 + 0.1) × 950, on the other hand y 4ε z for the
same reasons. The very interest of ε-dominance lies in the following
property: for any fixed number m > 1 of objectives, for any finite

ε > 0 and any setX of bounded vectors x such that 1 ≤ xi ≤M for
all i ∈ {1, . . . ,m}, there exists a 4ε-covering subset of X the size
of which is polynomial in logM and 1/(log(1 + ε)), see [10, 7].
This can simply be explained by considering a logarithmic scaling
function ϕ : Zm+ → Zm+ on the objective space, defined as follows:

ϕ(x) = (ϕ1(x), . . . , ϕm(x)) with ϕi(x) =

—
log xi

log(1 + ε)

�
For every component xi, it returns an integer k such that (1 + ε)k ≤
xi < (1 + ε)k+1. Using ϕ we can define a ϕ-dominance relation:

Definition 5. The ϕ-dominance relation on cost-vectors of Zm+ is
defined by: x 4ϕ y ⇐⇒ ϕ(x) 4p ϕ(y)

This relation satisfies the following properties:

Proposition 1. For all vectors x, y, z ∈ Zm+ , we have:
(i) x 4ϕ y and y 4ϕ z⇒ x 4ϕ z (transitivity)
(ii) x 4ϕ y⇒ x 4ε z.

The symmetric part of 4ϕ defined by x ≡ϕ y if and only if
ϕ(x) = ϕ(y) is therefore an equivalence relation (by transitivity).
Clearly, by keeping one element of X for each equivalence class of
≡ϕ, one obtains an 4ϕ-covering of X [10]. The left part of Fig-
ure 2 illustrates this point on the bi-objective example introduced
for Figure 1. The dotted lines form a logarithmic grid in which each
square represents an equivalence class for≡ϕ. Hence the set of black
points (one per non-empty square) represents a 4ϕ-covering of all
points. Interestingly enough, the resulting 4ϕ-covering is also a 4ε-
covering set by Proposition 1 (ii). Moreover, the size of this 4ε-
covering is upper bounded by the number of equivalence classes of
relation ≡ϕ, which is not greater than: (1 + blogM/ log(1 + ε)c)m
[10]. A refined 4ϕ-covering (which is also an 4ε-covering) can eas-
ily be derived by removing 4ϕ-dominated elements (we keep only
the black points on the right part of Figure 2) which improves the
bound to (1+blogM/ log(1+ε)c)m−1, see [7]. Coming back to Ex-
ample 1 with q = 16, a 4p-covering requires 65536 solution-paths
whereas a 4ε-covering of this set constructed with ϕ as indicated
above (for ε = 0.1) contains at most

j
log 65536
log 1.1

k
+ 1 = 117 ele-

ments. More generally, it is important to note that, for fixed values of
ε and m, the size of the 4ε-covering grows only polynomially with
the size of the instance, even when the Pareto set grows exponen-
tially. In addition, if a set Y ⊆ X is an 4ε-covering of X , we know
(by Definition 3) that any feasible tradeoff achieved in X is approx-
imated with performance garantee, i.e it is 4ε-dominated by at least
one element in Y . This enables a more concise and yet representa-
tive description of possible tradeoffs in the Pareto set. The question
is whether an 4ε-covering is computable in polynomial time or not.

1 (1 + ε) (1 + ε)2 (1 + ε)3 (1 + ε) (1 + ε)2 (1 + ε)3 (1 + ε)4
x1

x2x2

x1

1(1 + ε)4

Figure 2. Logarithmic grid.

3 MULTIOBJECTIVE SEARCH ALGORITHM
We now present a multiobjective extension of A∗ (reformulation of
the label-expanding version of MOA∗ [8]), and we prove its pseu-
dopolynomiality, which is directly related to that of the size of the
Pareto set. In the following sections, we will then use a logarithmic
grid to derive near-admissible algorithms: a first one the complexity
of which is polynomial in the number of states, a second one more ef-
ficient in practice in spite of a higher theoretical complexity. To our
knowledge, this is the first attempt to devise near admissible algo-
rithms for multiobjective search in implicit graphs (the existing near
admissible multiobjective algorithms work in explicit graphs).

A∗ algorithm and its multiobjective extensions explore a state
space graph G = (N,A) where N is a finite set of nodes (possi-
ble states), and A is a set of arcs representing transitions. Formally,
we have A = {(n, n′) : n ∈ N,n′ ∈ S(n)} where S(n) ⊆ N
is the set of all successors of node n. A cost-vector v(n, n′) is at-
tached to each arc (n, n′) ∈ A, and the cost-vector of a path P is
defined by v(P) =

P
(n,n′)∈P v(n, n

′). In the sequel, we assume
that v(P) ∈ [1,M] for every solution path, where M is a known
constant. Then s ∈ N denotes the source of the graph (the initial
state), Γ ⊆ N the subset of goal nodes, P(s,Γ) the set of all paths
from s to a goal node γ ∈ Γ (solution-paths), and P(n, n′) the set of
all paths linking n to n′, characterized by a list 〈n, . . . , n′〉 of nodes.

Unlike the scalar case, there possibly exists several 4p-optimal
paths with distinct cost-vectors to reach a given node in a multiob-
jective problem. Hence, one expands labels ` = [n`, P`, g`] (attached
to subpaths) rather than nodes, where n` indicates the labeled node,
P` the corresponding subpath in P(s, n`), and g` the cost-vector of
P`. As in A∗, the set of generated labels is divided into two dis-
joint sets: a set OPEN of not yet expanded labels and a set CLOSED

of already expanded labels. Besides, the 4p-optimal expanded la-
bels in {` : n` ∈ Γ} are stored in a set SOL. Since a node n may
be on the path of more than one 4p-optimal solution, a set H(n)
of heuristic cost-vectors is given for each node n, estimating the set
{v(P) : P ∈ P(n,Γ)}. For each generated label `0, a set F (`0)
of evaluation vectors is computed from all possible combinations
{g`0 + h, h ∈ H(n`0)}. It estimates the set of 4p-optimal values
of solution-paths extending P`0 . Initially, OPEN contains only label
[s, 〈s〉,~0], while CLOSED and SOL are empty. At each subsequent
step, one expands a label `∗ in OPEN such that F (`∗) contains at
least one 4p-optimal vector in ∪`∈OPENF (`). The process is kept
running until OPEN becomes empty. Two pruning rules are used:
Rule R1: discard label ` when there exists `′ ∈ OPEN

S
CLOSED

s.t. n`′ = n` and g`′ 4p g`.
Rule R2: discard label ` when ∀f ∈ F (`), ∃`′ ∈ SOL s.t. g`′ 4p f .
These rules ensure to generate all 4p-optimal paths in P(s,Γ) pro-
vided heuristic H is admissible, i.e. ∀n ∈ N, ∀P ∈ P(n,Γ), ∃h ∈
H(n) s.t. h 4p v(P). The algorithm is outlined below:
MULTIOBJECTIVE SEARCH ALGORITHM (MOA∗)
Input: G, OPEN, CLOSED, SOL

while OPEN 6= ∅
01 move a label `∗ from OPEN to CLOSED

02 if n`∗ ∈ Γ
03 then UPDATE(SOL, ∅, `∗)
04 else for each node n′ ∈ S(n`∗) do
05 create `0 = [n′, 〈P`∗ , n′〉, g`∗ + v(n, n′)]
06 if ∃f0 ∈ F (`0) s.t. ∀` ∈ SOL not(g` 4p f0)
07 then UPDATE(OPEN(n′), CLOSED(n′), `0)
08 else discard `0
Output: SOL

This algorithm calls procedure UPDATE which applies to L1, a list of
open labels, and L2, a list of closed labels. It possibly updates list L1

with label ` as follows:
UPDATE(L1, L2, `)
01 If ∀`′ ∈ L1 ∪ L2 not(g`′ 4p g`) then L1 ← L1 ∪ {l}
02 Remove 4p-dominated labels from L1

We now show that this multiobjective search algorithm is pseu-
dopolynomial for integer costs (for a fixed number m of objectives),
with the following worst case complexity analysis. The “while” loop
in the main procedure is iterated at most |N | (M + 1)m times since
this is the maximum number of distinct labels. Indeed there are |N |
nodes, and for each of them, the number of different cost vectors is
upper bounded by (M + 1)m. Furthermore, at each iteration of the
loop the main computational cost is due to line 06 which requires
binary comparisons of labels from F (`0) and SOL. With a naive
method, this represents (M + 1)2m comparisons. Hence the algo-
rithm executes less than |N | (M + 1)m loops of cost (M + 1)2m.
Therefore the overall complexity is within O(|N |2M3m).

4 APPROXIMATION ALGORITHMS
We consider now two ways of relaxing the exact version of the mul-
tiobjective search algorithm so as get a better efficiency, either by
modification of R1 or R2 (both modification cannot be performed
together without losing the performance guarantee).

4.1 An FPTAS for multiobjective search
In this subsection, we assume that a finite upper bound L on the
lengths (numbers of arcs) of all solution-paths in P(n,Γ) is known.
Under this assumption, we provide a Fully Polynomial Time Approx-
imation Scheme (FPTAS) for computing an approximation of the
Pareto set. For simplicity, we assume throughout this section that the
input is a finite graph on |N | nodes. Several FPTAS to compute 4ε-
coverings in multiobjective shortest path problems (MSP) have been
proposed in the literature; that is, algorithms that, given an encod-
ing of the graph and an accuracy level ε > 0, yield an 4ε-covering
in time and space bounded by a polynomial in |N | and 1

ε
. Hansen

[5] and Warburton [14] have proposed methods combining rounding
and scaling techniques (i.e., approximating data elements before the
execution of an algorithm) with pseudopolynomial exact algorithms
(i.e., algorithms that operate in time and space bounded by a poly-
nomial in |N | and the largest data element), in order to keep poly-
nomially bounded the size of the auxiliary data computed during the
execution. These methods are particular to biobjective problems and
acyclic graphs respectively. Another algorithm is due to Papadim-
itriou and Yannakakis [10]. It is less specific to MSP, and its interest
resides mainly in its generality: it proceeds by computing one solu-
tion (if it exists) inside every box of the logarithmic grid of Section 2.
The authors show that this can be polynomially performed in a prob-
lem A if there is a pseudopolynomial algorithm for the exact version
of A (given an instance of A and an integer B, is there a feasible so-
lution with cost exactly B?). Finally, Tsaggouris and Zaroliagis [13]
have recently proposed an FPTAS based on a generalized Bellman-
Ford algorithm. Except for [10], all the other approaches rely on dy-
namic programming. We now show how to obtain an FPTAS by ap-
plying trimming techniques to the multiobjective search algorithm.
The idea is to keep polynomially bounded the number of possible
labels at each node, by using a logarithmic grid. Nevertheless, it is
not possible to work directly with 4ϕ in place of 4p within proce-
dure UPDATE because we might exceed the desired error threshold
(1+ε) due to error propagations, as shown in the following example.

Example 2. Consider the graph with nodes {s, n, n′, γ} and costs:
v(s, n) = (2, 2), v(s, n′) = (1, 1.1), v(n′, n) = (0.9, 1), v(n, γ) =
(1, 1), v(n′, γ) = (2.3, 1.8). We set ε = 0.1. We get two labels at
node n, `1 = [n, 〈s, n〉, (2, 2)] and `2 = [n, 〈s, n′, n〉, (1.9, 2.1)].
Since `1 4ε `2, assume that `2 is discarded. We get two labels `3 =
[γ, 〈s, n′, γ〉, (3.3, 2.9) and `4 = [γ, 〈s, n, γ〉, (3, 3)] at γ. At this
point `4 might be discarded since `3 4ε `4. In this case the unique
returned solution path would be 〈s, n′, γ〉 with cost (3.3, 2.9)]. How-
ever it is clear that path 〈s, n′, n, γ〉 with cost (2.9, 3.1) is not ε-
covered by (3.3, 2.9). Actually we have: (3.3, 2.9) 4p 1.1(3, 3) and
(3, 3) 4p 1.1(2.9, 3.1) but not (3.3, 2.9) 4p 1.1(2.9, 3.1). We only
have (3.3, 2.9) 4p 1.12(2.9, 3.1).

This example suggests a possible solution relying on the assump-
tion that solution-paths contain at most L arcs. We might replace
(1 + ε) by (1 + ε)

1
L to remain below (1 + ε) by propagation of er-

rors. This idea is implemented in the following revised pruning rule.
Rule R′

1: discard label ` when there exists `′ ∈ OPEN
S

CLOSED

s.t. n`′ = n` and ψ(g`′) 4p ψ(g`)

where ψ is a logarithmic scaling function ψ : Zm+ → Zm+ on the
objective space, defined as follows:

ψ(x) = (ψ1(x), . . . , ψm(x)), ψi(x) =
j
log xi/ log(1 + ε)1/L

k
This lead to replace procedure UPDATE by:
ψ−UPDATE(L1, L2, `)
01 If ∀`′ ∈ L1 ∪ L2 not(ψ(g`′) 4p ψ(g`))
02 then L1 ← L1 ∪ {l}
03 Remove 4ψ-dominated labels from L1

Withψ−UPDATE the multiobjective search algorithm becomes poly-
nomial in |N | and 1

ε
, provided 1 ≤ M ≤ 2p(|N|) where p de-

notes some polynomial. Indeed, the cost of every solution path on
the logarithmic scale is upper bounded by

j
logM/ log(1 + ε)

1
L

k
∈

O(L logM/ε). Hence, the global complexity of the algorithm be-
comes O(|N |2 (L logM/ε)3m). Since L ≤ |N | and logM ∈
O(p(|N |)), it is within O(

`
1
ε

´3m
p(|N |)) for some polynomial p

and therefore polynomial in 1
ε

and |N |. Now, it remains to show
that this version of the algorithm yields a 4ε-covering subset of the
solution-paths. To this end we state the following propositions:

Proposition 2. For all i ∈ {1, . . . , L}, ∀x, y, z ∈ X the following
monotonicity property hold:
x 4p y(1 + ε)

i
L ⇒ (x+ z) 4p (y + z)(1 + ε)

i
L

Note that this monotonicity property does not hold for the ψ-
dominance relation induced by ψ(x) 4p ψ(y).

Proposition 3. Let P ∈ P(s,Γ). At any time before termination, if
∀` ∈ SOL not(g` 4ε v(P)), then there exists `′ ∈ OPEN and P ′

extending P`′ such that v(P ′) 4ε v(P).

Proof. Consider a solution-path P = 〈s, n1, . . . , nk ∈ Γ〉. By con-
traposition, assuming that for all `′ ∈ OPEN no solution-path P ′

extending P`′ is such that v(P ′) 4ε v(P), we show that there exists
a label ` ∈ SOL for which g` 4ε v(P). For that purpose, we exhibit
a finite sequence (`i) of closed labels generated during the search,
such that g`i 4p (1 + ε)

i
L v(Pi) (1), where Pi = 〈s, n1, . . . , ni〉.

We proceed as follows: for i = 0, we set `0 = [s, 〈s〉,~0] and we
clearly have g`0 4p (1 + ε)

0
L v(P0). Inductively, assume now that

labels `0, . . . , `j have been generated and closed (j < k), such that
Equation 1 holds for i = 0, . . . , j. Let ` = [nj+1, 〈P`j , nj+1〉, g`j
+ v(nj , nj+1)] be the label of the path from s to nj+1 extending

P`j . This label has been generated since `j has been expanded and
nj+1 ∈ S(nj). There are two cases:
Case 1. If ` ∈ CLOSED then we set `j+1 = `.
Case 2. If ` 6∈ CLOSED, we cannot have ` ∈ OPEN since it
would contradict the initial assumption. Indeed, consider solution-
path P ′ = 〈P`j , nj+1, . . . , nk〉. We would have: v(P ′) = g`j +

v(〈nj , . . . , nk〉) 4p (1 + ε)
j
L v(Pj) + v(〈nj , . . . , nk〉) 4p (1 +

ε)v(Pj) + (1 + ε)v(〈nj , . . . , nk〉) 4p (1 + ε)v(P). Hence, ` has
been generated, but ` 6∈ OPEN ∪ CLOSED. Therefore ` has been dis-
carded using pruning rule R′

1 or R2:
Case 2.1. If ` is discarded by R′

1, then there exists `′ ∈ OPEN ∪
CLOSED such that n`′ = n` and ψ(g`′) 4p ψ(g`), which implies
g`′ 4p (1 + ε)

1
L g`. We have g`′ 4p (1 + ε)

1
L g` = (1 + ε)

1
L (g`j +

v(nj , nj+1)) 4p (1 + ε)
1
L ((1 + ε)

j
L v(Pj) + v(nj , nj+1)) 4p

(1+ ε)
j+1

L v(Pj+1). Moreover, by the same reasoning as above with
P ′ = 〈P`′ , nj+2, . . . , nk〉, we have v(P ′) 4ε v(P), and therefore
`′ cannot be in OPEN. Hence, `′ ∈ CLOSED and we set `j+1 = `′.
Case 2.2. If R2 prunes `, then sequence (`i) is stopped.
Whenever case 2.2 stops the sequence `0, . . . , `j by discarding label
`, then for all f ∈ F (`), there exists `′ ∈ SOL s.t. g`′ 4p f (Eq. 1).
Moreover, there exists f ∈ F (`) such that f 4ε v(P), as we now
show. By admissibility of H , there exists h ∈ H(nj+1) such that
h 4p v(〈nj+1, . . . , nk〉). Then, there exists f = g` + h ∈ F (`)
such that f 4p g` + v(〈nj+1, . . . , nk〉) = g`j + v(〈nj , . . . , nk〉)
4p (1 + ε)

j
L v(Pj) + v(〈nj , . . . , nk〉) 4p (1 + ε)v(Pj) + (1 +

ε)v(〈nj , . . . , nk〉) = (1+ε)v(P). Hence f 4p (1+ε)v(P) (Eq. 2).
From Eq. 1 and Eq. 2, we get g`′ 4ε v(P) (by transitivity of 4p).
Whenever case 2.2 does not occur, the sequence continues until
j = k. Once label `k has been expanded at nk, solution-path Pk has
been discovered and SOL includes a label ` such that g` 4ε v(P).
In all cases, the existence of ` ∈ SOL with g` 4ε v(P) is proved. 2

From this proposition, it follows that the algorithm cannot termi-
nate as long as the solution-paths stored in SOL does not constitute
a 4ε-covering of P(s,Γ). Indeed, it would imply that OPEN is non-
empty, which contradicts the termination of the algorithm. We can
therefore conclude that the algorithm returns a 4ε-covering subsets
of solution-paths. Note that this technique is mainly of theoretical in-
terest, since the complexity is quadratic in the number |N | of states
but |N | is usually exponential in the depth of the search. We propose
therefore below a simpler technique that also guarantees the approx-
imation, more efficient in practice in spite of a higher complexity.

4.2 A near admissible version of MOA∗

We now present the MOA∗
ε algorithm, which returns a 4ε-covering

of solution-paths without requiring the knowledge of an upper bound
on the number of nodes that can be expanded. The basic features of
the algorithm are essentially the same as MOA∗. The main difference
lies in the following pruning rule which uses 4ε-dominance:
Rule R′

2: discard label ` when ∀f ∈ F (`), ∃`′ ∈ SOL s.t. g`′ 4ε f .
This rule allows an early elimination of uninteresting labels while
keeping near admissibility of the algorithm provided heuristic H is
admissible. Indeed, if H is admissible, then for all f∗ ∈ F ∗(`) there
exists f ∈ F (`) such that f = g` + h 4p g` + h∗ = f∗. Hence
g`′ 4ε f implies that g`′ 4ε f

∗. This pruning rule can be inserted
in the multiobjective search algorithm by substituting line 06 by:
06′ if ∃f0 ∈ F (`0) s.t. not(f(`) 4ε f0) ∀` ∈ SOL

Despite MOA∗
ε does not provide complexity guarantees, it outper-

forms significantly the exact version.

Remark 1. The following weaker relaxation of the pruning condi-
tion in R2 can be used in the FPTAS:
06′′ if ∃f0 ∈ F (`0) s.t. not(f(`) 4p (1 + ε)

k
L f0) ∀` ∈ SOL

where k is an upper bound of the length of the longest path from n`0
to a goal. This is the case in the implemented version.

5 NUMERICAL EXPERIMENTATIONS
To investigate the potential of approximation, we tested our algo-
rithms on two multiobjective combinatorial problems.
Biobjective binary knapsack problem. Given a set {1, . . . , n}
of items j, each item having a weight wj and a profit pij ac-
cording to every objective i, one searches a minimal 4p-covering
of combinations of items that can be put into a knapsack of ca-
pacity b (i.e., the total weight of the items cannot run over b):

max
Pn
j=1 p1jxj , max

Pn
j=1 p2jxj

subject to
Pn
j=1 wjxj ≤ b

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}
where xj = 1 iff one chooses to put item j in the knapsack. The
state space has been defined such that all solution-paths share the
same length n. This enables to apply the FPTAS with L = n. The
heuristic evaluations used to order and prune the search derive from
the upper bound of Martello and Toth [9] for the single objective ver-
sion. The MOA∗, FPTAS and MOA∗

ε algorithms have been imple-
mented in JAVA and were run on a Pentium 4 3.60GHz PC. Table 1
shows computation times (in sec) obtained on 35 random instances
of size n, with profits and weights randomly drawn in [1, 100], and a
capacity b bounded to 50% of the total weight of the items. These re-
sults show that the relaxation of the optimality condition significantly
speeds up the search, with faster results when using MOA∗

ε . We
have also studied the behavior of MOAε when setting ∀j p1j = 2j ,
p2j = 2n− 2j and wj = 1, which yields instances where all combi-
nations of b items are non-dominated with distinct profits on the first
objective. In the first line of Table 2, we indicate the execution times
of MOA∗, and in the second line the number #sol of non-dominated
solutions (which grows exponentially with n). Both approximation
algorithms return a 4ε-covering in less than one second for all ε in
{0.005, 0.01, 0.05}. For each value of ε we give the size of the re-
turned 4ε-covering. It shows that the choice of ε allows the size of
the output set to be controlled, as well as the computation times.

n 30 40 50 60 70 80
MOA∗

time 0.397 1.879 11.31 43.66 215.2 457.7
ε FPTAS

0.005 0.353 1.514 7.922 29.90 127.8 226.5
0.01 0.297 1.077 4.842 18.29 65.91 97.26
0.05 0.046 0.036 0.065 0.331 0.555 0.393
0.1 0.003 0.001 0.001 0.002 0.001 0.001
ε MOA∗

ε
0.005 0.315 0.940 4.225 18.58 62.37 110.4
0.01 0.179 0.364 1.389 9.294 19.75 35.11
0.05 0.008 0.007 0.013 0.064 0.065 0.075
0.1 0.001 0.001 0.001 0.001 0.001 0.001

Table 1. Numerical results on the biobjective knapsack.

n 15 16 17 18 19 20
time 0.495 3.328 1.895 44.08 17.55 711.9
sol 6.103 1.104 2.104 5.104 9.104 2.105

0.005 31 28 28 25 25 22
0.01 16 14 15 13 13 11
0.05 3 3 4 3 3 3

Table 2. Pareto approximation on pathological instances.

Multiobjective shortest path problem. In order to study the interest
of approximation when the number of objectives grows, we have per-

formed experimentations of MOA∗
ε on the multiobjective path prob-

lem. We have generated different classes of instances by controlling
the number of nodes |N | = 1000, 2000, 3000 and the number of
objectives m = 2, 5, 10. Cost of arcs are randomly generated within
[1, 100]. The approximations have been computed with ε = 0.1. Ta-
ble 3 gives, in each class of instances, the average execution time (in
sec) obtained on 20 different instances. These performances illustrate
that approximation remains powerful when the number of objectives
grows. As a comparison, the exact determination (with MOA∗) of
the Pareto set on instances with 1000 nodes and 10 criteria required
more that one hour on the same computer.

|N | 1000 2000 3000
2 obj 0.078 0.295 0.751
5 obj 0.175 0.761 1.901
10 obj 0.447 2.474 7.268

Table 3. Times for MOA∗
0.1 on the shortest path problem.

6 CONCLUSION
We have proposed two approximation algorithms for multiobjective
search. The first one is an FPTAS which requires that an upper bound
on the length of a solution-path is known, while the second one does
not provide guarantee on the worst case complexity, but performs
better in practice without requiring any information on the length
of solution-paths. Both algorithms outperform exact multiobjective
search in times. Note that the approximate Pareto set can include
dominated solutions (although close to optimality). An interesting
research direction is therefore to look for algorithms able to com-
pute approximate Pareto set including only non-dominated solutions.
Another possible extension of this work is to study the use of ε-
dominance to approximate more involved preference models.

REFERENCES
[1] E. Angel, E. Bampis, and A. Kononov, ‘On the approximate tradeoff for

bicriteria batching and parallel machine scheduling problems.’, Theor.
Comput. Sci., 306(1-3), 319–338, (2003).

[2] T. Erlebach, H. Kellerer, and U. Pferschy, ‘Approximating multiobjec-
tive knapsack problems’, Manag. Science, 48(12), 1603–1612, (2002).

[3] K. Fujimura, ‘Path planning with multiple objectives’, IEEE Robotics
and Automation Magazine, 3(1), 33–38, (1996).

[4] M. Ghallab, ‘Aε: an efficient near admissible heuristic search algo-
rithm’, in Proc. of the 8th IJCAI, pp. 789–791, (1983).

[5] P. Hansen, ‘Bicriterion path problems’, in Multicriteria Decision Mak-
ing, eds., G. Fandel and T. Gal, (1980).

[6] P.E. Hart, N.J. Nilsson, and B. Raphael, ‘A formal basis for the heuris-
tic determination of minimum cost paths’, IEEE Trans. Syst. and Cyb.,
SSC-4 (2), 100–107, (1968).

[7] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, ‘Combining conver-
gence and diversity in evolutionary multiobjective optimization’, Evo-
lutionary Computation, 10(3), 263–282, (2002).

[8] L. Mandow and J.-L. Pérez-de-la Cruz, ‘A new approach to multiobjec-
tive A* search.’, in Proc. of the 19th IJCAI, pp. 218–223, (2005).

[9] S. Martello and P. Toth, ‘An upper bound for the zero-one knapsack
problem and a branch and bound algorithm’, European J. of Opera-
tional Research, 1, 169–175, (1975).

[10] C. H. Papadimitriou and M. Yannakakis, ‘On the approximability of
trade-offs and optimal access of web sources’, in Proc. of the 41th
IEEE Symp. on FOCS, pp. 86–92, (2000).

[11] J. Pearl and J.H. Kim, ‘Studies in semi-admissible heuristics’, IEEE
Trans. on PAMI, 4(4), 392–400, (1982).

[12] B.S. Stewart and C.C. White III, ‘Multiobjective A*’, J. of the Associ-
ation for Computing Machinery, 38(4), 775–814, (1991).

[13] G. Tsaggouris and C. Zaroliagis, ‘Multiobjective optimization: Im-
proved FPTAS for shortest paths and non-linear objectives with appli-
cations’, in Proc. of the 17th ISAAC, pp. 389–398, (2006).

[14] A. Warburton, ‘Approximation of pareto optima in multiple-objective
shortest-path problems’, Operations Research, 35(1), 70–79, (1987).

