
HAL Id: hal-01302953
https://hal.science/hal-01302953v1

Submitted on 15 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UI Modeling as Ontology for Composition
Christian Brel, Philippe Renevier-Gonin, Anne-Marie Déry-Pinna, Michel

Riveill

To cite this version:
Christian Brel, Philippe Renevier-Gonin, Anne-Marie Déry-Pinna, Michel Riveill. UI Modeling as On-
tology for Composition. 19th International Conference on Software Engineering and Data Engineering
2010 (SEDE-2010), Jun 2010, San Francisco, United States. pp.33-38. �hal-01302953�

https://hal.science/hal-01302953v1
https://hal.archives-ouvertes.fr

UI Modeling as Ontology for Composition

Christian Brel, Philippe Renevier-Gonin, Anne-Marie Pinna-Déry, Michel Riveill

Laboratoire I3S - UMR7271 - UNS CNRS, 2000, route des Lucioles - Les Algorithmes
BP 121 - 06903 Sophia Antipolis Cedex – France

{christian.brel,philippe.renevier, anne-marie.pinna, michel.riveill}@unice.fr

Abstract

The number of specialized applications, like (web) services or
smartphone apps, is quickly increasing. Composing such
applications is a need for developers in order to quickly produce
new applications according to end-users’ requirements and
customs. In order to support developers, we propose a
composition approach using semantics description for
component-based applications. We propose to use some roles as
cornerstones for the composition by substitution.

1 INTRODUCTION

With the increasing number of applications for smart
phone, end-user could use the same functionality in
several situations. For example, Google Maps is often
integrated for geo-localization.

In an idealistic way, developers must be able to reuse
functionalities without (or with minor) developments. The
life cycle of an application must not be closed when
former developers finish them. But the life cycle must be
still open in order to reuse or to rearrange functionalities.
Consequently we propose a new UI composing approach,
based on semantics description of elements’ roles. So we
present a model enabling substitution of elements of the
UI coming from two former applications, according to
their known roles: Input (elements that produce values),
Output (elements that consume values) and Trigger
(elements triggering (re)actions of the applications).

The paper presents our results starting by positioning
our work with a description of related work. Then, the
model an application has to respect in order to be
composed is described. In Section 4, the composition by
substitution is defined. Section 5 details the substitution
of a UI element by another, whereas the section 6
illustrates the substitution of several UI elements by the
kept UI element. The last sections are the description of
an implementation of our model, a discussion and a
conclusion.

2 RELATED WORK

The described problem leads naturally to a state of the
art around UI composition. We identify the two different
approaches:

- The UI composition may be based on abstract
description, like in UsiXML [9, 11], in the
ServFace project [5, 12], Alias [14] and in
Transparent Interface [7]. Those models are
defined by XML languages. Final UI are
obtained thanks to transformations of those
models.

- The UI composition may be based on “UI
Components”. These components are reusable
high-level widgets, available in repositories. “UI
components” are reused by applying design
pattern (code level) and detecting pattern of use
(UI level). Compose [6], COTS-UI [4], CRUISe
[13], WinCuts [16], Composable UIs [10], UI
façades [15] and on-the-fly mashup composition
[17] illustrate such kind of UI composition.

From the analysis of these works, none of these
approaches allows both (i) reusing of former applications
while replacing UI parts and (ii) building a runnable
application based on elements of those former
applications. Our proposition is a composition model
based on the so-called roles of former elements of the UI,
preserving functional links and former elements. The
roles of former UI elements are expressed in abstract
representations of UI, thanks to ontology. The
composition will be performed by transforming the
manipulation on the ontology to manipulation of
components links. The next section describes our model
of composed applications.

3 APPLICATION MODEL BASED ON ROLES

Our goal is to compose applications and in particular
their UI, not only by juxtaposition but also by
substitutions between former elements of the UI. To

obtain a functional application, we also want to preserve
former functional links.

In order to be composition compliant, the existing
applications in our composition must follow the
separation of concern principle. Indeed, we need to have a
clear separation between the functionalities (business
part) and the UI. An existing pattern to set up this
separation is the Model-View-Controller pattern [8].

Following such a separation of concern, our application
model is composed by a View that we considered as a set
of Elements of the UI, associated to Elements of
Controllers themselves linked to Elements of
Functionalities (Model). Each element of the UI is
annotated with “UI roles”; we define three conceptual
roles to represent the behavior of an element of the UI:
Trigger, Input and Output.

We use ontology to model applications to be
composed. We define a class Role and its subclasses “UI
Role”. In additional of UI roles, we define two other
roles: Controller (corresponding to the C of M-V-C) and
Functionality (corresponding to the M of M-V-C). The
Fig. 1 corresponds to an instance of our ontology about
roles. In this figure, each role is represented separately
and attached to its element. The same element may appear
several times (one by played role). All Elements are
represented in another ontology based on an abstract
description of the architecture (e.g. a component-based
decomposition of the application). Such abstract Element
descriptions have a property referencing the concrete
Element (the component in the application). In a role,
there is also a “method” property indicating which
methods are called in the concrete element when it is used
for that role.

For each Element, we can associate two sets of roles:
the “intrinsic roles” and the “used roles”. The “intrinsic
roles” of an Element are roles it can intrinsically play. The
“used roles” of an Element are roles it effectively plays in
an application. Those sets are represented as properties of
Elements. The arrows represent the “calling” properties.

In Fig. 1, only the “used roles” are represented. The
pairs (Element, “UI role”) appear in boxes with a grey
background. Only one “Controller” is represented, but a
pair (Element, “UI role”) may be connected to several
Controllers. Finally, an Element is not identified on that
general representation because an Element may appear
several times in different pairs (with different roles). For
example a “Text Input” Element can have three “intrinsic
roles” – Input (with a “getValue” method), a first Trigger
(corresponding to “key typed” events) and a second
Trigger (corresponding to “focus” events).

Fig. 1. Application decomposition with roles, a controller-
centered view

Based on application decomposition, we describe in the
next section how we can compose different UI.

4 COMPOSITION BY SUBSTITUTION

According to the application model presented in the
previous section, we can consider the composition of
applications:

• !""#$! = !" ! ∪ !" ! ∪ !"! !ℎ!"!
• !"! = !!"…!!! is a set of Elements belonging to
applii used for their role of Input, Trigger or Output

• !"! = !!"… !!" is a set of Elements belonging to
applii used as Controller

• !"! = !!"…!!! is a set of Elements belonging to
applii used as Functionality

• !!"#$!"%!& !!! = !!. .!! is the set of the n intrinsic
"UI roles" associated to !!! , ∀!, ! ∈ 1. . ! , ! ≠ ! =>
!! ≠ !!

• !!"#$!!! = !!. .!! is the set of used “UI roles”
of !!! in applii, ∀! ∈ 1. .! ,!! ∈ !!"#$!"%!&(!!!).

 The composition of former UI is made through the
composition of a selection of pairs built with an Element
and one of its “UI roles”. The objective is to substitute
such pairs, with the following constrain: for the
substituted pair, the “UI role” must be a used one.

Considering ELEMS the set of Elements from n former
applications {!""#$!}: !"!#$ = !"!!

!!! . A
substitution between several pairs (!!! ,!!!)! implies to
choose a pair in order to conserve it and substitute all
other pairs by the conserved one. Considering each UI
Element E have a set of “intrinsic roles” !!"#$!"%!&(!) and
a set of “used roles” !!"#$(!) , we define:

• !"# = (!!! ,!!!)! , ! ∈ 1… ! , sel is the set of the q

pairs to compose,
• (!!! ,!!!)! , C ∈ {1...q}, is the pair to conserve,
• ∀! ∈ 1… ! and j ≠ c ⟹ !!! ∈ !!"#$(!!!)
• PAIRS = !"!#$ × Input,Output,Trigger
• subst : PAIRSn × PAIRS à PAIRSn is the substitution

function: subst(!"# , (!!! ,!!!)!) = (!!! ,!!!)! , ! ∈

1… !

So to substitute a pair (!!! ,!!!)! by the conserved
one (!!! ,!!!)! , the !!! needs to be compatible with !!!.
The “subst” function changes the ontology by modifying
the “calling” property of impacted Elements ({!!!} or
Elements “calling” an !!!). The identification of
compatibility between two pairs will be studied in next
section.

5 SUBSTITUTING TWO PAIRS

In the next section we will consider the substitution
between several pairs. But we first consider substitution
between two pairs: (Element, a used “UI role”) is the
replaced one; (Element, “UI role”) is the kept one. That
“UI role” may be intrinsic or used. We present the
compatibility between the two pairs according to the kept
“UI role”.

5.1 Keeping an Output

When keeping an output, there is no constraining on
the substituted role. By placing an adapter before the
Element playing the “output” role, the substitution can be
performed. The adapter has to:

- Adapt the format of data to display if the
substituted role is also “output” (see Fig. 2) or to
define a policy of displaying data if the
substituted role is also “output” (see Fig. 2). Such
policy may be displaying all data, the last
received data, etc.

- Store displayed data and can restitute them when
asked if the substituted role is an “input”.

- Generate an event when the output is updated if
the substituted role is a “Trigger”.

In Fig. 2, the adapter A can store displayed data in E3
and can restitute them to C2 when asked. With that
solution, E3 doesn’t need to play a role of Input, but the
Adapter is both an output for the pairs (E4, C1) and (E5,
F1) and an input for the pair (E8, C2).

Fig. 2 (E3, Output) replacing (E7, Input), adapter before (E3,
Output)

In such case, if we don’t use the adapter like in Fig. 2,
the adapter is simpler and the connections between
elements are less impacted. In the second solution (see
Fig. 3), E3 also has to be an Input to give data to (E8, C2).

Fig. 3. (E3, Output – Input) replacing (E7, Input) , adapter
between (E3, Output – Input) and (E8, Controller)

5.2 Keeping an Trigger

As “Trigger” is the only one “UI role” that makes the
associated Element a “caller”, the role of substituted pair
must be also a “Trigger”. Like illustrated in Fig. 4, we
place an Adapter after the kept “Trigger” for two reasons:
(i) adapting the format of the “event” and (ii) defining the
policy of the substitution. The adapter can proceed a
sequence between the two triggered actions or put them in
parallel etc…

Fig.4. Substituting a “Trigger” by another

5.3 Keeping an Input

An “Input” can not replace an “Output” because of the
direction of the data. Both are called by a “Controller”,
but an Output receives data, while “Input” provides data.
Inversely, an “Input” may replace a “Trigger” (see Fig.
5). The adapter placed before the kept pair (E2, I1) can
provide data to the Controller (E4, C1) by delegating to

(E2, I1). In the same time, when called, the adapter can
generate an event and so call (E8, C2). The “Trigger” is
“on access” (i.e. when the value is got).

Of course, an “Input” can replace another “Input” (see
Fig. 6). In that case, the adapter is used to adapting the
provided data to what is expected by the Controller (E8,
C2).

Fig.5. Substituting a “Trigger” by an “Input”

Fig.6. Substituting a “Input” by another

5.4 Summary of substituting two pairs

In order to perform a substitution between two pairs
(Element, “UI role”), we need adding an Adapter between
the substituted pair and the conserved one. Adapters may
have several uses: (i) adapting formats of the data or (ii)
defining a policy of substitution or (iii) adding a role
when the new role makes the Element the “caller”.Thanks
to the identification of the Adapter and its roles, we can
now define the “subst” function for two pairs. Indeed, in
subsections 5.1, 5.2 and 5.3, we define both the definition
domain for two pairs (compatibility) and the result. In the
next section, we generalize that function to several pairs.

6 SUBSTITUTIONS BETWEEN SEVERAL UI
ELEMENTS

6.1 Heuristic

We consider substitutions of several pairs (Element,
“UI role”) like successive substitutions between pairs.
Making a substitution between p (Element, “UI role”) is
like making (p-1) substitutions between two pairs.

We propose the following heuristic: a composed UI is
obtained by keeping the conserved pair and by operating
(p-1) substitutions between each removed pair and the
kept one.

This is not the only way for building the composed
application. Probably we can optimize the number of step
by parallelizing substitution. But with our heuristic, we
minimize the hypothesis on the roles played by the
composed elements. Indeed, only the kept element has to
have the “same roles” than the removed pairs, there is no
additional constrain between merged elements.

6.2 Prototype

We use the Corese [3] semantic web engine to process
and query the RDF. For the concrete Elements, we require
Component-based applications to compose. We choose
the Julia implementation of the Fractal model [2]. The
ontologies describing the applications to be composed
must be provided with their application.

We develop a composition process made of two main
steps: the Selection Step [1] and the Substitution Step.
The Selection step provides complete pieces of
application to the Substitution step. During the
Substitution Step, as explained in previous sections, we
rely on the roles of the different components. When
selecting components, we have to choose the replaced
used “UI roles”. By selecting the kept component, we
have to choose one of its “UI roles” (intrinsic or played).

Exploiting the ontology and the description of Fractal
component (Provided or Required software interfaces),
we generate a Fractal component skeleton of Adapter. The
developers have to complete the generated adapter with
the expected behavior to obtain the final application (see
the subsection 5.4).

7 CONCLUSION

In this paper we present a new UI composing
approach, based on description of roles of elements in the
views of applications. Our model enables substitution of
elements coming from former applications, according to
their known “UI roles” (Input, Output, Trigger). By
inserting adapters between elements, we could substitute
one UI element by a compatible one. We also propose a
solution for substitutions involving several elements, as
we decompose such complex substitutions in successive
substitutions between the kept element and one of the
other elements.

We are now working on a software for composition
integrating our composition by substitution. The
composition software integrates the substitutions and
other operations like deleting an element. Our aim is to
develop a complete framework of UI compositions
preserving functional links.

8 References

1. Brel C., Pinna-Déry A.-M., Renevier P., Riveill
M. OntoCompo: A Tool To Enhance Application
Composition in Proceedings of the 13th IFIP
TC13 Conference in Human-Computer
Interaction INTERACT 2011 (Interact 2011),
sep 2011

2. Bruneton, E., Coupaye, T., Leclercq, M., Quéma,
V. and Stefani, J.-B. (2006), The FRACTAL
component model and its support in Java.
Software: Practice and Experience, 36: 1257–
1284. doi: 10.1002/spe.767

3. Corby O., Dieng-Kuntz R., and Faron-Zucker C..
Querying the semantic web with the corese
search engine. In 16th European Conference on
Artificial Intelligence (ECAI2004), IOS Press,
Valencia, Spain, 2004.

4. Criado, J., Padilla, N., Iribarne, L., Asensio, J.:
User Interface Composition with COTS-UI and
Trading Approaches: Application for Web-Based
Environmental Information Systems. CCIS 111,
pp. 259-266, Springer-Verlag, Berlin (2010)

5. Feldmann M., Janeiro J., Nestler T., Hübsch G.,
Jugel U., Preussner A., Schill A. An Integrated
Approach for Creating Service-Based Interactive
Applications. In: Proceedings of the Conference
in Human Computer Interaction (Interact), 2009

6. Gabillon, Y., Petit, M., Calvary, G. and Fiorino,
H. Automated planning for userinterface
composition. In Proc. of the 2nd Int. Wksp. on
Semantic Models for Adaptive
InteractiveSystems: SEMAIS'11, (Palo Alto, CA,
USA, Feb. 2011), Springer HCI series, 5 pages.

7. Ginzburg, J., Rossi, G., Urbieta, M., Distante,
D.: Transparent Interface Composition in Web
Applications. In Proceedings of the 7th
International Conference on Web Engineering
(ICWE2007: July 16-20, 2007; Como, Italy), pp.
152-166 (2007).

8. Goldberg, A., Smalltalk-80: The Interactive
Programming Environment, Addison-Wesley
Publ., 1984.

9. Lepreux S., Vanderdonckt J., Kolski C. User
Interface Composition with UsiXML. Faure D.,
Vanderdonckt J. (Ed.), Proc. of 1st Int.
Workshop on User Interface Extensible Markup
Language UsiXML'2010 (Berlin, 20 June 2010),
Thales Research and Technology France, Paris,
pp. 141-151, juin (2010)

10. Leventhal, E., Grubis, A.: Composable User
Interfaces. The MITRE Corporation, Bedford
USA (2004)

11. Limbourg, Q., Vanderdonckt, J., Michotte, B.,
Bouillon, L., Lopez, V.: USIXML: a Language

Supporting Multi-Path Development of User
Interfaces. In Proc. of 9th IFIP Working Conf. on
Engineering for Human-Computer Interaction
jointly with 11th Int. Workshop on Design,
Specification, and Verification of Interactive
Systems EHCI-DSVIS’2004 (Hamburg, July 11-
13, 2004). Lecture Notes in Computer Science,
Vol. 3425.Springer-Verlag, Berlin (2005) 200–
220

12. Nestler T., Feldmann M., Preußner A., and Schill
A., Service Composition at the Presentation
Layer using Web Service Annotations, in Proc.
of the 1st Intl. Workshop on Lightweight
Integration on the Web (ComposableWeb’09),
June 2009.

13. Pietschmann S., Voigt M., Rümpel A., Meissner
K. CRUISe: Composition of Rich User Interface
Services. ICWE’09, pp. 473-476.

14. Pinna-Déry A.-M., Joffroy C., Renevier P.,
Riveill M., and Vergoni C., ALIAS: A Set of
Abstract Languages for User Interface
Assembly. Proceedings Software Engineering
and Applications (SEA 2008). November 16 –
18, 2008. Orlando, Florida, USA

15. Stuerzlinger, W., O. Chapuis, D. Phillips, and N.
Roussel, User Interface Façades: Towards Fully
Adaptable User Interfaces. In UIST 2006: ACM
Symposium on User Interface Software and
Technology. 2006.

16. Tan, D.S., Meyers, B., Czerwinski, M.: WinCuts:
Manipulating Arbitrary Window Regions for
more Effective Use of Screen Space. In Proc. of
ACM Conf. on Human Aspects in Computing
Systems CHI’2004 (Vienna, April 2004). ACM
Press, New York (2004) 1525-1528

17. Zhao Q., Huang G., Huang J., Liu X., Mei H., Li
Y., Chen Y. A Web-Based Mashup Environment
for On-the-Fly Service Composition. SOSE
2008, pp. 32-37

