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Stability and bifurcation of in° ation
of elastic cylinders

Yi -Chao Ch e n
Department of Mechanical Engineering, University of Houston, USA

This paper is dedicated to Professor M. F. Beatty on the occasion of his 70th birthday.

A method of obtaining a full (two-dimensional) nonlinear stability analysis of
inhomogeneous deformations of arbitrary incompressible hyperelastic materials is
presented. The analysis that we develop replaces the second variation condition
expressed as an integral involving two arbitrary perturbations, with an equivalent
(third-order) system of ordinary di¬erential equations. The positive-de­ niteness con-
dition is thereby reduced to the simple numerical evaluation of zeros of a well-behaved
function. The general theory is illustrated by applying it to the problem of the in®a-
tion of axially stretched thick-walled tubes. The bifurcation theory of such deforma-
tions is well known and we compare the bifurcation results with the new stability
analysis.

1. Introduction

The purpose of this paper is twofold. First, we develop a method to study the stability
of inhomogeneous deformations. Second, we study the relationship between stability
and bifurcation for a particular problem in nonlinear elasticity.

Stability and bifurcation are two important topics in mathematical physics in gen-
eral, and in nonlinear elasticity in particular. Both provide stages for theoretical
development of mathematical analysis, as well as for various applications of practical
interest. In nature, the two theories deal with di¬erent phenomena: stability the-
ory concerns the behaviour of deformed bodies under disturbances, while bifurcation
theory concerns the non-uniqueness of solutions. Nevertheless, examples have sug-
gested possible connections between stability conditions and bifurcation conditions.
For instance, the buckling of an Euler column corresponds to a bifurcation point, and
it has been shown that, at this point, the unbuckled deformation becomes unstable.
Such examples, however, are too few, especially for inhomogeneous deformations, to
give us a complete understanding of the issue.

Some general discussions of the relation between stability and bifurcation can be
found in Ogden (1997) and Beatty (1987). One source of di¯ culty is the lack of a
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universally accepted stability criterion. Two approaches are common. One is to use
dynamic stability criteria. For example, Fu (1993, 1995, 1998), Fu & Rogerson (1994)
and Fu & Ogden (1999) have looked at wave propagation in elastic plates (see Fu
(2001) for a review of dynamic stability). They have not only investigated the non-
linear stability of near-neutral modes, but have also looked at the evolution of the
near-neutral modes that require a third-order analysis. The features of the underlying
deformation that rendered the problem tractable was the assumption of incompress-
ibility coupled with a plane-strain homogeneous deformation of the plate. Another
approach uses static stability criteria, usually based on energy considerations. Some
early works include those of Bryan (1888a; b) and Pearson (1956). Under an energy-
stability criterion, all ­ nite deformation solutions, both trivial and non-trivial, will
satisfy the Euler{Lagrange equations for the minimization of the energy. Stability, in
the Hadamard sense, is determined by the sign of the second variation of the energy,
unless this is zero, in which case higher-order variations will decide. It is interesting
to note that Ericksen & Toupin (1956) and Hill (1957) showed that Hadamard stabil-
ity implies uniqueness for a class of boundary-value problems. This also states that
a bifurcation point is a point of neutral stability. Beyond this, we have been unable
to ­ nd much analysis in the literature concerning the relation between stability and
bifurcation. Historically, the actual stability of trivial and post-bifurcation solutions
has not been determined for many problems due to the essential nonlinear character
of the stability calculation.

While the energy-stability criterion has been used to determine the stability of
homogeneous deformations, little has been done for the stability of inhomogeneous
deformations. The purpose of this paper is to demonstrate how it is possible to suc-
cessfully complete a full nonlinear stability analysis of an inhomogeneous deforma-
tion. We have not found any other such nonlinear analysis in the literature. There are
two simplifying features of our analysis. First, we assume incompressibility, and, sec-
ond, we restrict our analysis to the consideration of two-dimensional perturbations.
This allows the introduction of a stream function, which enables us to consider a
single dependent variable in the analysis. However, there are a large number of prob-
lems that ­ t these restrictions and which could all be treated in a similar way to
that shown in the following. Also, some of the key steps in the analysis may be of
use in other similar calculations where the use of a stream function is not possible.

Speci­ cally, we look at the problem of a thick-walled cylinder that is in®ated by
an internal pressure and subjected to a prescribed axial stretch. For a given material
and speci­ ed undeformed geometry of the tube, there may be critical values of the
pressure and axial stretch at which the tube forms an axisymmetric bulge. The bifur-
cation analysis of the problem was previously treated for an arbitrary incompressible
material by Haughton & Ogden (1979) (see also Ogden 1997).

In x 2, we derive basic equations and inequalities for the stability and bifurcation
analysis. A minimization problem is formulated by using the energy-stability cri-
terion. The ­ rst variation condition leads to the equations of equilibrium, and the
second variation condition to the stability condition. The cylindrical deformations are
considered in x 3. It is found that a unique cylindrical solution exists under a certain
condition on the strain-energy function. Section 4 contains a bifurcation analysis.
The incremental equations of axisymmetric solutions from the cylindrical solutions
are presented. At a bifurcation point, these equations admit non-trivial solutions.
The stability analysis is given in x 5. The main development is to solve an integral
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inequality involving two arbitrary perturbation functions. By using the incompress-
ibility constraint and Fourier analysis, this integral inequality is reduced to one with
a single perturbation. The integral, however, has variable coe¯ cients, since the cylin-
drical deformation is inhomogeneous. The solution of this latter integral inequality
is examined via a system of ­ rst-order di¬erential equations. It is shown that the
integral inequality, and hence the second variation condition, is satis­ ed if and only
if a matrix associated with the solution of the di¬erential equations be positive semi-
de­ nite. Interestingly, it turns out that, for this problem, the bifurcation criterion
requires the solution of a fourth-order system of linear ordinary di¬erential equations,
but the full nonlinear stability criterion requires only the solution of a third-order
system of ordinary di¬erential equations. In the concluding x 6, these equations are
solved numerically for a class of Ogden materials. The solutions reveal the result
that one somewhat expects: the cylindrical deformation indeed changes stability at
a bifurcation point. Speci­ cally, as the pressure increases, the cylindrical deforma-
tion becomes unstable at the ­ rst bifurcation point and may become stable again if
the second bifurcation point occurs. The result presented in this work, besides its
theoretical value, could be of practical importance as a combined stability and bifur-
cation analysis gives one signi­ cantly more insight into the behaviour of a physical
system than can a stability analysis or a bifurcation analysis alone.

2. Basic equations

We consider the extension and in®ation of an elastic body that has a cylindrical
shape in a reference con­ guration « de­ ned by

« = f(R; £ ; Z) 2 R3 : A 6 R 6 B; 0 6 £ < 2 º ; 0 6 Z 6 Lg;

where R, £ and Z are the cylindrical material coordinates, L is the length of the
cylinder and A and B its inner and outer radii, respectively. A representative material
point is denoted by X 2 « . The boundary @« of « is divided into four parts:

’1 = fX 2 @« : R = Ag;

’2 = fX 2 @« : R = Bg;

’3 = fX 2 @« : Z = 0g;

’4 = fX 2 @« : Z = Lg:

A deformation of the body is expressed by a smooth mapping x : « ! R3. The
deformation is subjected to the incompressibility constraint

det F = 1; (2.1)

where

F = rx =
@x

@X

is the deformation gradient. The cylinder is stretched (or compressed) by two end
plates that specify the axial displacements of the ends. Hence the deformation satis-
­ es the following boundary conditions,

ez ¢ xj’3
= 0; ez ¢ xj’4

= l; (2.2)
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where ez is the unit vector in the axial direction and l is the prescribed deformed
length of the cylinder. It is noted that the end plates do not impose restrictions on
the end displacements in the radial and azimuthal directions.

The body is comprised of a homogeneous, isotropic and incompressible elastic
material in the reference con­ guration. There exists a strain-energy function W (F )
whose value gives the strain energy per unit undeformed volume. In addition to
being stretched, the cylinder is in®ated by a prescribed internal pressure P . The
total potential energy associated with the deformed system is then given by

E =

Z

«

W (F ) dV ¡ P v; (2.3)

where v is the volume enclosed by the deformed inner surface of the cylinder and the
end plates. It is given by

v =

Z

« 0

det F dV; (2.4)

where « 0 is the region enclosed by the undeformed inner surface,

« 0 = f(R; £ ; Z) 2 R3 : 0 6 R 6 A; 0 6 £ < 2º ; 0 6 Z 6 Lg:

In (2.4), we have extended x smoothly to « [ « 0 in such a way that the extended
function also satis­ es the boundary conditions (2.2). The extended function is nev-
ertheless not subjected to the incompressibility constraint (2.1) in « 0. It is noted
that this method of computing v may not be the standard approach, but does allow
a concise derivation.

By the energy-stability criterion, a stable equilibrium deformation x is a relative
minimum of the total energy (2.3) among all kinematically admissible deformations.
A standard method of solving this constrained minimization problem is to introduce
a Lagrange multiplier and minimize the relaxed total potential energy function in the
space of deformations not subjected to the incompressibility constraint (2.1). Here,
we shall follow the approach of Fosdick & MacSithigh (1986)y and work directly
in the set of the kinematically admissible deformations. To this end, we introduce
a one-parameter family of deformations x = x(X ; ° ) that satisfy the kinematic
constraintsz (2.1) and (2.2) for each value of ° ; this renders the potential energy E
minimum when evaluated at ° = 0. Substituting x(X ; ° ) into (2.1) and (2.2), and
di¬erentiating with respect to ° , leads to

F ¡T ¢ r _x = 0; (2.5 a)

F ¡T ¢ r �x = tr(F ¡1r _x)2; (2.5 b)

and

ez ¢ _xj’3 [ ’4
= 0; ez ¢ �xj’3 [ ’4

= 0; (2.6)

where the superscript ` ¡ T’ denotes the inverse transpose and a superimposed dot
denotes the partial derivative with respect to ° .

y Their work concerns the problems with dead-load boundary traction, while the problem at hand
involves pressure loads.

z Again, condition (2.1) is not imposed on x x(X ; ²) in ­ 0 .
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Substituting x(X; ° ) into (2.3), di¬erentiating with respect to ° , and using the
divergence therorem, we obtain

_E =

Z

«

WF ¢ r _x dV ¡ P

Z

« 0

(det F )F ¡T ¢ r _x dV

=

Z

@«

_x ¢ WF N dA ¡
Z

«

_x ¢ div WF dV ¡ P

Z

@« 0

(det F ) _x ¢ F ¡TN dA

=

Z

@«

_x ¢ WF N dA ¡
Z

«

_x ¢ div WF dV + P

Z

’1

_x ¢ F ¡TN dA; (2.7)

where the subscripts to W denote the partial derivative, `div’ denotes the divergence
operator with respect to X , and N is the unit outward normal to the surface in
the reference con­ guration. We note that the outward normals to @« 0 and to ’1 are
opposite. Since x(X; 0) is a minimizing function of E, the last expression in (2.7)
must vanish at ° = 0. By an argument used by Fosdick & MacSithigh (1986)y, there
exist smooth functions p : « ! R and g : ’3 [ ’4 ! R such that

div( ¡ pF ¡T + WF ) = 0 in « (2.8)

and

( ¡ pF ¡T + WF )N =

8
><

>:

¡ P F ¡TN on ’1;

0 on ’2;

gez on ’3 [ ’4:

(2.9)

In (2.8) and (2.9), all terms are now evaluated at the minimizing function x(X).
We now turn our attention to the second variation condition. Substituting x(X ; ° )

into (2.3), di¬erentiating with respect to ° twice, using the divergence theorem
and (2.2), (2.5), (2.6), (2.8) and (2.9), we ­ nd that

�E =

Z

«

fWF ¢ r �x + r _x ¢ WF F [r _x]g dV

¡ P

Z

« 0

(det F )[(F ¡T ¢ r _x)2 ¡ tr(F ¡1r _x)2 + F ¡T ¢ r �x] dV

=

Z

«

fp tr(F ¡1r _x)2 + r _x ¢ WF F [r _x]g dV +

Z

@«

�x ¢ ( ¡ pF ¡T + WF )N dA

¡ P

Z

@« 0

(det F )[(F ¡T ¢ r _x)F ¡1 _x ¡ F ¡1r _xF ¡1 _x + F ¡1 �x] ¢ N dA

=

Z

«

fp tr(F ¡1r _x)2 + r _x ¢ WF F [r _x]g dV ¡ P

Z

’1

(r _xF ¡1 _x) ¢ F ¡TN dA

=

Z

«

fp tr(F ¡1r _x)2 + r _x ¢ WF F [r _x]g dV

+

Z

@«

(r _xF ¡1 _x) ¢ ( ¡ pF ¡T + WF )N dA

y See the proof of theorem 3.2 therein. 
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=

Z

«

fp tr(F ¡1rx_ )2 + rx_ ¢ WF F [rx_ ] + ( ¡  pF ¡T + WF ) ¢ r(rx_ F ¡1x_ )g dV

=

Z

«

fr _x ¢ WF F [r _x] + WF ¢ r(r _xF ¡1 _x)g dV

> 0: (2.10)

The quadratic integral inequality (2.10) will be used to determine the stability of
the deformation x(X). The derivation of (2.10) is for the family of deformations of
general form. As a result, the coe¯ cients of the integrand in (2.10) are functions of
all material coordinates, and the corresponding eigenvalue problem consists of partial
di¬erential equations of variable coe¯ cients. Analytical solutions of such equations
are prohibitively di¯ cult. In the remaining sections of this work, we shall consider
the stability of cylindrical deformations in the class of axisymmetric deformations, as
well as the bifurcation from cylindrical deformations to axisymmetric deformations.
It will be shown that for such a problem inequality (2.10) is equivalent to an integral
inequality involving one scalar perturbation function, which e¬ectively reduces the
associated eigenvalue problem to ordinary di¬erential equations.

3. Cylindrical deformations

A deformation x is cylindrical if it has the following component form,

r = r(R); ³ = £ ; z = ¶ 3Z; (3.1)

where r, ³ and z are the cylindrical spatial coordinates and ¶ 3 is the constant axial
stretch. In the cylindrical coordinates, the deformation gradient of the cylindrical
deformation has the following component form:

F =

0

@
r0 0 0
0 r=R 0
0 0 ¶ 3

1

A :

Here and henceforth, a prime denotes the derivative with respect to R. The incom-
pressibility constraint (2.1) now reads

¶ 3rr0

R
= 1: (3.2)

Equation (3.2) can be integrated to yield

r(R) =

s

a2 +
R2 ¡ A2

¶ 3
; (3.3)

where a is a constant of integration corresponding to the inner radius of the deformed
cylinder.

By the isotropy, the strain-energy function W depends on F through the principal
stretches ¶ 1, ¶ 2 and ¶ 3:

W (F ) = W ( ¶ 1; ¶ 2; ¶ 3):

Here we have used W to denote di¬erent functions. For the cylindrical deforma-
tion (3.1), we have

¶ 1 = r0; ¶ 2 = r=R; (3.4)
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and ¶ 3 is identical to that in (3.1). For the cylindrical deformation, the tensor WF

has the following component form,

WF =

0

@
W1 0 0
0 W2 0
0 0 W3

1

A ; (3.5)

where a subscript i to W denotes the partial derivative with respect to ¶ i. Substi-
tuting (3.5) into (2.8), we ­ nd that, for the cylindrical deformations, the hydrostatic
pressure p is a function of R only. The only non-trivial equation of (2.8) is

¡ p0

¶ 1

+ W 0
1 +

W1 ¡ W2

R
= 0; (3.6)

which can be integrated to give p. The resulting constant of integration and the
parameter a appearing in (3.3) are to be determined by the ­ rst two boundary
conditions of (2.9), which can be written as

¡ p + ¶ 1W1 = ¡ P for R = A;

¡ p + ¶ 1W1 = 0 for R = B:

By taking the di¬erence of the above equations, and using (3.6), (3.2) and (3.3), we
­ nd that

P =

Z B

A

( ¡ p + ¶ 1W1)0 dR

=

Z B

A

·µ
¶ 0

1 ¡ ¶ 1

R

¶
W1 +

¶ 1

R
W2

¸
dR

=

Z B

A

¶ 1

¶ 1 ¡ ¶ 2
( ¶ 0

1W1 + ¶ 0
2W2) dR

=

Z B

A

¶ 1

¶ 1 ¡ ¶ 2

W 0 dR: (3.7)

For the in®ation of a cylinder, at a ­ xed axial extension, the in®ating pressure
P can be regarded as a function of the deformed inner radius a de­ ned by (3.7),
with (3.3) and (3.4). It is well known that, for this deformation, the internal radius
a may not be unique for a given pressure P , or a cylindrical deformation may not
even exist. However, it could be argued that certain restrictions on the strain-energy
function describing the material should provide the existence and uniqueness of such a
deformation for any prescribed pressure P . To investigate this, we ­ rst note that (3.7)
can be rewritten as

P =

Z ¶ b

¶ a

1

1 ¡ ¶ 2
2 ¶ 3

@Ŵ ( ¶ 2; ¶ 3)

@¶ 2
d ¶ 2;

where we de­ ne the reduced strain-energy function

Ŵ ( ¶ 2; ¶ 3) ² W

µ
1

¶ 2 ¶ 3
; ¶ 2; ¶ 3

¶
; (3.8)
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having used (3.2) and (3.4), and de­ ne

¶ a ² ¶ 2(A) =
a

A
; ¶ b ² ¶ 2(B) =

1

B

s

a2 +
B2 ¡ A2

¶ 3
: (3.9)

Now de­ ne a continuous function

g(a) ²
Z (1=B)

p
a2 + (B2¡A2)=¶ 3

a=A

1

1 ¡ ¶ 2
2 ¶ 3

@Ŵ ( ¶ 2; ¶ 3)

@¶ 2

d ¶ 2: (3.10)

By the symmetry of W ( ¶ 1; ¶ 2; ¶ 3), we have

Ŵ ( ¶ 2; ¶ 3) = Ŵ

µ
1

¶ 2 ¶ 3
; ¶ 3

¶
;

and hence

@Ŵ ( ¶ 2; ¶ 3)

@¶ 2

¯̄
¯̄
¶ 2

2 ¶ 3 = 1

= 0:

This implies, by the smoothness of Ŵ , that the integrand in (3.10) is bounded at
¶ 2

2 ¶ 3 = 1. Therefore, we have

g

µ
Ap
¶ 3

¶
=

Z 1=
p

¶ 3

1=
p

¶ 3

1

1 ¡ ¶ 2
2 ¶ 3

@Ŵ ( ¶ 2; ¶ 3)

@¶ 2
d ¶ 2 = 0:

Moreover, we note that

lim
a ! 1

¶ b

¶ a
=

A

B
:

It is now easy to see that a su¯ cient condition for the existence of a solution for any
positive pressure P is that

Ŵ2( ¶ 2; ¶ 3) ! ® ¶ ­
2 as ¶ 2 ! 1; (3.11)

where ® is a positive constant and ­ > 1.
To study the uniqueness of solution, we observe, from (3.10) and (3.9), that

g0(a) =
a

B2 ¶ b(1 ¡ ¶ 2
b ¶ 3)

Ŵ2( ¶ b; ¶ 3) ¡ 1

A(1 ¡ ¶ 2
a ¶ 3)

Ŵ2( ¶ a; ¶ 3)

=
a(B2 ¡ A2)

A2B2 ¶ 3( ¶ 2
b ¡ ¶ 2

a)

·
Ŵ2( ¶ b; ¶ 3)

¶ b
¡ Ŵ2( ¶ a; ¶ 3)

¶ a

¸
;

where a subscript to Ŵ again denotes the derivative. A su¯ cient condition for the
uniqueness of solution (within the set of cylindrical deformations) is then

1

¶ b ¡ ¶ a

·
Ŵ2( ¶ b; ¶ 3)

¶ b
¡ Ŵ2( ¶ a; ¶ 3)

¶ a

¸
> 0 for all ¶ a; ¶ b; (3.12)
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or

¶ 2Ŵ22 ¡ Ŵ2 > 0: (3.13)

We note that condition (3.12) requires that Ŵ2( ¶ 2; ¶ 3)=¶ 2 be monotone increasing
in ¶ 2. This result was obtained by Haughton & Ogden (1979) as the non-existence
of so-called pressure turning-points.

To put this in context, consider the Ogden materials

Ŵ ( ¶ 2; ¶ 3) =
NX

i = 1

· i

¬ i

µ
1

¶ ¬ i

2 ¶ ¬ i

3

+ ¶ ¬ i

2 + ¶ ¬ i

3 ¡ 3

¶
; (3.14)

where N , · i and ¬ i, i = 1; 2; : : : ; N , are material parameters. Condition (3.11)
requires the existence of at least one pair ( ¬ i; · i) satisfying

j ¬ ij > 2; ¬ i · i > 0: (3.15)

Furthermore, condition (3.13) holds if inequalities (3.15) are satis­ ed for each
i = 1; 2; : : : ; N .

The existence and uniqueness of a cylindrical deformation does not mean this defor-
mation can actually be observed in experiment. As the internal pressure increases,
a cylindrical solution branch may lose stability, and may give rise to non-cylindrical
solutions that are stable. In the following sections, we examine the conditions under
which the cylindrical solution bifurcates to non-cylindrical axisymmetric solutions,
and the conditions under which the cylindrical solution becomes unstable in the class
of axisymmetric deformations.

4. Bifurcation analysis

The bifurcation criterion for the problem under consideration is the existence of
non-trivial solutions to the linearized equations of (2.8) and (2.9). These equations
can be found in Haughton & Ogden (1979, eqns (53){(55)). For completeness, we
rewrite these (Eulerian) equations using Lagrangian coordinates and arrive at an
incremental equation,

d

dR

½
B1313 ¶ 3

2 ¶ 3
3f 000 + ¶ 2 ¶ 2

3[(5 ¡ 3 ¶ 2
2 ¶ 3)B1313 + ¶ 2

2 ¶ 3RB 0
1313]

f 00

R

+ ¶ 3[(1 ¡ 5¶ 2
2 ¶ 3 + 3 ¶ 4

2 ¶ 2
3)B1313 + ¶ 2

2 ¶ 3(2 ¡ ¶ 2
2 ¶ 3)RB0

1313]
f 0

¶ 2R2

¡ ( ¶ 3
2 ¶ 3RB0

1313 ¡ B1313)
f

¶ 3
2R3

¾

+
¬ 2

¶ 2
2 ¶ 2

3

½
¶ 4

2 ¶ 2
3(2B1313 ¡ ¶ 2

3Ŵ33)f 00

+ ¶ 2
2 ¶ 3

·
2(1 ¡ ¶ 2

2 ¶ 3)B1313 + 2 ¼ 1 ¡ ¶ 2
3Ŵ33(2 ¡ ¶ 2

2 ¶ 3)

+ R
d

dR
(2B1313 ¡ ¶ 2

3Ŵ33)

¸
f 0

R
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+

·
¶ 4

2 ¶ 2
3R2B00

1313 + ¶ 2
2 ¶ 3RB0

1313(2 ¡ ¶ 2
2 ¶ 3) ¡ 2B1313

+ ¶ 2
2 ¶ 3( ¶ 2Ŵ2 + ¶ 2

2Ŵ22) + ¶ 2
3Ŵ33 ¡ 2 ¶ 2 ¶ 3Ŵ23

+ ¶ 2
2 ¶ 3R

d

dR
( ¶ 2 ¶ 3Ŵ23 ¡ ¶ 2

3Ŵ33)

¸
f

R2

¾

+ ¬ 4 ¶ 2
2B1313f = 0;

(4.1)

where
¬ = nº =L; (4.2)

n being an integer,

B1313 =
¶ 3Ŵ3

¶ 2
2 ¶ 4

3 ¡ 1

and

¼ 1 = ¶ 1
@W

@¶ 1

:

(Note that this is written in terms of the original strain-energy function W and not
Ŵ .) The unknown function f(R) in (4.1) corresponds to the radial component of
the incremental deformation. Precisely, the radial component of the deformation is
given by

r = r(R) + f(R) sin ¬ Z;

where r(R) is given by (3.3). The axial component of the incremental deformation
can be expressed in terms of f by the incompressibility constraint (2.1). We also
have the boundary conditions

¶ 4
2 ¶ 2

3R2f 00 + ¶ 2
2 ¶ 3(2 ¡ ¶ 2

2 ¶ 3)Rf 0 +

µ
¶ 2

2R2 ¬ 2

¶ 2
3

¡ 1

¶
f = 0; R = A; B; (4.3)

and

¶ 2
2 ¶ 3

3Ŵ33Rf 0 + ( ¶ 2Ŵ2 + ¶ 3
3Ŵ33 ¡ ¶ 2 ¶ 3Ŵ23)f = 0; R = A; B: (4.4)

The condition for bifurcation is then the existence of non-trivial solutions to these
homogeneous equations. We have conducted some numerical calculations to compare
the bifurcation points predicted by (4.1), (4.3), (4.4) and the stability condition to
be derived in the next section. These numerical solutions will be presented in x 6.
For convenience, we have taken the integer n in (4.2) to be unity and then present
the numerical results in terms of the physical parameter L only.

5. Stability analysis

The stability criterion for the problem under consideration is based on the second
variation condition (2.10). We wish to ­ nd the conditions for the cylindrical deforma-
tion to be stable among all axisymmetric deformations. Let u(R; Z) and v(R; Z) be
the radial and axial components of an axisymmetric function _x. The ­ rst boundary
conditions of (2.6) can be written as

v(R; 0) = v(R; L) = 0: (5.1)
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In the cylindrical coordinate system, r _x has the following component form,

r _x =

0

@
uR 0 uZ

0 u=R 0
vR 0 vZ

1

A ;

where a subscript denotes the partial derivative. Equation (2.5 a) then takes the form

uR

¶ 1
+

u

R¶ 2
+

vZ

¶ 3
= 0: (5.2)

The non-zero components of WF F are given by (see, for example, Ogden 1997,
x 6.2)

(WF F )iijj = Wij ; i; j; no sum;

and

(WF F )ijij =
¶ iWi ¡ ¶ jWj

¶ 2
i ¡ ¶ 2

j

; (WF F )ijji =
¶ jWi ¡ ¶ iWj

¶ 2
i ¡ ¶ 2

j

; i 6= j; no sum:

The ­ rst term of the integrand in (2.10) is then

r _x ¢ WF F [r _x] = W11u2
R + W22

u2

R2
+ W33v2

Z + 2W12
uuR

R
+ 2W23

uvZ

R

+ 2W13uRvZ +
¶ 1W1 ¡ ¶ 3W3

¶ 2
1 ¡ ¶ 2

3

(u2
Z + v2

R) + 2
¶ 3W1 ¡ ¶ 1W3

¶ 2
1 ¡ ¶ 2

3

uZvR:

(5.3)

The second term in (2.10) can be written in a form that is more convenient for
mathematical treatment. By using (5.2) and (5.1), and the fact that all the coe¯ -
cients are independent of Z , we ­ nd that

Z

«

WF ¢ r(r _xF ¡1 _x) dV

= 2º

Z L

0

Z B

A

·
W1

µ
uuR

¶ 1

+
vuZ

¶ 3

¶

R

+
W2

R

µ
uuR

¶ 1

+
vuZ

¶ 3

¶

+ W3

µ
uvR

¶ 1
+

vvZ

¶ 3

¶

Z

¸
R dR dZ

= 2º

Z L

0

Z B

A

·
W1

µ
¡ u2

R¶ 2

¡ uvZ

¶ 3

+
vuZ

¶ 3

¶

R

+
W2

R

µ
uuR

¶ 1

+
vuZ

¶ 3

¶¸
R dR dZ

= 2º

Z L

0

Z B

A

·
W1

µ
¶ 1u2

R2 ¶ 2
2

¡ 2uuR

R¶ 2
¡ 2uRvZ

¶ 3
+

2uZvR

¶ 3

¶

+
W2

R

µ
2uuR

¶ 1
+

u2

R¶ 2

¶¸
R dR dZ: (5.4)

By (5.3) and (5.4), inequality (2.10) can be written as
Z L

0

Z B

A

·
! ¢ M 0! +

¶ 1W1 ¡ ¶ 3W3

¶ 2
1 ¡ ¶ 2

3

µ
uZ

vR

¶
¢
µ

1 ¶ 1=¶ 3

¶ 1=¶ 3 1

¶ µ
uZ

vR

¶¸
R dR dZ > 0;

(5.5)
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where

! ²
µ

uR;
u

R
; vZ

¶T

and

M 0 ²

0

@
W11 W12 ¡ W1=¶ 2 + W2=¶ 1 W31 ¡ W1=¶ 3

W12 ¡ W1=¶ 2 + W2=¶ 1 W22 + ¶ 1W1=¶ 2
2 + W2=¶ 2 W23

W31 ¡ W1=¶ 3 W23 W33

1

A :

The quadratic inequality (5.5) involves an integral of two perturbation functions u
and v. We now reduce it to one of a single perturbation by using the incompressibility
constraint (5.2). Suppose that two functions u(R; Z) and v(R; Z) are given that
satisfy (5.1) and (5.2). De­ ne a stream function

¿ (R; Z) ² a¶ 2
3

Z Z

0

u(A; ¹ ) d ¹ ¡
Z R

A

» v( » ; Z) d » :

By using (5.1) and (5.2), it is readily veri­ ed that

¿ R(R; 0) = ¿ R(R; L) = 0 (5.6)

and

u =
¿ Z

R¶ 2 ¶ 2
3

; v = ¡ ¿ R

R
: (5.7)

Substituting (5.7) into (5.5), we ­ nd that

Z L

0

Z B

A

2

4
µ

¿ Z

R¿ RZ

¶
¢ M 1

µ
¿ Z

R¿ RZ

¶
+

0

@
¿ R

R¿ RR

R¿ ZZ

1

A ¢ M 2

0

@
¿ R

R¿ RR

R¿ ZZ

1

A

3

5 dR dZ > 0; (5.8)

where M 1 is the symmetric matrix with components

M 1
11 =

¶ 4
1[ ¶ 2

1W11 ¡ 2 ¶ 1 ¶ 2W12 + ¶ 2
2W22 + 3 ¶ 1W1 ¡ ¶ 2W2]

R3
;

M 1
12 =

¶ 3
1 ¶ 2[ ¡ ¶ 2

1W11 + ¶ 1 ¶ 2W12 ¡ ¶ 2 ¶ 3W23 + ¶ 3 ¶ 1W13 ¡ 2 ¶ 1W1 + ¶ 2W2]

R3
;

M 1
22 =

¶ 2
1 ¶ 2

2[ ¶ 2
1W11 ¡ 2 ¶ 3 ¶ 1W13 + ¶ 2

3W33 + 2 ¶ 1W1]

R3

and

M 2 ² ¶ 1W1 ¡ ¶ 3W3

R3 ¶ 2
3( ¶ 2

1 ¡ ¶ 2
3)

0

@
¶ 2

3 ¡ ¶ 2
3 ¶ 2

1

¡ ¶ 2
3 ¶ 2

3 ¡ ¶ 2
1

¶ 2
1 ¡ ¶ 2

1 ¶ 2
1

1

A :

We thus conclude that if (5.8) holds for all ¿ (R; Z) satisfying (5.6), then (5.5) holds
for all u(R; Z) and v(R; Z) satisfying (5.1) and (5.2). Conversely, for any given
¿ (R; Z) that satis­ es (5.6), the functions u(R; Z) and v(R; Z) de­ ned by (5.7) sat-
isfy (5.1) and (5.2). This means that (5.5) implies (5.8) as well. Therefore, these two
inequalities are equivalent.
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In terms of the reduced strain-energy function (3.8), the matrices M 1 and M 2 are

M 1 =
1

R3

0

BBB@

¶ 2Ŵ22 ¡ Ŵ2

¶ 3
2 ¶ 4

3

¡ ¶ 3Ŵ23 + Ŵ2

¶ 2 ¶ 3
3

¡ ¶ 3Ŵ23 + Ŵ2

¶ 2 ¶ 3
3

Ŵ33

1

CCCA

and

M 2 =
Ŵ3

R3 ¶ 3( ¶ 2
2 ¶ 4

3 ¡ 1)

0

@
¶ 2

2 ¶ 4
3 ¡ ¶ 2

2 ¶ 4
3 1

¡ ¶ 2
2 ¶ 4

3 ¶ 2
2 ¶ 4

3 ¡ 1
1 ¡ 1 1

1

A :

An obvious su¯ cient condition for (5.8) to hold is that the matrices M 1 and M 2

both be positive-semi-de­ nite. This leads to the following inequalities:

¶ 2 ¶ 2
3 ¡ 1 > 0; Ŵ3 > 0 (5.9)

and

¶ 2Ŵ22 ¡ Ŵ2 > 0; Ŵ33 > 0; ¶ 2
3( ¶ 2Ŵ22 ¡ Ŵ2)Ŵ33 ¡ ¶ 2( ¶ 3Ŵ23 ¡ Ŵ2)2 > 0:

(5.10)

If we impose strict inequalities in (5.9) and (5.10), then it follows that strict inequality
holds in (5.8), and hence the total energy has a local minimum at the cylindrical
deformation.

Inequalities (5.9) and (5.10) are by no means necessary for stability, and may be
too strong for the purpose of studying the restriction of stability on the strain-energy
function. We now derive a necessary and su¯ cient condition for (5.8), which involves
only one integral in R.

To this end, we expand the function ¿ (R; Z) into a Fourier sine series in Z ,

¿ (R; Z) =

1X

n= 1

bn(R) sin
nº Z

L
; (5.11)

where the coe¯ cients bn(R) are given by

bn(R) =
2

L

Z L

0

¿ (R; Z) sin
nº Z

L
dZ:

Also, we have the Fourier cosine series expansion for the derivative ¿ Z(R; Z) of
¿ (R; Z):

¿ Z(R; Z) = 1
2
a0(R) +

1X

n = 1

an(R) cos
nº Z

L
: (5.12)

Integrating (5.12) in Z yields

¿ (R; Z) = ¿ (R; 0) + 1
2
a0(R)Z +

1X

n = 1

L

nº
an(R) sin

nº Z

L

=

1X

n = 1

½
2

nº
[1 ¡ ( ¡ 1)n] ¿ (R; 0) ¡ L

nº
( ¡ 1)na0(R) +

L

nº
an(R)

¾
sin

nº Z

L
;

(5.13)
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or

¿ (R; Z) =

1X

n = 1

½
2

nº
[1 ¡ ( ¡ 1)n][ ¿ (R; L) ¡ 1

2
La0(R)]

¡ L

nº
(¡ 1)na0(R) +

L

nº
an(R)

¾
sin

nº Z

L
: (5.14)

It follows from (5.11), (5.13) and (5.14) that

a0(R) =
2

L
[ ¿ (R; L) ¡ ¿ (R; 0)]; (5.15)

an(R) =
2

L
[(¡ 1)n ¿ (R; L) ¡ ¿ (R; 0)] +

nº

L
bn(R): (5.16)

By virtue of (5.6), the coe¯ cient a0 is a constant.
The Fourier series of other derivatives of ¿ (R; Z) can be derived similarly as

¿ R(R; Z) =

1X

n = 1

cn(R) sin
nº Z

L
;

¿ ZZ(R; Z) =

1X

n = 1

dn(R) sin
nº Z

L
;

¿ RZ(R; Z) = 1
2
e0(R) +

1X

n= 1

en(R) cos
nº Z

L
;

¿ RR(R; Z) =

1X

n = 1

fn(R) sin
nº Z

L
;

where

cn(R) = b0
n(R) =

L

nº
a0

n(R); dn(R) = ¡ nº

L
an(R);

e0(R) = a0
0(R) = 0; en(R) = a0

n(R); fn(R) = b00
n(R) =

L

nº
a00

n(R):

9
>>=

>>;
(5.17)

Here, use has been made of (5.14) and (5.6).
By Parseval’s theorem, along with (5.15), (5.16) and (5.17), inequality (5.8) is

equivalent to

Z B

A

8
<

:
1

2

µ
a0

Re0(R)

¶
¢ M 1

µ
a0

Re0(R)

¶

+

1X

n = 1

2

4
µ

an(R)
Ren(R)

¶
¢ M 1

µ
an(R)

Ren(R)

¶
+

0

@
cn(R)

Rfn(R)
Rdn(R)

1

A ¢ M 2

0

@
cn(R)

Rfn(R)
Rdn(R)

1

A

3

5

9
=

; dR
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=

Z B

A

8
<

:
1

2

a0

0
¢ M 1 a0

0

+

1X

n = 1

2

4
µ

an(R)
Ra0

n(R)

¶
¢ M 1

µ
an(R)

Ra0
n(R)

¶

+
1

n2 º 2L2

0

@
L2a0

n(R)
RL2a00

n(R)
¡ n2 º 2Ran(R)

1

A ¢ M 2

0

@
L2a0

n(R)
RL2a00

n(R)
¡ n2 º 2Ran(R)

1

A

3

5

9
=

; dR

> 0: (5.18)

Obviously, inequality (5.18), and therefore (5.8), holds if

Z B

A

µ
1
0

¶
¢ M 1

µ
1
0

¶
dR > 0 (5.19)

and

Z B

A

2

4
µ

a
Ra0

¶
¢ M 1

µ
a

Ra0

¶
+

1

n2 º 2L2

0

@
L2a0

RL2a00

¡ n2 º 2Ra

1

A ¢ M 2

0

@
L2a0

RL2a00

¡ n2 º 2Ra

1

A

3

5 dR > 0;

(5.20)
hold for any integer n and a 2 C2([A; B]; R).

Inequalities (5.19) and (5.20) are, in fact, also necessary for (5.8) to hold. Indeed,
setting ¿ (R; Z) = Z in (5.8) leads to (5.19). Moreover, for a given integer n and
a 2 C2([A; B]; R), we choose

¿ (R; Z) =
L

nº
a(R) sin

nº Z

L
= ¬ ¡1a(R) sin ¬ Z: (5.21)

This function satis­ es (5.6). Substituting (5.21) into (5.8) and carrying out the inte-
gration in Z yields (5.20).

Inequalities (5.19) and (5.20) are thus necessary and su¯ cient for the second varia-
tion condition (5.5) to hold. This represents considerable reduction, as (5.5) involves
two functions u(R; Z) and v(R; Z), and (5.20) involves only one function a(R).

Whether inequality (5.19) holds can be checked directly, and hence requires no
comment. Inequality (5.20), on the other hand, is far more di¯ cult to analyse. The
di¯ culty lies not only on the presence of the arbitrary perturbation function a(R),
but also on the fact that the coe¯ cient matrices M 1 and M 2 are functions of R.
Here, we present a method which gives the solution of this inequality by solving a
system of ­ rst-order di¬erential equations. This method can be made applicable to
quadratic integral inequalities involving any order of derivatives of the perturbation
function. This generalization of the present development will be presented elsewhere
(Chen 2002).

For convenience, we rewrite inequality (5.20) as

Z B

A

0

@
a(R)
a0(R)
a00(R)

1

A ¢ M (R)

0

@
a(R)
a0(R)
a00(R)

1

A dR > 0; (5.22)
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where M is a symmetric 3 £ 3 matrix whose components are

1

R

0

BBBBBBB@

¶ 2Ŵ22 ¡ Ŵ2

R2 ¶ 3
2 ¶ 4

3

+
¬ 2 ¶ 2

2 ¶ 3
3Ŵ3

·

Ŵ2 ¡ ¶ 3Ŵ23

R¶ 2 ¶ 3
3

¡ Ŵ3

R¶ 3 ·

Ŵ3

¶ 3 ·

Ŵ33 +
¶ 2

2 ¶ 3
3Ŵ3

¬ 2R2 ·
¡ ¶ 2

2 ¶ 3
3Ŵ3

¬ 2R·

¶ 2
2 ¶ 3

3Ŵ3

¬ 2 ·

1

CCCCCCCA

;

where we have written
· = ¶ 2

2 ¶ 4
3 ¡ 1:

It follows from an elementary argument that (5.22) implies M33(R) > 0 on [A; B].
Here and henceforth, Mij ; i; j = 1; 2; 3, are the ij elements of the matrix M . We
shall assume that M33(R) > 0 on [A; B], which is a direct consequence of the Baker{
Ericksen inequality.

We consider the following initial-value problem for a system of ­ rst-order ordinary
di¬erential equations,

y0
1 = M11 ¡ (M13 ¡ y3)2

M33
;

y0
2 = M22 ¡ 2y3 ¡ (M23 ¡ y2)2

M33
;

y0
3 = M12 ¡ y1 ¡ (M13 ¡ y3)(M23 ¡ y2)

M33
;

9
>>>>>>>=

>>>>>>>;

(5.23)

with
y1(A) = y2(A) = y3(A) = 0; (5.24)

where yi(R), i = 1; 2; 3, are unknown functions.
The theory for the solution of the initial-value problem (5.23) and (5.24) is well

developed (see, for example, Ince 1956). In the sequel, we assume that there is a con-
tinuous solution on the interval [A; B], which is the case for the numerical examples
presented in the next section. In the case where the solution becomes unbounded,
further analysis is needed. It is shown in Chen (2002) that (5.22) holds in this latter
case.

Inequality (5.22) can be written as

a2(B)y1(B) + a02(B)y2(B) + 2a(B)a0(B)y3(B)

+

Z B

A

·
a

M13 ¡ y3p
M33

+ a0 M23 ¡ y2p
M33

+ a00
p

M33

¸2

dR > 0: (5.25)

It is obvious that (5.25) holds for all a(R) if the 2 £ 2 matrix

Y ²
µ

y1(B) y3(B)
y3(B) y2(B)

¶
(5.26)

is positive-semi-de­ nite. It turns out that this condition is also necessary. Indeed, if
matrix Y is not positive-semi-de­ nite, then there are real numbers p and q such that

p2y1(B) + q2y2(B) + 2pqy3(B) < 0:
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Figure 1. Plot of bifurcation points in the ¶ a ; ¶ z plane for four di® erent materials. Curves 2, 3,
4 and 5 represent, respectively, the Varga material, the three term material, the Neo Hookean
material and the Mooney Rivlin material. Curve 1 indicates uniaxial extension. (A=B = 1

3 ,
L=B = 10.)

Subsequently, inequality (5.25) is violated if we choose function a(R) to be the solu-
tion of the following linear di¬erential equation

a
M13 ¡ y3p

M33

+ a0 M23 ¡ y2p
M33

+ a00
p

M33 = 0; a(B) = p; a0(B) = q:

We thus conclude that a necessary and su¯ cient condition for (5.22) to hold is that
matrix Y be positive semi-de­ nite.

6. Comparison of the bifurcation and stability conditions

In the preceding sections, we have derived bifurcation equations (4.1), (4.3), (4.4)
and the stability condition that (5.26) be positive-semi-de­ nite. There seems to be no
apparent connection between the two sets of conditions. In this section, we present
some numerical calculations to compare the bifurcation condition and the stability
condition. In particular, we examine whether the stability of the cylindrical defor-
mations changes at a bifurcation point. We have used four commonly used versions
of Ogden materials (3.14).

In ­ gure 1 we plot a similar bifurcation diagram to that which can be found
in Haughton & Ogden (1979). We plot the critical values of the azimuthal princi-
pal stretch ¶ 2 at the inner surface ¶ 2(A) = a=A = ¶ a (say) against the axial stretch
¶ 3 = ¶ z . We have taken a thick-walled tube A=B = 1

3
of reasonable length L=B = 10.
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Figure 2. Plot of bifurcation points in the ¶ a ; ¶ z plane for the three term material.
(A=B = 1

3 , L=B = 10.)

The results can, however, be regarded as being typical. The four materials are used:
the Neo{Hookean material (N = 1, ¬ 1 = 2); the Varga material (N = 1, ¬ 1 = 1);
the Mooney{Rivlin material (N = 2, ¬ 1 = 2, ¬ 2 = ¡ 2, with · 1 = 7, · 2 = ¡ 1);
and Ogden’s three-term material (see Ogden 1972). In ­ gure 1, the lowest curve
corresponds to simple uniaxial extension of the tube ¶ a = 1=

p
¶ z . The only possi-

ble deformations lie on or above this curve. If we follow this curve to the left, we
­ nd that it intersects the bifurcation curves. These points (one for each di¬erent
material) correspond to a bulging of the tube due to the axial compression alone.
Other bifurcation points rely on a combination of axial compression (or tension) and
in®ating pressure.

Previously, the stability of the cylindrical deformation may have been inferred
from diagrams such as ­ gure 1, but there has been no mathematical justi­ cation for
any assumptions that may have been made regarding stability. When the stability
criterion (5.25) is evaluated, we ­ nd that it corresponds exactly (to the accuracy
of the numerical calculations) to the bifurcation points. Thus we now have solid
mathematical ground for the inclusion of the stable/unstable captions. In ­ gure 1,
if we consider a ­ xed value of the axial stretch ¶ z , we then move vertically as the
inner radius of the cylinder is increased. When we encounter the ­ rst bifurcation
curve (depending on the material), the cylindrical deformation becomes unstable.
For the single-term materials (Varga and Neo{Hookean), nothing further happens,
and the whole of the region above the bifurcation curve is unstable. For the three-term
material, there is a second bifurcation point in the upper right-hand corner. Above
this second bifurcation point, the cylindrical deformation becomes stable again. (It
is tempting to assume that this corresponds to the bulge occupying the whole of
the cylinder, but see ­ gure 2.) For the Mooney{Rivlin material, the situation is
somewhat di¬erent. There is a central region (approximately for ¶ z 2 (2:1; 3:3)) for
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Figure 3. Plot of bifurcation points in the ¶ a ; ¶ z plane for the Mooney Rivlin material.
(A=B = 1

3 , L=B = 10.)

which bifurcation does not occur and so the cylindrical deformation remains stable
for all values of pressure.

The range of deformation shown in ­ gure 1 is quite severe and consideration of
deformation outside this region is unlikely to represent anything physically mean-
ingful. However, purely for mathematical interest, we include ­ gures 2 and 3, which
give a more complete picture of the Bifurcation and stability behaviour.

In ­ gure 2, we show that the three-term material can, in fact, exhibit three bifur-
cation points for ¶ z > 3:1, approximately, for this combination of initial geometry.

In ­ gure 3, we consider the Mooney{Rivlin material. Here, we see that we can
have none, one or two bifurcation points for a ­ xed ¶ z .

This work was supported in part by NATO Collaborative Research grant no. CRG971138. Y.C.C.
acknowledges the support of ONR grant no. M00014 99 1 1069.
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