
HAL Id: hal-01302969
https://hal.science/hal-01302969

Submitted on 11 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rank-dependent Probability Weighting in Sequential
Decision Problems under Uncertainty

Gildas Jeantet, Olivier Spanjaard

To cite this version:
Gildas Jeantet, Olivier Spanjaard. Rank-dependent Probability Weighting in Sequential Decision
Problems under Uncertainty. International Conference on Automated Planning and Scheduling, 2008,
Sydney, Australia. pp.148-155. �hal-01302969�

https://hal.science/hal-01302969
https://hal.archives-ouvertes.fr

Rank-Dependent Probability Weighting
in Sequential Decision Problems under Uncertainty

Gildas Jeantet and Olivier Spanjaard
LIP6 - UPMC

104 av du Président Kennedy
75016 Paris, France

{gildas.jeantet, olivier.spanjaard}@lip6.fr

Abstract

This paper is devoted to the computation of optimal strate-
gies in automated sequential decision problems. We con-
sider here problems where one seeks a strategy which is opti-
mal for rank dependent utility (RDU). RDU generalizes von
Neumann and Morgenstern’s expected utility (by probabil-
ity weighting) to encompass rational decision behaviors that
EU cannot accomodate. The induced algorithmic problem is
however more difficult to solve since the optimality principle
does not hold anymore. More crucially, we prove here that the
search for an optimal strategy (w.r.t. RDU) in a decision tree
is an NP-hard problem. We propose an implicit enumeration
algorithm to compute optimal rank dependent utility in deci-
sion trees. The performances of our algorithm on randomly
generated instances and real-world instances of different sizes
are presented and discussed.

Introduction

Many AI problems can be formalized as planning problems
under uncertainty (robot control, relief organization, medi-
cal treatments, games...). Planning under uncertainty con-
cerns sequential decision problems where the consequences
of actions are dependent on exogeneous events. Decision
theory provides useful tools to deal with uncertainty in deci-
sion problems. The term decision-theoretic planning refers
to planners involving such decision-theoretic tools (Blythe,
1999; Boutilier, Dean, and Hanks, 1999). A planner returns
a plan, i.e. a sequence of actions conditioned by events.
In planning under uncertainty, the consequence of a plan
is obviously non deterministic. A plan can then be associ-
ated with a probability distribution (lottery) on the potential
consequences. Comparing plans amounts therefore to com-
paring lotteries. The purpose of decision theory under risk
is precisely to provide tools to evaluate lotteries in order to
compare them. These tools are called hereafter decision cri-
teria. Formally, the aim of a decision-theoretic planner is
to find a plan optimizing a given decision criterion. A pop-
ular criterion is the expected utility (EU) model proposed
by von Neuman and Morgenstern (1947). In this model,
an agent is endowed with a utility function u that assigns
a numerical value to each consequence. The evaluation of
a plan is then performed via the computation of its utility
expectation. However, despite its intuitive appeal, the EU
model does not make it possible to account for all rational

decision behaviors. An example of such impossibility is the
so-called Allais’ paradox (Allais, 1953). We present below
a very simple version of this paradox due to Kahneman and
Tversky (1979).

Example 1 (Allais’ paradox) Consider a choice situation
where two options are presented to a decision maker. She
chooses between lottery L1 and lottery L′

1 in a first problem,
and between lottery L2 and lottery L′

2 in a second problem
(see Table 1). In the first problem she prefers L1 to L′

1

Lottery 0$ 3000$ 4000$
L1 0.00 1.00 0.00
L′

1 0.10 0.00 0.90
L2 0.90 0.10 0.00
L′

2 0.91 0.00 0.09

Table 1: Lotteries in Allais’ paradox.

(she is certain to earn 3000$ with L1 while she might earn
nothing with L′

1), while in the second problem she prefers
L′
2 to L2 (the probability of earning 4000$ with L′

2 is al-
most the same as the probability of earning only 3000$ with
L2). The EU model cannot simultaneously account for both
preferences. Indeed, the preference for L1 over L′

1 implies
u(3000) > 0.1u(0) + 0.9u(4000). This is equivalent to
0.1u(3000) > 0.01u(0) + 0.09u(4000), and therefore to
0.9u(0)+0.1u(3000)> 0.91u(0)+0.09u(4000) (by adding
0.9u(0) on both sides). Hence, whatever utility function is
used, the preference for L1 over L′

1 implies the preference
for L2 over L′

2 in the EU model.

Actually, Allais points out that this attitude, far from being
paradoxical, corresponds to a reasonable behavior of prefer-
ence for security in the neighbourhood of certainty (Allais,
1997). In other words, “a bird in the hand is worth two in
the bush”. It is known as the certainty effect. In the example,
the probability of winning 3000$ in L1 (resp. 4000$ in L′

1)
is simply multiplied by 0.1 in L2 (resp. L′

2). The preference
reversal can be explained as follows: when the probability of
winning becomes low, the sensitivity to the value of earnings
increases while the sensitivity to the probabilities decreases.
To encompass the certainty effect in a decision criterion, the
handling of probabilities should therefore not be linear. This
has led researchers to sophisticate the definition of expected
utility. Among the most popular generalizations of EU, let
us mention the rank dependent utility (RDU) model intro-
duced by Quiggin (1993). In this model, a non-linear proba-

bility weighting functionϕ is incorporated in the expectation
calculus, which gives a greater expressive power. In particu-
lar, the RDU model is compatible with the Allais’ paradox.
Furthermore, the probability weighting function ϕ is also
useful to model the attitude of the agent towards the risk.
Indeed, contrary to the EU model, the RDU model makes it
possible to distinguish between weak risk aversion (i.e., if an
option yields a guaranteed utility, it is preferred to any other
risky option with the same expected utility) and strong risk
aversion (i.e., if two lotteries have the same expected utility,
then the agent prefers the lottery with the minimum spread
of possible outcomes). For this reason, the RDU criterion
has been used in search problems under risk in state space
graphs, with the aim of finding optimal paths for risk-averse
agents (Perny, Spanjaard, and Storme, 2007). This concern
of modeling risk-averse behaviors has also been raised in
the context of Markov decision processes, for which Liu and
Koenig (2008) have shown the interest of using one-switch
utility functions.

In this paper, we investigate how to compute an RDU-
optimal plan in planning under uncertainty. Several rep-
resentation formalisms can be used for decision-theoretic
planning, such as decision trees (e.g., Raiffa (1968)), influ-
ence diagrams (e.g., Shachter (1986)) or Markov decision
processes (e.g., Dean et al. (1993); Kaebling, Littman, and
Cassandra (1999)). A decision tree is a direct representa-
tion of a sequential decision problem, while influence dia-
grams or Markov decision processes are compact represen-
tations and make it possible to deal with decision problems
of greater size. For simplicity, we study here the decision
tree formalism. Note that an approach similar to the one
we propose here could be applied to influence diagrams and
finite horizon Markov decision processes, with a few cus-
tomizations. The evaluation of a decision tree is the process
of finding an optimal plan from the tree. The computation of
a strategy maximizing RDU in a decision tree (in a decision
tree, a plan is called a strategy) is a combinatorial problem
since the number of potential strategies in a complete bi-

nary decision tree is in Θ(2
√
n), where n denotes the size of

the decision tree. Contrary to the computation of a strategy
maximizing EU, one cannot directly resort to dynamic pro-
gramming for computing a strategy maximizing RDU. This
raises a challenging algorithmic problem, provided the com-
binatorial number of potential strategies.

The paper is organized as follows. We first recall the main
features of RDU and introduce the decision tree formalism.
After showing that dynamic programming fails to optimize
RDU in decision trees, we prove that the problem is in fact
NP-hard. Next, we present our upper bounding procedure
and the ensuing implicit enumeration algorithm. Finally, we
provide numerical tests on random instances and on different
representations of the game Who wants to be a millionaire?.

Rank Dependent Utility

Given a finite set S = {u1, . . . , uk} of utilities, any strategy
in a sequential decision problem can be seen as a lottery,
characterized by a probability distribution P over S. We
denote by L = (p1, u1; . . . ; pk, uk) the lottery that yields

utility ui with probability pi = P ({ui}). For the sake of
clarity, we will consider a lottery L as a function from S to
[0, 1] such that L(ui) = pi. Rank dependent utility, intro-
duced by Quiggin (1993), is among the most popular gen-
eralizations of EU, and makes it possible to describe so-
phisticated rational decision behaviors. It involves a util-
ity function on consequences as in EU, and also a proba-
bility transformation function ϕ. This is a non-decreasing
function, proper to any agent, such that ϕ(0) = 0 and
ϕ(1) = 1. Note that the distortion is not applied on prob-
abilities themselves, but on cumulative probabilities. For
any lottery L = (p1, u1; . . . ; pk, uk), the decumulative func-
tion GL is given by GL(x) =

∑

i:ui≥x pi. We denote by

(GL(u1), u1; . . . ;GL(uk), uk) the decumulative function of
lottery L. The rank dependent utility of a lottery L is then
defined as follows:

RDU(L) = u(1) +
k
∑

i=2

[

u(i) − u(i−1)

]

ϕ
(

GL

(

u(i)

))

where (.) represents a permutation on {1, . . . , k} such that
u(1) ≤ . . . ≤ u(k). This criterion can be interpreted as
follows: the utility of lottery L is at least u(1) with prob-
ability 1; then the utility might increase from u(1) to u(2)

with probability mass ϕ(GL(u(2))); the same applies from

u(2) to u(3) with probability mass ϕ(GL(u(3))), and so on...

When ϕ(p) = p for all p, it can be shown that RDU reduces
to EU.

Example 2 Coming back to Example 1, we define the utility
function by u(x) = x, and we set ϕ(0.09) = ϕ(0.1) =
0.2, ϕ(0.9) = 0.7. The strategy returned by RDU is then
compatible with the Allais’ paradox. Indeed, we have:

RDU(L1) = u(3000) = 3000
RDU(L′

1) = u(0) + ϕ(0.9)(u(4000)− u(0)) = 2800

Therefore L1 is preferred to L′
1. Similarly, we have:

RDU(L2) = u(0) + ϕ(0.1)(u(3000)− u(0)) = 600
RDU(L′

2) = u(0) + ϕ(0.09)(u(4000)− u(0)) = 800

We conclude that L′
2 is preferred to L2.

The main interest of distorting cumulative probabili-
ties, rather than probabilities themselves (as in Handa’s
model, 1977), is to get a choice criterion that is com-
patible with stochastic dominance. A lottery L =
(p1, u1; . . . ; pk, uk) is said to stochastically dominate a lot-
tery L′ = (p′1, u

′
1; . . . ; p

′
k, u

′
k) if for all x ∈ R, GL(x) ≥

GL′(x). In other words, for all x ∈ R, the probability to
get a utility at least x with lottery L is at least as high as
the probability with lottery L′. Compatibility with stochas-
tic dominance means that RDU(L) ≥ RDU(L′) as soon as
L stochastically dominates L′. This property is obviously
desirable to guarantee a rational behavior, and is satisfied by
RDU model (contrary to Handa’s model).

Decision Tree

A decision tree is an arborescence with three types of nodes:
the decision nodes (represented by squares), the chance
nodes (represented by circles), and the terminal nodes (the
leaves of the arborescence). The branches starting from a de-
cision node correspond to different possible decisions, while

D1

C1

D20.5

C3

b 10
0.5

b 3
0.5

C4

b 11
0.5

b 1
0.5

b 2

0.5

C2

b 10.3

b 2
0.45

b 110.25

Figure 1: A decision tree representation.

the ones starting from a chance node correspond to different
possible events, the probabilities of which are known. The
values indicated at the leaves correspond to the utilities of
the consequences. Note that one omits the orientation of
the edges when representing decision trees. For the sake of
illustration, a decision tree representation of a sequential de-
cision problem (with three strategies) is given in Figure 1.

More formally, in a decision tree T = (N , E), the root
node is denoted by Nr, the set of decision nodes by ND ⊂
N , the set of chance nodes by NC ⊂ N , and the set of
terminal nodes by NT ⊂ N . The valuations are defined
as follows: every edge E = (C,N) ∈ E such that C ∈
NC is weighted by probability p(E) of the corresponding
event; every terminal nodeNT ∈ NT is labelled by its utility
u(NT). Besides, we call past(N) the past of N ∈ N , i.e.
the set of edges along the path from Nr to N in T . Finally,
we denote by S(N) the set of successors of N in T , and by
T (N) the subtree of T rooted in N .

Following Jaffray and Nielsen (2006), one defines a strat-
egy as a set of edges ∆ = {(N,N ′) : N ∈ N∆

D , N ′ ∈
N∆} ⊆ E , whereN∆ ⊆ N is a set of nodes including :

• the root Nr of T ,

• one and only one successor for every decision node N ∈
N∆

D = ND ∩N∆,

• all successors for every chance node N ∈ N∆
C = NC ∩

N∆.

Given a decision node N , the restriction of a strategy in T to
a subtree T (N), which defines a strategy in T (N), is called
a substrategy.

Note that the number of potential strategies grows expo-
nentially with the size of the decision tree, i.e. the number
of decision nodes (this number has indeed the same order of
magnitude as the number of nodes in T). Indeed, one easily

shows that there are Θ(2
√
n) strategies in a complete binary

decision tree T . For this reason, it is necessary to develop
an optimization algorithm to determine the optimal strategy.
It is well-known that the rolling back method makes it pos-
sible to compute in linear time an optimal strategy w.r.t. EU.
Indeed, such a strategy satisfies the optimality principle: any
substrategy of an optimal strategy is itself optimal. Starting
from the leaves, one computes recursively for each node the
expected utility of an optimal substrategy: the optimal ex-
pected utility for a chance node equals the expectation of the
optimal utilities of its successors; the optimal expected util-

ity for a decision node equals the maximum expected utility
of its successors.

Example 3 In Figure 1, the optimal expected utility at node
D2 is max{6.5, 6} = 6.5. Consequently, the optimal ex-
pected utility at node C1 is 4.25. The expected utility at
node C2 is 0.3 × 1 + 0.45 × 2 + 0.25 × 11 = 3.95. The
optimal expected utility at the root node D1 is therefore
max{4.25, 3.95} = 4.25, and the correspond strategy is
{(D1, C1), (D2, C3)}. Note that this is not an optimal strat-
egy when using RDU to evaluate lotteries (see next section).

We show below that the computation of a strategy opti-
mizing RDU is more delicate since dynamic programming
no longer applies.

Monotonicity and Independence
It is well known that the validity of dynamic programming
procedures strongly relies on a property of monotonicity
(Morin, 1982) of the value function. In our context, this
condition can be stated as follows on the value function V
of lotteries:

V (L) ≥ V (L′) ⇒ V (αL+(1−α)L′′) ≥ V (αL′ +(1−α)L′′)

where L,L′, L′′ are lotteries, α is a scalar in [0, 1] and αL+
(1−α)L′′ is the lottery defined by (αL+(1−α)L′′)(x) =
αL(x) + (1 − α)L′′(x). This algorithmic condition can be
understood, in the framework of decision theory, as a weak
version of the independence axiom used by von Neuman and
Morgenstern (1947) to characterize the EU criterion. This
axiom states that the mixture of two lotteries L and L′ with
a third one should not reverse preferences (induced by V): if
L is strictly preferred to L′, then αL+(1−α)L′′ should be
strictly preferred to αL′+(1−α)L′′. The monotonicity con-
dition holds for V ≡ EU . However, it is not true anymore
for V ≡ RDU , as shown by the following example.

Example 4 Consider lotteries L = (0.5, 3; 0.5, 10), L′ =
(0.5, 1; 0.5, 11) and L′′ = (1, 2). Assume that the decision
maker preferences follow the RDU model with the following
ϕ function:

ϕ(p) =



























0 if p = 0
0.45 if 0 < p ≤ 0.25
0.6 if 0.25 < p ≤ 0.5
0.75 if 0.5 < p ≤ 0.7
0.8 if 0.7 < p ≤ 0.75
1 if p > 0.75

The RDU values of lotteries L and L′ are:

RDU(L)=3+(10-3)ϕ(0.5)=7.2
RDU(L′)=1+(11-1)ϕ(0.5)=7

Thus, we have RDU(L) ≥ RDU(L′). By the mono-
tonicity condition for α = 0.5, one should therefore have
RDU(0.5L+ 0.5L′′) ≥ RDU(0.5L′ + 0.5L′′). However,
we have:

RDU(0.5L+0.5L′′)=2+(3-1)ϕ(0.5)+(10-3)ϕ(0.25)=5.75
RDU(0.5L′+0.5L′′)=1+(2-1)ϕ(0.75)+(11-2)ϕ(0.25)=6.65

Therefore RDU(0.5L + 0.5L′′) < RDU(0.5L′ + 0.5L′′).
Consequently, the monotonicity property does not hold.

It follows that one cannot directly resort to dynamic pro-
gramming to compute an optimal strategy: it could yield a
suboptimal strategy. Such a procedure could even yield a
stochastically dominated strategy, as shown by the follow-
ing example.

Example 5 Consider the decision tree of Figure 1. In this
decision tree, the RDU values of the different strategies are
(at the root):

RDU({(D1, C2)}) = 5.8
RDU({(D1, C1), (D2, C3)}) = 5.75
RDU({(D1, C1), (D2, C4)}) = 6.65

Thus, the optimal strategy at the root is
{(D1, C1), (D2, C4)}. However, by dynamic program-
ming, one gets at node D2: RDU({(D2, C3)}) = 7.2 and
RDU({(D2, C4)}) = 7. This is therefore the substrategy
{(D2, C3)} that is obtained at node D2. At node D1,
this is thereafter the strategy {(D1, C2)} (5.8 vs 5.75
for {(D1, C1), (D2, C3)}), stochastically dominated by
{(D1, C1), (D2, C4)}), which is returned.

For this reason, a decision maker using the RDU criterion
should adopt a resolute choice behavior (McClennen, 1990),
i.e. she initially chooses a strategy and never deviates from it
later (otherwise she could follow a stochastically dominated
strategy). We focus here on determining an RDU-optimal
strategy from the root. By doing so, we are sure to never en-
counter a stochastically dominated substrategy, contrarily to
a method that would consist in performing backward induc-
tion with RDU. Other approaches of resolute choice have
been considered in the literature. For example, Jaffray and
Nielsen (2006) consider each decision node in the decision
tree as an ego of the decision maker, and aim at determining
a strategy achieving a compromise between the egos, such
that all its substrategies are close to optimality for RDU and
stochastically non-dominated.

Computational Complexity

We now prove that the determination of an RDU-optimal
strategy in a decision tree is an NP-hard problem, where the
size of an instance is the number of involved decision nodes.

Proposition 1 The determination of an RDU-optimal strat-
egy (problem RDU-OPT) in a decision tree is an NP-hard
problem.

Proof. The proof relies on a polynomial reduction from
problem 3-SAT, which can be stated as follows:

INSTANCE: a set X of boolean variables, a collection C of
clauses on X such that |c| = 3 for every clause c ∈ C.

QUESTION: does there exist an assignment of truth values
to the boolean variables of X that satisfies simultaneously
all the clauses of C ?

Let X = {x1, . . . , xn} and C = {c1, . . . , cm}. The poly-
nomial generation of a decision tree from an instance of 3-
SAT is performed as follows. One defines a decision node
for every variable of X . Given xi a variable in X , the
corresponding decision node in the decision tree, also de-
noted by xi, has two children: the first one (chance node

denoted by Ti) corresponds to the statement ’xi has truth
value “true”’, and the second one (chance node denoted by
Fi) corresponds to the statement ’xi has truth value “false”’.
The subset of clauses which includes the positive (resp. neg-
ative) literal of xi is denoted by {ci1 , . . . , cij} ⊆ C (resp.
{ci′

1
, . . . , ci′

k
} ⊆ C). For every clause cih (1 ≤ h ≤ j) one

generates a child of Ti denoted by cih (terminal node). Be-
sides, one generates an additionnal child of Ti denoted by
c0, corresponding to a fictive consequence. Similarly, one
generates a child of Fi for every clause ci′

h
(1 ≤ h ≤ k), as

well as an additionnal child corresponding to fictive conse-
quence c0. Node Ti has therefore j+1 children, while node
Fi has k + 1 children. In order to make a single decision
tree, one adds a chance node C predecessor of all decision
nodes xi (1 ≤ i ≤ n). Finally, one adds a decision node as
root, with C as unique child. The obtained decision tree in-
cludesn+1 decision nodes, 2n+1 chance nodes and at most
2n(m + 1) terminal nodes. Its size is therefore in O(nm),
which guarantees the polynomiality of the transformation.
For the sake of illustration, on Figure 2, we represent the
decision tree obtained for the following instance of 3-SAT:
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

Note that one can establish a bijection between the set of
strategies in the decision tree and the set of assignments
in problem 3-SAT. For that purpose, it is sufficient to set
xi = 1 in problem 3-SAT iff edge (xi, Ti) is included in the
strategy, and xi = 0 iff edge (xi, Fi) is included in the strat-
egy. An assignment such that the entire expression is true
in 3-SAT corresponds to a strategy such that every clause ci
(1 ≤ i ≤ m) is a possible consequence (each clause appears
therefore from one to three times). To complete the reduc-
tion, we now have to define, on the one hand, the probabili-
ties assigned to the edges from nodes C, Ti and Fi, and, on
the other hand, the utilities of the consequences and function
ϕ. The reduction consists in defining them so that strategies
maximizing RDU correspond to assignments for which the
entire expression is true in 3-SAT. More precisely, we aim
at satisfying the following properties:

(i) the RDU value of a strategy only depends on the set
(and not the multiset) of its possible consequences (in other
words, the set of clauses that become true with the corre-
sponding assignment),
(ii) the RDU value of a strategy corresponding to an assign-
ment that makes satisfiable the 3-SAT expression equals m,
(iii) if a strategy yields a set of possible consequences that
is strictly included in the set of possible consequences of an-
other strategy, the RDU value of the latter is strictly greater.

For that purpose, after assigning probability 1
n to edges orig-

inating from C, one defines the other probabilities and utili-
ties as follows (i 6= 0) :

{

pi = (1
10)

i

u(ci) =
∑i

j=1 10
j−1

where pi is the probability assigned to all the edges lead-
ing to consequence ci. For the edges of type (Tj , c0) (or
(Fj , c0)), one sets u(c0) = 0 and one assigns a probabil-
ity such that all the probabilites of edges originating from
Tj (or Fj) sum up to 1. Note that this latter probability is

D L

x1

1
4

T1

b c0 = 0
0.9

b c1 = 1
0.1

F1

b c0 = 0
0.99

b c2 = 11
0.01

x21
4

T2

b c0 = 0
0.9

b c1 = 1
0.1

F2

b c0 = 0
0.999

b c3 = 111
0.001

x3
1
4

T3

b c0 = 00.89

b c1 = 1
0.1

b c2 = 110.01

F3

b c0 = 0
0.999

b c3 = 111
0.001

x4

1
4

T4

b c0 = 0
0.99

b c2 = 11
0.01

F4

b c0 = 0
0.999

b c3 = 111
0.001

Figure 2: An example of reduction.

positive since the sum of pi’s is strictly smaller than 1 by
construction. Finally, function ϕ is defined as follows1:

ϕ(p) =







0 if p ∈ [0; pm

n)
pi if p ∈ [pi+1

n ; pi

n) for i < m
1 if p ∈ [p1

n ; 1)

For the sake of illustration, we now give function ϕ obtained
for the instance of 3-SAT indicated above:

ϕ(p) =















0, if p ∈ [0; 1
4×1000)

1
100 , if p ∈ [1

4×1000 ;
1

4×100)
1
10 , if p ∈ [1

4×100 ;
1

4×10)

1, if p ∈ [1
4×10 ; 1)

In the following, we consider some strategy ∆, inducing
a lottery denoted by L, and we denote by I ⊆ {0, . . . ,m}
the set of indices of the possible consequences of ∆. Note
that consequence c0 is always present in a strategy ∆.
We denote by αi ∈ {1, 2, 3} the number of occurences
of consequence ci in ∆. By abuse of notation, we use
indifferently ci and u(ci) below.

Proof of (i). The RDU value of ∆ is RDU(L) =

c0 × ϕ(1) +
∑

i∈I(ci − cprevI (i))ϕ
(

∑

j∈I
j≥i

αj
pj

n

)

where prevI(i) = max{j ∈ I : j < i}. We now show that

∀i ∈ I, ϕ
(

∑

j∈I

j≥i

αj
pj

n

)

= ϕ
(

∑

j∈I

j≥i

pj

n

)

By increasingness of ϕ, we have

ϕ
(

∑

j∈I

j≥i

pj

n

)

≤ ϕ
(

∑

j∈I

j≥i

αj
pj

n

)

≤ ϕ
(

∑

j∈I

j≥i

3
pj

n

)

1Note that function ϕ is not strictly increasing here, but the
reader can easily convince himself that it can be slightly adapted
so that it becomes strictly increasing.

Therefore

ϕ(
∑

j∈I
j≥i

1

n
(
1

10
)j) ≤ ϕ(

∑

j∈I
j≥i

αj
pj

n
) ≤ ϕ(

∑

j∈I
j≥i

3

n
(
1

10
)j)

Since ϕ
(

∑

j∈I

j≥i

1
n

(

1
10

)j
)

= ϕ
(

∑

j∈I

j≥i

3
n

(

1
10

)j
)

= pi−1

we have by bounding ϕ
(

∑

j∈I

j≥i

αj
pj

n

)

= ϕ
(

∑

j∈I

j≥i

pj

n

)

Hence RDU(L) =
∑

i∈I

(

ci − cprevI (i)
)

ϕ
(

∑

j∈I

j≥i

pj

n

)

since c0 × ϕ(1) = 0

Proof of (ii). Consider a strategy ∆∗ corresponding to an
assignment that makes the expression true, and the induced
lottery L∗ where all the consequences ci of C are possible.
By (i), we have

RDU(L∗) =
∑m

i=1 (ci − ci−1)ϕ
(

∑m
j=i

pj

n

)

We note that for all i ≤ m, (ci − ci−1)ϕ(
∑m

j=i
pj

n) =

10i−1 × pi−1 = 10i−1 × (1
10)

i−1 = 1. Consequently,
RDU(L∗) = m.

Proof of (iii). Let ∆ (resp. ∆′) denote some strategy
the induced lottery of which is L (resp. L′) and let
I ⊆ {0, . . . ,m} (resp. J = I ∪ {k}) denote the set of
indices of its possible consequences. We assume here
that k < max I , the case k = max I being obvious. By
definition, {i ∈ I : i 6= k} = {i ∈ J : i 6= k}. We can
therefore state the RDU value as a sum of three terms:

RDU(L) =
∑

i∈J
i≤k−1

(ci − cprevJ (i))ϕ
(

∑

j∈I
j≥i

pj

n

)

+ (ck − cprevJ (k))ϕ
(

∑

j∈I
j≥k

pj

n

)

+
∑

i∈J
i≥k+1

(ci − cprevJ (i))ϕ
(

∑

j∈J
j≥i

pj

n

)

Similarly, the RDU value of strategy ∆′ can also be stated
as a sum of three terms:

RDU(L′) =
∑

i∈J
i≤k−1

(ci − cprevJ (i))ϕ
(

∑

j∈J
j≥i

pj

n

)

+ (ck − cprevJ (k))ϕ
(

∑

j∈J
j≥k

pj

n

)

+
∑

i∈J
i≥k+1

(ci − cprevJ (i))ϕ
(

∑

j∈J
j≥i

pj

n

)

By increasingness of ϕ, we have

I ⊆ J ⇒ ∀i ≤ k − 1, ϕ
(

∑

j∈I
j≥i

pj

n

)

≤ ϕ
(

∑

j∈J
j≥i

pj

n

)

Thus the first term of RDU(L) is smaller or equal to the first
term of RDU(L′). One checks easily that ϕ(

∑

j∈I
j≥k

pj

n) =

psuccI(k)−1 and ϕ(
∑

j∈J
j≥k

pj

n) = pprevJ (k) = pk−1, where

succI(i) = min{j ∈ I : j > i}. But psuccI(k)−1 < pk−1

since succI(k) − 1 > k − 1. Therefore the second term
of RDU(L) is strictly smaller than the second term of
RDU(L′). Finally, the third term of RDU(L) is of
course equal to the third term of RDU(L′). Consequently
RDU(L) < RDU(L′).
From (i), (ii) and (iii) we conclude that any strategy
corresponding to an assignment that does not make the
expression true has a RDU value strictly smaller than m,
and that any strategy corresponding to an assignment that
makes the expression true has a RDU value exactly equal
to m. Solving 3-SAT reduces therefore to determining a
strategy of value m in RDU-OPT. �

In the following section, we describe an algorithm for de-
termining an RDU-optimal strategy in a decision tree. We
proceed by implicit enumeration since neither exhaustive
enumeration nor backward induction are conceivable.

Implicit Enumeration

We now present a branch and bound method for determining
an RDU-optimal strategy. The branching principle is to par-
tition the set of strategies in several subsets according to the
choice of a given edge (N,N ′) at a decision node N . More
formally, the nodes of the enumeration tree are character-
ized by a partial strategy, that defines a subset of strategies.
Consider a decision tree T and a set of nodesNΓ including:

• the root Nr of T ,

• one and only one successor for every decision node N ∈
NΓ

D = ND ∩ NΓ.

The set of edges Γ = {(N,N ′) : N ∈ NΓ
D, N ′ ∈ NΓ} ⊆ E

defines a partial strategy of T if the subgraph induced by
NΓ is a tree. A strategy ∆ is said compatible with a partial
strategy Γ if Γ ⊆ ∆. The subset of strategies characterized
by a partial strategy corresponds to the set of compatible
strategies. At each iteration of the search, one chooses an
edge among the ones starting from a given decision node.
The order in which the decision nodes are considered is
given by a priority function rg: if several decision nodes
are candidates to enter NΓ, the one with the lowest priority
rank will be considered first. For the sake of brevity, we do
not elaborate here on this priority function.

Algorithm 1 describes formally the implicit enumeration
procedure that we propose. It takes as an argument a par-
tial strategy Γ and the best RDU value found so far, denoted
by RDUopt. The search is depth-first. The decision nodes

that are candidates to enter NΓ are denoted by N1. Among
them, the node with the lowest priority rank is denoted by
Nmin. The set of its incident edges is denoted by Emin. It
defines the set of possible extensions of Γ considered in the
search (in other words, the children of the node associated to
Γ in the enumeration tree). For every partial strategy Γ (in
other words, at every node of the enumeration tree), one has
an evaluation function ev that gives an upper bound of the
RDU value of any strategy compatible with Γ. The optimal-
ity of the returned value RDUopt is guaranteed since only
suboptimal strategies are pruned during the search as soon
as ev is an upper bound.

We give below the main features of our algorithm.

Initialization. A branch and bound procedure is notoriously
more efficient when a good solution is known before the start
of the search. In our method, the lower bound (RDUopt) is
initially set to the RDU value of the EU-optimal strategy.

Computing the lower bound. At each node of the search,
one computes the EU-optimal strategy among strategies that
are compatible with Γ. When its RDU value is greater than
the best found so far, we update RDUopt. This makes it pos-
sible to prune the search more quickly.

Computing the upper bound. The evaluation function is
denoted by ev. It returns an upper bound on the RDU value
of any strategy compatible with Γ. The principle of this

Algorithm 1: BB(Γ, RDUopt)

N1 ← {N1 ∈ ND : N1 is candidate};
Nmin ← argminN∈N1

rg(N);
Emin ← {(Nmin, C) ∈ E : C ∈ S(Nmin)};
for each (N,C) ∈ Emin do

if ev(Γ ∪ {(N,C)}) > RDUopt then
RDUtemp ← BB(Γ ∪ {(N,C)}, RDUopt);
if RDUtemp > RDUopt then

RDUopt ← RDUtemp;
end

end
end
return RDUopt

evaluation is to determine a lottery that stochastically dom-
inates any lottery corresponding to a strategy compatible
with Γ, and then to evaluate this lottery according to RDU.
This yields an upper bound since RDU is compatible with
stochastic dominance, i.e. if L stochastically dominated L′

then RDU(L) ≥ RDU(L′). In order to compute such a
lottery, one proceeds by dynamic programming in the deci-
sion tree. The initialization is performed as follows: at each
terminal node T ∈ NT is assigned a lottery (1, u(T)). Next,
at each node N ∈ N , one computes a lottery that stochas-
tically dominates all the lotteries of subtree T (N). More
precisely, at a chance node C, one computes lottery LC in-
duced by the lotteries of its children as follows:

∀u, LC(u) =
∑

N∈S(C)

p((C,N)) × LC(u)

where LC corresponds to the lottery assigned to node N .
Besides, at each decision node D, we apply the following
recurrence relation on the decumulative functions2:
{

∀u,GLD (u) = GLN (u) if ∃N ∈ S(D) : (D,N) ∈ Γ
∀u,GLD (u) = maxN∈S(D)GLN (u) otherwise

Finally, the value returned by ev is RDU(LNr). To prove
the validity of this procedure, one can proceed by induction
: the key point is that if lottey L stochastically dominates a
lottery L′, then αL + (1 − α)L′′ stochastically dominates
αL′ + (1− α)L′′ for any α ∈ [0, 1] and any lottery L′′.

Example 6 Let us come back to the decision tree of Fig-
ure 1, and assume that Γ = {(D1, C1)}. The lotteries as-
signed to the nodes are:

LC3 = (12 , 3;
1
2 , 10), L

C4 = (12 , 1;
1
2 , 11), L

D2 = (12 , 3;
1
2 , 11)

since GLD2 =











max(GLC3 (1), GLC4 (1)), 1
max(GLC3 (3), GLC4 (3)), 3
max(GLC3 (10), GLC4 (10)), 10
max(GLC3 (11), GLC4 (11)), 11

= (1, 3; 12 , 11)
LC1 = (12 , 2;

1
2 × 1

2 , 3;
1
2 × 1

2 , 11) = (12 , 2;
1
4 , 3;

1
4 , 11)

LD1 = LC1 = (12 , 2;
1
4 , 3;

1
4 , 11)

The returned value for Γ = {(D1, C1)} is therefore ev(Γ) =
RDU((12 , 2;

1
4 , 3;

1
4 , 11)).

2Note that one can indifferently work with lotteries or decumu-
lative functions, since only the decumulative function matters in
the calculation of RDU.

Figure 3: Behavior of the algorithm w.r.t. the depth.

Numerical Tests

The algorithm was implemented in C++ and the computa-
tional experiments were carried out on a PC with a Pentium
IV CPU 2.13Ghz processor and 3.5GB of RAM.

Random instances. Our tests were performed on complete
binary decision trees of even depth. The depth of these deci-
sion trees varies from 4 to 14 (5 to 5461 decision nodes),
with an alternation of decision nodes and chance nodes.
Utilities are real numbers randomly drawn within interval
[1, 500]. Figure 3 presents the performances of the algorithm
with respect to the depth of the decision tree. For each depth
level, we give the average performance computed over 100
decision trees. The upper (resp. lower) curve gives the aver-
age number of expanded nodes in the enumeration tree (resp.
the average execution time in sec.). Note that the y-axis is
graduated on a logarithmic scale (basis 4) since the number
of decision nodes is multiplied by 4 for each increment of the
depth. For the sizes handled here, the number of expanded
nodes and the execution time grow linearly with the number
of decision nodes. Note that, for bigger instances (i.e. the
depth of which is greater than 14), some rare hard instances
begin to appear for which the resolution time becomes high.
However, the complete binary trees considered here are ac-
tually the “worst cases” that can be encountered. In fact,
in many applications, the decision trees are much less bal-
anced and therefore, for the same number of decision nodes,
an RDU-optimal strategy will be computed faster, as illus-
trated now on a TV game example.

Application to Who wants to be a millionaire? Who wants
to be a millionaire? is a popular game show, where a con-
testant must answer a sequence of multiple-choice questions
(four possible answers) of increasing difficulty, numbered
from 1 to 15. This is a double or nothing game: if the an-
swer given to question k is wrong, then the contestant quits
with no money. However, at each question k, the contes-
tant can decide to stop instead of answering: she then quits
the game with the monetary value of question (k − 1). Fol-
lowing Perea and Puerto (2007), we study the Spanish ver-
sion of the game in 2003, where the monetary values of the
questions were 150, 300, 450, 900, 1800, 2100, 2700, 3600,

ϕ(p) 50:50 Phone Ask Quit Exp. Max. GL(2.7K)
p 9 10 12 13 2387 36K 0.10
p2 4 5 5 8 1536 2.7K 0.35√
p 14 15 13 X 1987 300K 0.06

Table 2: Optimal strategies for various ϕ functions.

4500, 9000, 18000, 36000, 72000, 144000 and 300000 Eu-
ros respectively. Note that, actually, after the 5th and 10th
questions, the money is banked and cannot be lost even if the
contestant gives an incorrect response to a subsequent ques-
tion: for example, if the contestant gives a wrong answer to
question 7, she quits the game with 1800 Euros. Finally, the
contestant has three lifelines that can be used once during
the game: Phone a friend (call a friend to ask the answer),
50:50 (two of the three incorrect answers are removed), Ask
the audience (the audience votes and the percentage of votes
each answer has received is shown).

We applied our algorithm to compute an RDU-optimal
strategy for this game. For this purpose, we first used the
model proposed by Perea and Puerto (2007) to build a de-
cision tree representing the game. In this model, a strategy
is completely characterized by giving the question numbers
where the different lifelines are used, and the question num-
ber where the contestant quits the game. We have carried
out experimentations for various probability transformation
functions, modelling different attitudes towards risk. The
identity (resp. square, square root) function corresponds
to an expected reward maximizer (resp. a risk averse, risk
seeker decision maker). The results are reported in Table 2.
For each function ϕ, we give the expected reward (column
Exp.) of the optimal strategy, as well as the maximum possi-
ble reward (column Max.) and the probability to win at least
2700 Euros (column GL(2.7K)). Note that, in all cases, the
response time of our procedure is less than the second while
there are 14400 decision nodes and the depth is 30. This
good behavior of the algorithm is linked to the shape of the
decision tree, that strongly impacts on the number of poten-
tial strategies.

A limitation of the model introduced by Perea and Puerto
(2007) is that the choice to use a lifeline is not dependent on
whether the contestant knows the answer or not. For this rea-
son, we introduced the following refinement of the model: if
the contestant knows the answers to question k, she directly
gives the correct answer, else she has to make a decision.
A small part of the decision tree for this new modelling is
represented in Figure 4 (the dotted lines represent omitted
parts of the tree). Chance nodes Qi

1’s (resp. Qi
2’s) repre-

sent question 1 (resp. 2), with two possible events (know the
answer or not). Decision nodes Di

1’s represent the decision
to use an available lifeline, answer or quit facing question 1
(in fact, this latter opportunity becomes realistic only from
question 2). Finally, the answer is represented by a chance
node (Ai

1’s) where the probabilities of the events (correct or
wrong answer) depend on the used lifelines. We used the
data provided by Perea and Puerto (2007) to evaluate the
different probabilities at the chance nodes. The whole de-
cision tree has more than 75 millions decision nodes. The
problem becomes therefore much harder since the number

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

know

Quit

Phone

50:50

Ask

0 Euro

correct

wrong
0 Euro

50:50

0 Euro
don’t know

Q1
1

Q1
2

D1
1

D2
1

D3
1

D4
1

A1
1 Q2

2

A2
1

D6
1

D5
1

Quit

Answer

Answer

Phone

Figure 4: Refined decision tree for the TV game.

of potential strategies explodes. Unlike previous numerical
tests, we had to use a computer with 64GB of RAM so as
to be able to store the instance. Despite the high size of the
instance, the procedure is able to return an optimal strategy
in 2992 sec. for ϕ(p) = p2 (risk averse behavior) and 4026

sec. for ϕ(p) = p(2/3) (risk seeker behavior). Note that, for
risk seeker behaviors, the resolution time increases with the
concavity of the probability transformation function.

Conclusion

After showing the NP-hardness of the RDU-OPT problem
in decision trees, we have provided an implicit enumeration
algorithm to solve it. The upper bound used to prune the
search is computed by dynamic programming, and is poly-
nomial in the number of decision nodes. Note that this upper
bound is actually adaptable to any decision criterion compat-
ible with stochastic dominance. The tests performed show
that the provided algorithm makes it possible to solve effi-
ciently instances the number of decision nodes of which is
near six thousands.

Concerning the representation formalism for planning un-
der uncertainty, we would like to emphasize that the previ-
ous approach can be adapted to work in influence diagrams
or finite horizon Markov decision processes. The standard
solution methods to compute the optimal EU plan in these
formalisms are indeed also based on dynamic programming.
An approch similar to the one we developed here will there-
fore enable to compute an upper bound to prune the search
in an enumeration tree.

Concerning the decision-theoretic aspect, we have fo-
cused here on the computation of an optimal strategy ac-
cording to RDU among pure strategies. An interesting re-
search direction for the future is to consider mixed strate-
gies, i.e. strategies where one chooses randomly (according
to a predefined probability distribution) the decision taken
at each decision node. Indeed, this makes it possible to ob-
tain a better RDU value than with pure strategies, as shown
by the following example. Consider a decision tree with a
single decision node leading to two different options: a sure
outcome lottery (1, 5), and a lottery (0.5, 1; 0.5, 10). As-
sume that the probability transformation function is defined
by ϕ(p) = 0.45 for all p ∈ (0; 1) (for simplicity). The RDU

value of the two pure strategies are respectively 5 and 5.05.
Interestingly enough, the mixed strategy where one chooses
the sure outcome lottery with probability 0.6, and the other
one with probability 0.4, results in a RDU value of 7.25.

Acknowledgments
This work has been supported by the ANR project PHAC
which is gratefully acknowledged.

References

Allais, M. 1953. Le comportement de l’homme rationnel de-
vant le risque : critique des postulats de l’école américaine.
Econometrica 21:503–546.

Allais, M. 1997. An outline of my main contributions to eco-
nomic science. The American Economic Review 87(6):3–12.

Blythe, J. 1999. Decision-theoretic planning. AI Mag. 20.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of AI Research 11:1–94.

Dean, T.; Kaelbling, L.; Kirman, J.; and Nicholson, A. 1993.
Planning with deadlines in stochastic domains. In Proc. of
the 11th AAAI, 574–579.

Handa, J. 1977. Risk, probabilities and a new theory of
cardinal utility. Journal of Political Economics 85:97–122.

Jaffray, J.-Y., and Nielsen, T. 2006. An operational approach
to rational decision making based on rank dependent utility.
European J. of Operational Research 169(1):226–246.

Kaebling, L.; Littman, M.; and Cassandra, A. 1999. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 101:99–134.

Kahneman, D., and Tversky, A. 1979. Prospect theory: An
analysis of decision under risk. Econometrica 47:263–291.

Liu, Y., and Koenig, S. 2008. An exact algorithm for solv-
ing mdps under risk-sensitve planning objectives with one-
switch utility functions. In Proc. of the Int. Joint Conf. on
Autonomous Agents and Multiagent Systems (AAMAS).

McClennen, E. 1990. Rationality and Dynamic choice:
Foundational Explorations. Cambridge University Press.

Morin, T. 1982. Monotonicity and the principle of optimal-
ity. J. of Math. Analysis and Applications 86:665–674.

Perea, F., and Puerto, J. 2007. Dynamic programming anal-
ysis of the TV game “Who wants to be a millionaire?”. Eu-
ropean Journal of Operational Research 183:805–811.

Perny, P.; Spanjaard, O.; and Storme, L.-X. 2007. State
space search for risk-averse agents. In 20th International
Joint Conference on Artificial Intelligence, 2353–2358.

Quiggin, J. 1993. Generalized Expected Utility Theory: The
Rank-Dependent Model. Kluwer.

Raiffa, H. 1968. Decision Analysis: Introductory Lectures
on Choices under Uncertainty. Addison-Wesley.

Shachter, R. 1986. Evaluating influence diagrams. Opera-
tions Research 34:871–882.

von Neuman, J., and Morgenstern, O. 1947. Theory of
games and economic behaviour. Princeton University Press.

