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Influence of initial geometric imperfections on the stability
of thick cylindrical shells under internal pressure

S. R. X. Lopes, P.B.Gonçalves, and D. C. Pamplona

Civil Engineering Department, Pontifical Catholic University, Brazil

This paper investigates numerically and experimentally the influence of initial geometric imperfections 
on the critical loads of initially stretched thick hyperelastic cylindrical shells under increasing uniform 
internal pressure. Imperfections in shells can have a global or local character. First, two types of local 
imperfections are considered: (1) a local axially symmetric imperfection in the form of a ring and (2) a 
small rectangular imperfection. The influence of the imperfection thickness, position and size are analysed 
in detail. Results show that the critical load decreases as the imperfections increase in size or thickness and 
as they move from the boundaries to the centre of the shell. The influence of multiple local imperfections 
is also studied in the present paper. Finally, the influence of global imperfections is considered with the 
imperfections described as a variation of the shell curvature in the axial direction. The results show that 
thick hyperelastic shells may be sensitive to local and global imperfections. In all cases the experimental 
results are in good agreement with the numerical ones, corroborating the conclusions.
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these shells. As the imperfections of these test specimens were small, a good agreement between
the experimental and numerical results was obtained. However, the initial geometric imperfections
may have a marked influence on the behaviour of this type of structure, as it happens in the analysis
of thin metal cylindrical shells. Koiter [3] was the first one to develop a theory that explains in
a rational form, based on the influence of imperfections, the discrepancy between theoretical and
experimental results in the buckling analysis of certain structures. Amongst them, axially com-
pressed cylindrical shells and spherical shells submitted to external pressure stand out. The theory
of Koiter allows the determination of the type of bifurcation that occurs at the first bifurcation point
along an equilibrium path and the verification of its sensitivity to initial geometric imperfections.

Thick shells submitted to large elastic deformations under the action of increasing internal
pressure can display global and local instabilities. Initially, when submitted to internal pressure,
the shell deforms almost uniformly throughout its length (except near the boundaries). After a
certain critical pressure is reached, a bulb appears in the shell. This instability is followed by a
sudden decrease of the internal pressure and a decrease in the radial deformation of the other parts
of the structure. This instability corresponds to a limit point along the non-linear equilibrium path,
that is, a turning point of the surface tension that corresponds to a bifurcation point. In a perfect
shell, the bulb has an axi-symmetrical form and occurs in the middle of the shell. This behaviour
is known in literature as localization [4] and was observed in thick hyperelastic membranes by
Kyriakides and Chang [5], who analysed this problem both theoretically and experimentally.
However, due to imperfections, the bulb can occur in any place along the length of the shell and
may become completely asymmetrical. This behaviour can be observed in different areas of study,
with the formation of aneurisms being one of the most important (Figure 1).

The linear constitutive laws valid for the small strain regime are sometimes extended to the
large displacement, small strain, which can lead to unrealistic results when large deformations are

Figure 1. Cerebral aneurisms (Barrow Neurological Institute Web site).

1. INTRODUCTION

In previous works [1, 2] the authors studied the non-linear behaviour and instability of thin
cylindrical shells and carried out a detailed numerical and experimental parametric analysis of
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present. In such cases, elasticity in the fully non-linear range must be employed. The pioneering
work of Green and Adkins [6] on non-linear elasticity set up the basis for the analysis of structures
under large deformations. Historically, the large deformations observed in rubber-like materials
under several loading conditions motivated researchers to express the associated non-linear elastic
behaviour through hyperelastic models. Among the hyperelastic models, strain invariant based
Mooney–Rivlin model [7, 8] is the oldest one. The simplest constitutive model is the Neo-Hookean
model, which can be viewed as a simplification of the Mooney–Rivlin law. The analysis of thin
hyperelastic cylindrical shells has been a problem of continued interest. The investigation of the
equilibrium and stability of thin cylindrical tubes under uniform pressure loading or loads acting
along the boundaries has been examined theoretically, for instance, by Alexander [9], Ratner [10],
Haseganu and Steigmann [11], Haughton [12] and Gent [13]. Experimental investigations were
carried out by Pamplona and Bevilacqua [14] and Pamplona et al. [1, 2], among others. When the
thickness to the outer radius ratio is small, it can be modelled as an ideal membrane subjected
only to in-plane normal and shearing forces. When the membrane becomes thicker, flexural effects
cannot be disregarded in the analysis and the structure must be modelled as a shell or a solid. The
analysis of large deformations of hyperelastic thick shells is not so popular, nevertheless there are
some important publications such as the ones by Kyriakides and Chang [5] and, more recently, the
works by Tang et al. [15] and Haussy and Ganghoffer [16] where the theory of thick hyperelastic
shells was used for modelling carotid arteries and aneurysms, respectively. An analytical solution
for a perfect elastic thick tube under axial load was presented by Haughton and Ogden [17].

In this work the imperfection sensitivity of thick hyperelastic shells under internal pressure is
analysed numerically and experimentally. To the authors knowledge this is the first work where the
effect of large local imperfection in thick hyperelastic shells is analysed in detail. Non-symmetrical
and axi-symmetrical local and global imperfections are considered in the analysis. The effect of
multiple local imperfections is also investigated. Variations of the imperfection thickness, length and
position along the shell length are considered. In the theoretical formularization of the problem, the
material of the shell is considered to be incompressible, homogeneous and isotropic and modelled
as a Mooney–Rivlin material, which is described by two elastic constants. These assumptions
are sufficiently reasonable when compared with the physical behaviour of the shell used in the
experimental analysis (a latex shell). In the analysis of the large deformations of the shell, the
non-linear shell response is obtained by the finite element code ABAQUS [18, 19]. This code offers
a good library of non-linear finite elements and constitutive laws for analyses of shells under large
deformations. Newton–Raphson algorithm is used together with Riks arc-length method to obtain
the post-critical behaviour of the shell under traction and internal pressure. In the experimental
analysis, two types of imperfections are considered: the first one, an axi-symmetrical imperfection
in the form of a ring, and then in the form of a small square. In all the cases a good qualitative
agreement is observed between the numerical and experimental analysis. Since one of the main
influences on the formation of aneurysms is the presence of local imperfections due to variations
in the wall thickness, we feel that the present work is a useful contribution in this area.

2. ANALYSIS OF AXI-SYMMETRICAL IMPERFECTIONS

2.1. Experimental analysis

The numerical results are conducted considering latex shells with undeformed radius R, length
L and thickness H . The material of the shell is considered, based on experimental results, as
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homogeneous, isotropic and incompressible [20]. Its geometric characteristics were measured by
the Institute of Metrology of the Catholic University of Rio de Janeiro (ITUC—PUC-Rio) and the
results are presented in Table I.

The local imperfection has the form of a ring, as illustrated in Figure 2. It is generated, with
the aid of an electric sander, by the reduction of the thickness of the shell. It must be pointed out
that it is very difficult to control the thickness of the shell in the imperfection region. In the tested
specimens, the wall thickness was reduced between 40 and 50%. The imperfect shell initially is
under traction through an imposed axial displacement �L with a relation �L/L = 0.16. After the
initial elongation, the shell is fixed in its two extremities. Then it is gradually filled with air. The
imperfection has length L imp, thickness Himp and is located at a distance Zi from the upper edge.
Five different values of Zi are considered, as shown in Table II.

The results of these five experiments are shown in Figure 3, where, for each imperfection, the
critical configuration (formation of the bulb or aneurysm) and the respective value of the measured
critical pressure Pcr (10−2 MPa) is shown.

For imperfections located in positions Z1 and Z2, the bulb does not occur in the place of the
local imperfection. This shows that even large imperfections near the supports do not interfere
with the localization of the bulb. However, for imperfections far from the supports (Z3 to Z5)

Table I. Geometric characteristics of the latex shell used in the
experimental analysis.

Geometric
External radius Thickness Length relations

Rubber R(mm) H(mm) L(mm) R/H L/R

Latex 9.38 3.58 200.00 2.63 22

Zi

2

3

1

Pi A

A’

AA’

Limp

Himp

3

Figure 2. Geometry of the axi-symmetric imperfection.
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Table II. Position of the ring imperfection.

Position of the Position from the superior support
imperfection (%L)

Z1 0.02L
Z2 0.05L
Z3 0.20L
Z4 0.30L
Z5 0.45L

(a) Pcr = 11.8 (b) Pcr = 11.98 (c) Pcr = 11.67 (d) Pcr = 11.43 (e) Pcr = 11.3 (f) Pcr = 11.33

Figure 3. Critical configurations, obtained experimentally, and the corresponding critical
pressures: (a) perfect shell and shell with imperfection at (b) Z1 = 0.02L; (c) Z2 = 0.05L;

(d) Z3 = 0.20L; (e) Z4 = 0.30L; and (f) Z5 = 0.45L .

the bulb appears exactly in the place where the imperfection was generated, as observed in the
photographs. When the imperfection is near the support, the place of the buckling localization is
influenced by other small imperfections that may exist in the specimen. As observed, even for
the so-called perfect shell, the bulb does not occur in the middle, as expected from symmetry
conditions for a perfect shell. The theory can, of course, be rewritten to force the bulb to appear
anywhere along the shell.

Figure 4 shows the variation of the critical load with the distance of the imperfection from the
upper support, Zi . Initially, a small increase in the critical pressure occurs (position Z1), followed
by a decrease of the critical pressure for the other four imperfection positions. This is also observed
numerically, as it will be shown in the next section.

2.2. Numerical analysis

Analytical studies of thin hyperelastic shell can be conducted only for simple geometries and
loading cases [9–14]. For thick hyperelastic shells even simple problems can rarely be treated
theoretically [17]. So, for most of the problems related to real hyperelastic shells, the solutions are
usually obtained through numerical techniques. The most used methodology is the finite element
method. However, for a correct analysis a shell element appropriate for large deformation analysis
and a proper constitutive law for hyperelastic materials are required. Here, the numerical study is
carried out using the finite element program ABAQUS. The shell has the same geometry as the
one used in the experiments (Table I).
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Figure 4. Variation of the critical pressure with the localization of the imperfection ring.

Isotropic hyperelastic materials are conveniently represented in terms of a strain energy density
w. Assuming the complete recoverability after deformation, the strain energy density depends only
on the final state of strain and not on the loading. Thus given an undeformed reference state, the
strain is characterized by the principal stretches �1 (meridional), �2 (azimuthal) and �3 (transversal)
or, alternatively, by the strain invariants I1, I2 and I3, that is

w = w(�1, �2, �3) =w(I1, I2, I3) (1)

The three strain invariants of the deformation field are given by

I1 = gi jGi j

I2 = Gi jgi j I3

I3 = G

g

G = |Gi j |, g = |gi j |

(2a)

where Gi j and gi j are the contravariant components of the metric tensors of the undeformed and
deformed states, respectively, and Gi j and gi j are the corresponding components of the covariant
metric tensor [6].

The three deformation invariants can be rewritten in terms of the principal stretches �i (i = 1, 2, 3)

as

I1 = �2
1 + �2

2 + �2
3

I2 = (�1�2)
2 + (�2�3)

2 + (�1�3)
2

I3 = (�1�2�3)
2

(2b)
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Volume changes in rubber-like materials are very small, as shown by Treolar [21], and the
simplifying assumption of incompressibility is usually adopted. Thus the constraint

I3 = 1 (3)

is identically satisfied throughout the material. The strain energy density is then considered as a
function of I1 and I2 only. Hence, the theoretical representation of the behaviour of a hyperelastic
incompressible material is given by the definition of the function w(I1, I2).

There are several constitutive laws in literature particularly adapted to the representation of
elastomers. Rivlin [8] has proposed the following polynomial form for the energy density function:

w = ∑

m,n
Cmn(I1 − 3)m(I2 − 3)n (4)

also known as the Mooney–Rivlin strain energy density function because the first-order polynomial
function

w = C1(I1 − 3) + C2(I2 − 3) (5)

has first been introduced by Mooney [8]. Equation (5) is a function of two constants, C1 and C2.
This is probably one of the most used density functions in finite element codes.

A simplified form of Equation (5)

w = C1(I1 − 3) (6)

known as the Neo-Hookean strain density function, has also been extensively used in literature.
Here, the shell material is modelled as a hyperelastic material of the Mooney–Rivlin type with

elastic constants C1 = 0.100398 MPa and C2 = 0.150843 MPa. These constants were obtained
experimentally for this material by Xavier [20], and a good agreement was observed between
experimental and numerical tests. The experimental methodology can also be found in Pamplona
et al. [1, 2].

2.2.1. Influence of the position of the local imperfection—Zi . First, a convergence analysis of the
mesh used with elements of type S4R (quadrilateral shell elements with reduced integration) is
conducted. It is observed that a good convergence is attained for the critical load for a number
of elements more than 1340. Therefore, all analyses are carried out using 1992 shell elements of
type S4R.

The local imperfection position (Zi ) varies from 0.02L to 0.45L in relation to the lower support
of the shell (see Table II). The ring imperfection has thicknesses that vary from Himp = 1.5 to
3.0 mm, that is, from Himp = 0.40H to 0.85H , with H being the thickness of the undeformed
shell. For the imperfection length two values are considered: L imp = 5 mm and L imp = 0.025L ,
where L is the undeformed length of the shell.

Figure 5 shows the variation of the internal pressure as a function of the maximum radial
displacement, Ur , for different positions of the ring imperfection, as well as the response of the
perfect shell. The influence of the imperfection on the bifurcation load is small and decreases as
the imperfection approaches the support, as shown in Figure 5(b).

Figure 6 shows the critical configuration for each case. It is observed that, for an imperfection
of thickness Himp = 0.85H , in positions Z1 and Z2 (Figure 6(a) and (b)), the formation of the
bulb occurs, as for the perfect shell, in the middle of the shell. However, for positions Z3, Z4 and
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Figure 5. (a) Internal pressure as a function of the maximum radial displacement for different positions
of the imperfection (Zi ); and (b) the detail of the region of the maximum pressures.

Figure 6. Deformed cylindrical shell with imperfection thickness Himp = 0.85H , for
imperfection in positions Z1–Z5: (a) Z1 = 0.02L; (b) Z2 = 0.05L; (c) Z3 = 0.20L;

(d) Z4 = 0.30L; and (e) Z5 = 0.45L .

Z5 (Figures 6(c)–(e)), the bulb appears at the position of the imperfection ring (the imperfection
in the middle of the bulb). This agrees with the general behaviour observed in the experimental
analysis.

Figure 7 shows the variation of the critical pressure with the position of the imperfection for
different imperfection thicknesses. There is a small increase in the critical pressure for positions
Z1 and Z2 when compared with the perfect shell when the thickness of the imperfection is between
zero and 0.85H (see detail in Figure 7(b)). These imperfections are close to one of the supports.
However, for smaller imperfection thicknesses, this increase occurs solely for position Z1. As
the distance of the imperfection from the support increases, the critical pressure decreases. This
decrease is also followed by a change in the localization of the bulb, as observed previously
(Figure 6).
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Figure 7. (a) Variation of the critical pressure with the position of the imperfection for different values of
the imperfection thickness; and (b) detail near position Z1.
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Figure 8. Variation of the critical pressure as a function of the thickness of the shell for two lengths of
imperfection: 0.0125L and 0.0250L .

2.2.2. Effect of the variation of the thickness and length of the local imperfection. Consider
again the same shell submitted to the same traction level and under increasing internal pressure.
Here the influence of the variation of thickness and length of the imperfection ring are analysed
for an imperfection located in position Z5 (Table II). This is the most sensitive location for the
imperfection, as shown previously. Two lengths of the imperfection are considered: L imp = 0.0125L
and L imp = 0.0250L . The thickness of the imperfection varies from 0.45H to 0.85H . Figure 8 shows
the variation of the critical pressure with the thickness of the shell for the two distinct lengths of
imperfection. One notices that, as expected, the critical pressure of the shell is directly proportional
to the thickness of the imperfection, but inversely proportional to its length of the imperfection.

Now the effect of length variation for imperfections located in positions Z2 and Z5 is analysed,
considering Himp = 0.85H . The length of the imperfection varies from 0.0125L to 0.05L . Figure 9
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Figure 9. Variation of the critical load with the increase of the length of the ring of
imperfection for 2 positions Z2 and Z5.

Limp = 0.05LLimp = 0.0375LLimp = 0.025LLimp = 0.0125L

Figure 10. Critical configuration of the shell with imperfection at position Z2 for lengths of imperfections
varying between 0.0125L�L imp�0.05L .

presents the variation of the critical load with the increase of the length of the imperfection. As
the imperfection length increases, the critical load decreases and approaches a lower bound.

For position Z2, the bulb appears initially in the central region of the shell. However a change
in the localization of the bulb occurs for imperfection lengths of 0.025L or higher (Figure 10).
However, for position Z5, the bulb appears at the position of the imperfection for all the considered
imperfection lengths.

3. STUDY OF THE LOCAL GEOMETRIC IMPERFECTIONS IN A
SQUARE SHAPED REGION

3.1. Experimental analysis

Again, for the same shell geometry experiments considering shells with imperfections in the form
of a small square along the length of the shell are carried out. These imperfections also are
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generated with the aid of an electric sander, through the reduction of the thickness of the shell,
with dimensions of 0.025L × 0.025L . It must be pointed out that it is very difficult to control the
thickness of the shell in the imperfection region. The critical configurations for imperfections at
positions Z1–Z4 are presented in Figure 11.

Figure 12 shows the variation of the critical pressure with the position of the imperfection. One
notices that, for all the imperfection positions, a small decrease of the critical pressure occurs.
However, the critical load for position Z2 is slightly higher than that of position Z1. After this
local maximum, the pressure decreases as the distance of the imperfection from the support in-
creases. This fact, although puzzling, since the imperfection is actually strengthening the tube, was
observed both numerically and experimentally. For positions Z1 and Z2 the bulb position is not
affected by the imperfection, while for positions Z3 and Z4 the bulb appears exactly at the position
of the imperfection. A behaviour similar to that observed experimentally for the axi-symmetric
imperfection.

(a) Pcr = 11.43 (b) Pcr = 11.5 (c) Pcr = 11.32 (d) Pcr = 11.28

Figure 11. Experimental results. Critical configurations for shells with initial imperfection in a square
shaped region in positions: (a) Z1 = 0.02L; (b) Z2 = 0.05L; (c) Z3 = 0.20L; and (d) Z4 = 0.30L .
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Figure 12. Variation of the experimental critical pressure with the position of the imperfection.
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3.2. Numerical analysis

Now a numerical investigation of the behaviour of the imperfect shell is conducted. The local
imperfection is represented by the reduction of the thickness of the shell in a square shaped region
with dimensions of 0.025 × 0.025L and variable thickness. The variation of the position of the
imperfection along the length of the shell is the same one adopted in the previous item (Z1, Z2, Z3
and Z4).

The convergence analysis carried out in the previous item also applies to this analysis. Thus,
as in the previous analysis, a mesh with 1992 S4R elements and 2016 nodes is considered. The
results, shown in Figure 13, exhibit a small variation of the critical pressure with the position of
the imperfection. In this case the imperfection thickness is Himp = 0.85H . Figure 14 illustrates
the critical configurations obtained numerically. As in the experimental analysis, for imperfection
Z1 and Z2 the bulb position is not affected by the imperfection, while for positions Z3 and Z4
the bulb appears exactly at the position of the imperfection. Also it is observed for positions Z3

Perfect
Z4

Z3

Z2

Z1

10.9

11

11.1

0 5 10 15 20 25 30 35

Zi-distance from superior support (%L)

P
cr

 (1
0-

2 
M

P
a)

Figure 13. Variation of the critical pressure with the position of the imperfection (Himp = 0.85H).

Figure 14. Deformed configurations of shells with local imperfections of
dimensions 0.025L × 0.025L × 0.85H for positions Z1–Z4: (a) Z1 = 0.02L;

(b) Z2 = 0.05L; (c) Z3 = 0.20L; and (d) Z4 = 0.30L .
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and Z4 a loss of symmetry that affects the global behaviour of the shell. In addition to the local
instability, a global, column type instability occurs.

Now the same shell with an imperfection of thickness Himp = 0.75H is studied. The variation
of the critical pressure as a function of the imperfection position is shown in Figure 15. For this
imperfection thickness the critical pressure is different from the previous case (Figure 13). Here
a small increase of the critical pressure in relation to the perfect shell occurs for Z2. However,
for the other positions, the critical pressure decreases, being this decrease more significant in
position Z1. As illustrated in Figure 16, for an imperfection in positions Z1, the bulb develops in
the middle of the shell. For the other imperfection positions the bulb appears in the place of the
imperfection. Again, a loss of symmetry of the deformed shell for these imperfection positions is
observed.

In order to understand the effect of the imperfection thickness on the critical load and mode,
a shell with Himp = 0.55H is now analysed. Again, as shown in Figure 17, a small variation of
the critical pressure in relation to the one of the perfect shell is observed. From these results,
one can conclude that the imperfection thickness and position has only a small influence on the
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Figure 15. Variation of the critical pressure with the position of the imperfection
of dimensions 0.025L × 0.025L × 0.75H .

Figure 16. Configurations of the shell at the critical points with an imperfection
of dimensions 0.025L × 0.025L × 0.55H in positions Z1–Z4: (a) Z1 = 0.02L;

(b) Z2 = 0.05L; (c) Z3 = 0.20L; and (d) Z4 = 0.30L .
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Figure 17. Variation of the critical pressure with the position of the imperfection for Himp = 0.55H .

critical pressure. However the variation of this critical pressure, although small, is different for
different values of the imperfection thickness. On the other hand, the imperfections have an
important influence on the local and global instability mode of the shell.

4. STUDY OF MULTIPLE LOCAL GEOMETRIC IMPERFECTIONS

Here two imperfections, equidistant from the supports and forming an angle �imp between them,
are considered. The angle �imp varies from 0◦ to 180◦, as illustrated in Figure 18. As in the
previous analysis, the imperfections have the form of a small square and are considered to have
the same geometry. The analysed shells have 3 mm thicknesses, 400 mm length, and 11 mm
diameter (H/R = 0.55 and L/R = 72.7). The imperfections are located 0.05L from the supports
(position Z2, as presented in Table II) and two imperfection thicknesses are considered, namely
Himp = 0.55 and 0.75H .

Again a convergence analysis was carried out and it was observed that 1500 S4R elements are
sufficient to obtain a good convergence for all configurations. Based on this analysis, a mesh of
1688 S4R elements and 1656 nodes is adopted.

Figure 19 shows the obtained critical configurations for �imp = 0◦. The imperfections have
thicknesses of Himp = 0.55 and 0.75H and are located at a distance of 0.05L from the sup-
ports. It is observed in the Figure 19(a) that, for an imperfection thickness 0.55H , the shell
does not exhibit a global instability, with instabilities concentrated in the regions of the im-
perfections. However, as shown in the Figure 19(b), for an imperfection thickness of 0.75H ,
besides the two local instabilities, a global instability mode is observed. Figure 19(c) shows
the typical non-linear behaviour of a hyperelastic thick shell under traction and increasing in-
ternal pressure. As expected, the critical load decreases as the thickness of the imperfection
decreases.

The influence of the angle between the two imperfections is studied by varying �imp from 0◦
to 180◦ and maintaining the geometry of both imperfections constant. The results are shown in
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Figure 19. (a), (b) Deformed configurations of shells with two local imperfections forming an angle of
0◦ between them; and (c) respective load–displacement response.

Figures 20 and 21. �imp has a small influence on the non-linear response of the shell. However,
with regard to the deformation pattern of the shell at the critical point, a puzzling fact is observed:
for angles of 130◦, 150◦ and 165◦, only one bulb appears, Figures 21(e)–(g); for all other angles
two bulbs are observed. It must be pointed out that the formation of two bulbs was not observed
in the experiments. In the laboratory it is impossible to generate two exactly equal imperfections.
Even small variations in the position and size of the imperfections, apart from other inherent model
imperfections, are sufficient to localize the instability at only one position.
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Figure 20. Variation of the internal pressure as a function of the maximum radial displacement
for different values of �imp. Himp = 0.75H .

5. INFLUENCE OF THE INITIAL CURVATURE OF THE SHELL

Finally the effect of a global imperfection on the non-linear behaviour and load carrying capacity
of the shell is studied. The imperfection takes the form of a non-zero curvature in the axial direction
of the shell. Positive and negative initial curvatures are considered, as illustrated in Figure 22.
The positive and negative curvature is generated through ABAQUS by using a spline through
three given points, namely the extremities of the shell, (R, L/2) and (R, −L/2), and the point
located at the middle height of the shell (x = 0) and radial co-ordinate r = R ± �R, and �R
equals to 0.5, 1.0 and 1.5 mm. The inner and outer surface of the shell are subjected to the same
curvature.

Initially, the behaviour of three shells of distinct thicknesses is analysed, considering two
positive radius of initial curvature. Later two negative radius of curvature for the same shells are
considered.

5.1. Influence of positive initial curvature

A numerical study of the behaviour of shells with positive initial radius of curvature of r1 =
+0.5, +1.0+2.0 × 104 mm is carried out considering shells with undeformed thicknesses H = 1.0,

2.0, and 3.0 mm. The cylindrical shell of reference (without imperfection) has a radius of
R = 9.0 mm and an undeformed length of L = 300 mm and is submitted to an initial traction
of �L/L = 0.16.

Figure 23 shows the variation of the internal pressure with the maximum radial displacement
for shells with initial thicknesses of 2.0 and 3.0 mm. A considerable reduction of the critical load
of the shell with the increase of the initial curvature is observed for both shell thicknesses. The
deformation pattern is the same found for the perfect shell, as shown in Figure 24, with one bulb
in the middle of the shell.
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Figure 21. Deformed configurations considering two local imperfections with �imp varying
from 0◦ to 180◦: (a) �imp = 30◦; (b) �imp =60◦; (c) �imp = 90◦; (d) �imp = 120◦; (e) �imp = 130◦;

(f) �imp = 150◦; (g) �imp = 165◦; and (h) �imp = 180◦.

5.2. Influence of negative initial curvature

The same study is carried out for the geometries presented in the previous item considering now a
negative initial curvature of r1 = −0.5, −1.0 and −2.0 × 104 mm. Figure 25 shows the variation of
the internal pressure with the maximum radial displacement for two shells. In this case, the critical
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Figure 22. Representation of the initial curvature of the shell: (a) positive; (b) null; and
(c) negative and its respective radius of curvature.
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Figure 23. Non-linear response of the shell with positive initial curvature for two values of the initial
thickness H and different values of the initial curvature r1: (a) H = 2.0 mm; and (b) H = 3.0 mm.

Figure 24. Critical configurations of the shell with positive initial curvature of 1 × 104 mm and thickness
of 1.0, 2.0 and 3.0 mm, respectively: (a) H = 1 mm; (b) H = 2 mm; and (c) H = 3 mm.
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Figure 25. Non-linear response of the shell with negative initial curvature for two values of the initial
thickness H and different values of the initial curvature r1: (a) H = 2.0 mm; and (b) H = 3.0 mm.

Figure 26. Critical configurations of the shell with negative initial curvature of 1 × 104 mm and thickness
of 1.0, 2.0 and 3.0 mm, respectively: (a) H = 1 mm; (b) H = 2 mm; and (c) H = 3 mm.

load increases with increasing imperfection. Also, the critical configuration is completely different
from that observed for the perfect shell, with the formation of two bulbs near the supports, as
illustrated in Figure 26.

Figure 27 shows the variation of the critical pressure of the shell with the radius of curvature r1.

6. CONCLUSIONS

The non-linear behaviour and stability of a thick hyperelastic shell under constant traction and
increasing internal pressure was analysed both numerically and experimentally. In the numerical
analysis, the material of the shell was modelled as a Mooney–Rivlin material with two elastic
constants and the shell was discretized by the finite element method using shell elements for large
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Figure 27. Variation of the internal critical pressure of the shell with initial radius of curvature (r1) for
shells with undeformed thicknesses of 2.0 and 3.0 mm.

strain analysis. The objective was to study the effects of local imperfection on the critical load and
particularly on the local buckling of the shell.

First a local axi-symmetric imperfection in the form of a ring was generated through the reduction
of the shell thickness. A parametric analysis of this type of imperfection was carried out varying
the position, thickness and length of the imperfection. It was observed that the dimensions of the
imperfection have a small influence on the critical pressure. The critical load decreases as the
thickness of the shell in the region of the imperfection decreases and as the local imperfection
moves away from the supports. It is also observed that the critical load is inversely proportional
to the length of the imperfection. A good agreement in terms of the global behaviour was verified
between the obtained numerical results and the experimental results for imperfect shells.

Another type of local imperfection in the form of a small square was analysed. A behaviour
similar to the one observed previously was obtained.

The influence of multiple imperfections was also analysed. For this, two local imperfections
of the same form and thickness located symmetrically in relation to the middle of the shell were
considered and the angle between the two imperfections in the circumferential direction was varied
between 0◦ to 180◦. When the angle between the imperfections varied between 0◦ and 120◦ and
165◦ and 180◦ two bulbs were observed in the numerical analysis. For angles between 120◦ and
165◦, only one bulb was observed. However, in all experiments involving two imperfections only
one bulb can be observed. This can be explained by the fact that in the experimental analysis is
practically impossible to generate two identical local imperfections. Even small variations in the
local imperfection make the bulb to form in only one location.

Finally, a global imperfection was generated through modifications in the initial curvature of the
shell in the axial direction. It was observed that, for negative initial curvatures, the critical pressure
suffers a small increase in relation to the one obtained for the cylindrical shell with constant radius.
On the other hand, for positive initial curvatures the critical pressure decreases as the curvature
increases.

This work is part of an ongoing research on the stability analysis of thick hyperelastic shells
under various loadings with emphasis on the local and global instability phenomena. The ultimate
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goal of this research is to model and understand the formation of aneurysm in arteries. At the
moment more refined constitutive laws are being tested both numerically and experimentally
[22, 23].
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