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Abstract

This paper focuses on tractable instances of interval data minmax regret
graph problems. More precisely, we provide polynomial and pseudopolynomial
algorithms for sets of particular instances of the interval data minmax regret
versions of the shortest path, minimum spanning tree and weighted (bipartite)
perfect matching problems. These sets are defined using a parameter that
measures the distance from well known solvable instances. Tractable cases
occur when the parameter is bounded by a constant. Two kinds of parameters
are investigated, measuring either the distance from special weight structures
or the distance from special graph structures.
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1 Introduction

In recent years there has been a growing interest in robust optimization problems
[15]. Studies in this field concern problems where some parameters are ill-known
due to uncertainty or imprecision. Usually, in valued graph optimization problems,
the ill-known parameters are the valuations. In such a case, a set of scenarios is
defined, with one scenario for each possible assignment of valuations to the graph.
Two approaches can be distinguished according to the way the set of scenarios
is defined: the interval model where each valuation is an interval and the set of
scenarios is defined implicitly as the cartesian product of all the intervals; the
discrete scenario model where each valuation is a vector, every component of which
is a particular scenario. Intuitively, a robust solution is a solution that remains
suitable whatever scenario finally occurs. Several criteria have been proposed to
formalize this: the minmax criterion consists of evaluating a solution on the basis
of its worst value over all scenarios, and the minmax regret criterion consists of
evaluating a solution on the basis of its maximal deviation from the optimal value
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over all scenarios. We will mainly focus here on the robust shortest path problem
(RSP for short), the robust minimum spanning tree problem (RST for short) and
the robust minimum weighted (bipartite) perfect matching problem (R(B)PM for
short), with the minmax regret criterion in the interval model.

Formally, an interval data minmax regret network optimization problem can be
defined as follows. Let G = (V, E) be a given directed or undirected graph with
n vertices and m edges. A feasible solution is a subset π ⊆ E satisfying a given
property Π (for example, being a path, a tree or a matching). Each edge e ∈ E

is valued by an interval Ie = [le; ue] of possible weights. The set of scenarios is
the cartesian product S =

∏

e∈E Ie. In other words, a scenario s ∈ S consists in
assigning a weight ws(e) ∈ Ie for every e ∈ E. For any feasible solution π and
any scenario s ∈ S of an instance I = (G, IE) where IE = {Ie : e ∈ E}, the value
of π under scenario s is ws(π) =

∑

e∈π ws(e) and its regret under scenario s is
Rs(π) = |ws(π) − opt(s)|, where opt(s) is the value of an optimal solution for the
standard instance valued by ws (rigorously, we should write Rs(I, π) but we omit
to indicate I when no confusion is possible). The max regret of solution π is defined
by R(π) = maxs∈S Rs(π). The aim of a minmax regret optimization problem is,
given an instance I = (G, IE), to find a feasible solution π∗ minimizing R(π∗).
Note that, for a minimization problem, R(π) = Rs(π)(π), where s(π), called worst
case scenario for π, is defined by ws(π)(e) = ue if e ∈ π and ws(π)(e) = le otherwise
[3].

In this paper, we consider tractable instances of RSP and RST, that have been
proved strongly NP-hard [4] in the general case, as well as tractable instances of
RBPM, the restriction of which to complete bipartite graphs (known as the interval
data minmax regret assignment problem) has been proved NP-hard [12]. For this
purpose, as suggested by Guo et al. [10], we introduce parameters that measure
the distance from well known solvable instances. For example, if all the intervals
of an instance reduce to a single point –degenerate intervals–, then the robust op-
timization problem reduces to a standard optimization problem, and is therefore
polynomially solvable provided that the standard version is polynomial. One can
define the distance from this easy case as the number k of non degenerate inter-
vals. If this distance k is bounded by a constant, then the robust optimization
problem is polynomially solvable by a brute force algorithm [4]. In this work, we
focus on two kinds of parameters: the ones that measure the distance from special
valuation structures (instances the minmax regret of which is zero, instances with
linearly ordered valuations), and the ones that measure the distance from special
graph structures (series-parallel graphs, trees). The paper is organized as follows.
The first two sections deal with the first kind of parameters: we show that RSP
and RBPM are polynomially solvable when the minmax regret is bounded by a
constant k (Section 2), as well as RST when the number of intersecting intervals in
the instance is bounded by a constant k (Section 3). More precisely, following pa-
rameterized complexity terminology [8], the first two problems are in XP (problems
solvable in O(nf(k)) for some function f) while the third one is in FPT (problems
solvable in O(f(k)nc) for some constant c). The next sections deal with the second
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kind of parameters: we show that RSP is pseudopolynomial for graphs which are
close to be series-parallel (Section 4), and that RSP and RBPM are pseudopolyno-
mial for graphs with bounded treewidth and bounded degree (Section 5). Due to
lack of space, some proofs are omitted and can be found in [9].

2 Upper bounded minmax regret

In this section, we investigate the hardness of solving an interval data minmax regret
graph optimization problem when there exists a solution with bounded maximal
regret. Note that studying instances where the optimum value is upper bounded
is a classical way to understand the intrinsic difficulty of a combinatorial optimiza-
tion problem (problems which become polynomially solvable in this case are called
simple, see Paz and Moran [16]). Here, we first show that we can easily determine
if there is a solution of maximal regret 0, i.e. a solution which is optimal under
every possible scenario. Next, we show that for RSP and RBPM, we can extend
this result to polynomially determine if there exists a solution of maximal regret at
most k.

First, let us prove that the problem of the existence of a solution of maximal
regret 0 can be easily solved for any interval data minmax regret graph optimization
problem Π. We use a nice generic 2-approximation algorithm proposed by Kasperski
and Zielinski [13]. For any instance I this algorithm outputs a solution π such that
R(π) ≤ 2R(π∗) (where R(π∗) is the minmax regret of I). If R(π∗) = 0, then
R(π) = 0, else since R(π) ≥ R(π∗), we have R(π) > 0. The expected result follows
(Π being assumed to be polynomial). Now, by a reduction to the regret 0 case, we
prove the following:

Proposition 1 For RSP, the problem of determining if the minmax regret is at
most k can be solved in time O(n2mk).

Proof. Let I = (G, IE) be an instance of RSP and denote by r its optimum
regret. Let us remark that if there exists a degenerate interval Ie = {0} in I
with e = (v1, v2), then one can merge nodes v1 and v2 and get an equivalent
instance (possibly with multiedges). In particular, we can assume that ue > 0 for
any e. We construct m instances I1, . . . , Im of RSP as follows: Ii is the same
instance as I up to the interval [li, ui] associated in I to ei which is transformed
into [max{li − 1; 0}, ui − 1]. We claim that:

(i) r∗i ≥ r − 1 where r∗i denotes the optimum regret of Ii;

(ii) if r∗i = r − 1 then any optimum solution for Ii is optimum for I;

(iii) there exists at least one i such that r∗i = r − 1 (if r > 0).

If the claims are true, then by applying k times these procedures, I has an
optimum regret at most k if and only if (at least) one of the final instances has
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optimum regret 0 (if at some point, we find an interval reduced to {0}, we can
merge the corresponding nodes). We get mk instances; the generic 2-approximation
algorithm is in O(n2) for RSP, and the complexity follows. Claims (i) and (ii) hold
since the regret of any path π satisfies Ri(π) ≥ R(π) − 1 (under any scenario,
the value of any path has decreased by at most 1). For Claim (iii), consider an
optimum solution π∗ = ((v0, v1), · · · , (vp−1, vp)) (where v0 = s and vp = t) of I,
and its worst case scenario s(π∗) in I. We prove that there exists at least one edge
ei ∈ π∗ such that no shortest path in s(π∗) contains this edge. Note that if this is
true, then consider instance Ii: in s(π∗), the value of the shortest path is the same
in I and in Ii, hence the regret of π∗ decreased by 1, and Claim (iii) is true. Then,
assume that for any i, there exists a shortest path πi (in s(π∗)) which contains
(vi−1, vi). Let wi

1 be the value (in s(π∗)) of this path between s and vi−1 and wi
2 its

value between vi and t (hence w1
1 = w

p
2 = 0). Since π∗ has regret r, we get (s(π∗)

is omitted for readability) that w(πi) = wi
1 + wi

2 + u(vi−1,vi) = w(π∗)− r. Summing
up we obtain:

p
∑

i=1

(wi
1 + wi

2) = pw(π∗) − pr −

p
∑

i=1

u(vi−1,vi) = (p − 1)w(π∗) − pr (1)

But remark that for each i ∈ {2, · · · , p} we can build a path of value wi
1 + wi−1

2

(composed of the initial part of πi from s to vi−1 and the final part of πi−1 from
vi−1 to t). Then, since each of these paths has value at least w(π∗) − r:

p
∑

i=2

(wi
1 + wi−1

2 ) ≥ (p − 1)(w(π∗) − r) = (p − 1)w(π∗) − pr + r (2)

But since w1
1 = w

p
2 = 0, Equations (1) and (2) are incompatible for r > 0. 2

The central property, leading to Claim (iii), is that, in an optimum solution π∗

for which R(π∗) > 0, there exists at least one edge that does not belong to any
optimum solution in s(π∗). Actually, one can show that this property is also true
for the interval data minmax regret perfect matching problem in bipartite graphs.
For any instance I = (G, IE) of R(B)PM, we assume that G has a perfect matching
(in particular, the number n of vertices of G is even).

Proposition 2 For RBPM, the problem of determining if the minmax regret is at
most k can be solved in time O(n2mk).

Proof. The proof is almost identical to the one of Proposition 1. Let I = (G, IE)
be an instance of RBPM where G = (V, E) is a bipartite graph which admits a
perfect matching and denote by r its optimum regret. W.l.o.g., assume that le ≥ k

for any e. Actually, by adding any constant c > 0 to each interval Ie, we obtain an
equivalent instance since all the perfect matchings have the same size. As previously,
we build m instances I1, . . . , Im of RBPM where Ii is the same instance as I up
to the interval [li, ui] associated in I to ei which is transformed to [li − 1, ui − 1].



5

Using the same notation as in Proposition 1, we claim that: (i) r∗i = R(Ii) ≥ r− 1;
(ii) if r∗i = r − 1 then any optimum solution for Ii is optimum for I; (iii) there
exists at least one i such that r∗i = r − 1 (if r > 0).

The proof of Claims (i) and (ii) is identical to the proof of Proposition 1. So,
we only prove Claim (iii). Consider an optimum solution π∗ = {e1, · · · , en

2
} of I,

and its worst case scenario s(π∗) in I. As previously, we prove that there exists at
least one edge ei ∈ π∗ such that no perfect matching with minimum weight in s(π∗)
contains this edge. Assume the reverse, and let πi for i = 1, · · · , n

2 be a perfect
matching with minimum weight w(π∗)− r which contains edge ei in scenario s(π∗)
(note that possibly some πi are identical). Then, in scenario s(π∗) we have:

n
2

∑

i=1

w(πi \ ei) =
n − 2

2
w(π∗) −

n

2
r (3)

On the other hand, the graph G′ induced by ∪
n
2
i=1

(

πi \ ei

)

is (n
2 − 1)-regular (G′ is

considered as a multigraph, that is if an edge (x, y) appears p times in ∪
n
2
i=1

(

πi \ ei

)

,
then there are p parallel edges between x and y in G′). Since G′ is bipartite and
(n

2 −1)-regular, G′ can be decomposed into (n
2 −1) matchings π′i for i = 1, . . . , n

2 −1.
These matchings π′i are perfect in G and if π′ is a matching of minimum weight in
scenario s(π∗) among the matchings π′i for i = 1, . . . , n

2 − 1, then the value of π′

satisfies:
n − 2

2
w(π′) ≤

n
2

∑

i=1

w(πi \ ei) (4)

Using equality (3) and inequality (4) we obtain w(π′) ≤ w(π∗)− (1 + 2
n
)r, which is

impossible for r > 0 since w(π′) ≥ w(π∗) − r.
By applying k times this method, we build mk instances such that I has an

optimum regret at most k iff (at least) one of the final instances has optimum regret
0. Since we supposed that ∀e ∈ E, le ≥ k for the initial instance, all the interval
lower bounds in the final instances are non-negative. 2

Our method seems to be quite general and may be fruitfully applied to other
problems, but however not to all of them. Indeed, the property leading to Claim (iii)
is no more true for some problems such as RST or RPM (in arbitrary graphs), and
for them the question whether they are simple (according to the definition of [16])
or not remains open.

3 Upper bounded number of interval intersections

As previously mentioned, RST and RSP are fixed parameter tractable (FPT) when
the parameter is the number of non degenerate intervals (with a brute force al-
gorithm). Minimum spanning trees have special properties that leads to another
easy cost structure: when all intervals are disjoint (Ie ∩ If = ∅ for any edges e
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and f), any minimum spanning tree under any scenario is an optimum solution for
RST [1]. Indeed, Kruskal’s algorithm leads then to the same tree, independently
of the scenario. This tree is optimal, and its regret is 0. Note that, on the other
hand, even if all intervals are [0, 1], RST is NP-hard [1, 4]. Here, we show that
considering as parameter the number of intervals that intersect at least one other
interval, RST is FPT. Although using brute force, the optimality of the algorithm
is not obvious.

Proposition 3 RST can be solved in time O(2k m log m), where k is the number
of intervals that intersect at least one other interval.

Proof. Let I = (G, IE) be an instance of RST where G = (V, E) and Ie = [le, ue]
for any e ∈ E. We define J = {Ie1 : ∃e2 6= e1, Ie1 ∩ Ie2 6= ∅}, and we set k = |J |.
Let J ′ ⊆ J . We want to compute the best (in terms of regret) spanning tree π such
that π ∩EJ = EJ ′ (where EJ denotes the set of edges corresponding to intervals in
J). If EJ ′ contains a cycle, there is no such tree. If not, we proceed as follows: we
remove from E the set EJ\J ′ and, considering EJ ′ as part of the spanning tree, we
complete it by applying Kruskal’s algorithm to the remaining graph (choosing any
valuation w(e) ∈ [le, ue] since the output does not depend on the value of an edge
e 6∈ J). Let πJ ′ be the obtained solution.

Now, let π be a spanning tree such that π ∩ EJ = EJ ′ . We want to prove that
R(πJ ′) ≤ R(π). First, note that πJ ′ and π agree on EJ . Then, under any scenario
where w(e) = ue for e ∈ EJ ′ and w(e) = le for e ∈ EJ\J ′ , Kruskal’s algorithm will
produce the same optimum solution π∗. In particular π∗ is optimal both in s(π)
and s(πJ ′). However, π∗ has not the same value in these two scenarios. Then:

R(πJ ′) − R(π) = ws(πJ′ )(πJ ′) − ws(πJ′ )(π
∗) −

(

ws(π)(π) − ws(π)(π
∗)

)

We upper bound this by considering each edge of the graph. If πJ ′ and π agree
on an edge e (either take it or not), then the difference is 0 for this edge, since this
edge has the same value in s(π) and s(πJ ′), and since we refer to the same tree π∗.
Note that this includes all edges in EJ . If πJ ′ and π disagree on e:

– either e is in πJ ′ \ π. If e is not in π∗, then in the regret it counts ue for πJ ′

(ue for πJ ′ and 0 for π∗) and 0 for π (0 for π and 0 for π∗). If e is in π∗, it
counts 0 for πJ ′ and −le for π. The loss (in terms of regret) from πJ ′ with
respect to π is therefore at most ue;

– or e is in π \πJ ′ . If e is not in π∗, then it counts 0 for πJ ′ and ue for π. If e is
in π∗, it counts −le for πJ ′ and 0 for π. Then, with respect to π, πJ ′ “wins”
at least le.

Summing up these inequalities for all edges leads to:

R(πJ ′) − R(π) ≤
∑

e∈πJ′\π

ue −
∑

e∈π\πJ′

le (5)
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Now, recall that π and πJ ′ agree on J , and that the intervals not in J do not
intersect. Hence, whatever the value of edges not in J , πJ ′ will have a better value
than π. This is true in particular when the weight of each e 6∈ J is fixed to ue if e

is in πJ ′ and to le otherwise. This means that
∑

e∈πJ′\π

ue ≤
∑

e∈π\πJ′

le (6)

Equations (5) and (6) lead to the result that πJ ′ is the best tree π such that
π ∩ J = J ′.

To conclude, we only have to consider each possible J ′ ⊆ J , and take the best
solution so computed. The global complexity is hence 2kO(m log m). 2

Note that for RSP, making assumptions on interval intersections does not sim-
plify the problem.

Proposition 4 RSP is NP-hard even if there are no intersections between inter-
vals.

4 Upper bounded reduction complexity

We now consider a particular class of directed acyclic graphs (DAGs), namely series-
parallel graphs. This class can be defined using the following kinds of reductions in
a DAG: (1) a series reduction at v is possible when e1 = (u, v) is the unique edge
into v and e2 = (v, w) is the unique edge out of v: then e1 and e2 are replaced by
e = (u, w); (2) a parallel reduction at u, w replaces two edges e1, e2 joining u to
w by a single edge e = (u, w). Two nodes s and t are distinguished as the source
and the sink (st-DAG). A graph is said to be edge series-parallel (ESP) if it can be
reduced to a single edge (s, t) by using such reductions. Kasperski and Zielinski have
recently shown that RSP is NP-hard in ESP graphs, but admits a pseudopolynomial
algorithm in this case [14]. In this section, we extend this result to graphs close to be
ESP. For the convenience of the reader, we first describe the basic principles of the
pseudopolynomial algorithm for ESP graphs. It operates by applying a sequence
of series and parallel reductions from the input graph G = (V, E) to a single edge
(s, t). This sequence is given by an algorithm in O(m) to recognize ESP graphs [17],
where m = |E|. In a reduced graph, a subset Ei ⊆ E is associated with every edge
ei. These subsets are defined recursively: the set {e} is associated with every e ∈ E;
let e1, e2 denote the edges involved in a reduction, then the set E1∪E2 is associated
with the new edge. For every edge ei, the subgraph of G induced by Ei is denoted
Gei

. Let uπ and R(π) denote respectively the worst value and the max regret of
a path π in an induced subgraph Ge. The principle of the algorithm is, for each
reduction yielding a new edge e = (v, w), to keep only a minimal subset Pe of non-
dominated paths from v to w, where π dominates σ if uπ ≤ uσ and R(π) ≤ R(σ)
with at least a strict inequality. Indeed, those paths are potential subpaths of a
minmax regret path from s to t in G. Initially, Pe = {e} for every edge e. Then,
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for any new edge e obtained by a reduction involving e1 and e2, set Pe is computed
from Pe1 ∪Pe2 in a parallel reduction, and from Pe1 ×Pe2 (concatenated paths) in a
series reduction. When the sequence of reductions terminates, there is only a single
edge (s, t), and path π∗ = arg minπ∈P(s,t)

R(π) is a minmax regret path from s to t

in G. Noticing that |Pe| is upper bounded by Lmax, where Lmax is the value of the
longest path from s to t in G over all scenarios, the authors, thanks to a recursive
computation of u and R (avoiding shortest path computations from scratch when
computing R(π) for π ∈ Pe1 ∪ Pe2 or Pe1 × Pe2), establish that the running time is
O(mL2

max), and therefore pseudopolynomial.
We now extend this result to graphs close to be ESP. We first need to measure

how far a graph is from being ESP. For that purpose, the notion of reduction
complexity has been introduced [5]. It uses a third kind of reduction, called node
reduction. Such a reduction can be performed at a node v when v has in-degree
or out-degree 1: suppose v has out-degree 1, let e1 = (u1, v), . . . , eδ = (uδ, v) be
the edges into v and eδ+1 = (v, w) be the edge out of v, then {e1, . . . , eδ+1} is
replaced by {e′1, . . . , e

′
δ}, where e′i = (ui, w) (the case where v has in-degree 1 is

symmetric). Note that every st-DAG can be reduced to a single edge (s, t) by
iterating the three types of reductions. The reduction complexity of a graph G is
defined as the minimum number of node reductions sufficient –along with series
and parallel reductions– to reduce G to (s, t). There exists an O(n2.5) algorithm
to compute an optimal reduction sequence [5] (i.e., involving a minimum number
of node reductions), and hence to determine reduction complexity. Thanks to this,
the result of Kasperski and Zielinski [14] can be extended:

Proposition 5 RSP can be solved in time O(2km2 L2
max) in st-DAGs of reduction

complexity k.

5 Upper bounded treewidth and max degree

The treewidth of a graph can be seen as a measure of how far it is from being a tree
(the treewidth of a tree is 1). It is well-known that the treewidth of an (undirected)
ESP graph is at most 2. A natural extension of the previous result is therefore to
investigate the complexity of RSP in graphs of bounded treewidth (more precisely,
in graphs whose corresponding undirected simple graph has a bounded treewidth).
Clearly, RSP is polynomially solvable in a graph G the treewidth of which is k = 1
(G is a tree), or the max degree of which is ∆ ≤ 2 (G is a set of cycles and/or
chains). However, it is NP-hard when k = 2 and ∆ = 3 (since there is a polynomial
reduction from the partition problem involving an ESP graph -without multiedges-
of max degree 3 [14]). We show here its pseudopolynomiality for bounded k and ∆.

Proposition 6 RSP can be solved in time O((n + m)2∆(k+1)((n − 1)umax)
k+1) in

graphs of treewidth k and max degree ∆, where umax = max
(i,j)∈A

uij.

Proof. Let G = (V, A) denote a directed graph with a source node s and a sink
node t, and let G′ = (V, E) denote the simple undirected graph obtained from G
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by removing orientation of edges and by simplifying multiedges. Solving RSP in G

amounts to solve the following integer linear program (ILP) [11]:

min
∑

(i,j)∈A

uijyij − xt (7)

s.t. xj ≤ xi + lij + (uij − lij)yij ∀(i, j) ∈ A, (8)

∑

(j,k)∈A

yjk −
∑

(i,j)∈A

yij =







1 if j = s

-1 if j = t

0 if not
∀j ∈ V, (9)

xs = 0, yij ∈ {0, 1} ∀(i, j) ∈ A, xj ∈ N ∀j ∈ V. (10)

The interaction graph of an ILP includes a vertex for each variable of the program
and an edge between two vertices if both corresponding variables appear in the
same constraint. We now show that the program is solvable in pseudopolynomial
time by applying a dynamic programming technique on a tree decomposition of the
interaction graph IG = (I, U), i.e. a labeled tree (T, L) such that (a) every node
t of T is labeled by a non-empty subset L(t) of V s.t. ∪t∈T L(t) = V , (b) for every
edge {i, j} ∈ U there is a node t of T whose label L(t) contains both i and j, (c) for
every vertex i ∈ I the nodes of T whose labels include i form a connected subtree
of T . The width of a tree decomposition is maxt∈T |L(t)| − 1. The treewidth of IG

is the smallest k for which IG has a tree decomposition of width k. If the treewidth
of a graph is bounded by a constant k, then a tree decomposition of treewidth at
most k can be constructed in linear time (in the number of nodes) [7]. This tree
decomposition can itself be converted in linear time in a nice tree decomposition
of the same width, i.e. a rooted tree decomposition such that each node has at
most two children, with four types of nodes t: leaf nodes with |L(t)| = 1, join
nodes with two children t′, t′′ s.t. L(t) = L(t′) = L(t′′), introduce nodes with one
child t′ s.t. L(t′) = L(t) ∪ {v} for some v ∈ V , forget nodes with one child t′

s.t. L(t) = L(t′) − {v} for some v ∈ V . The proof of pseudopolynomiality of the
approach is in three steps: (i) we show that if the max degree of G and the treewidth
of G′ are bounded by some constant, then the treewidth of IG is bounded by some
constant; (ii) we show how to solve by dynamic programming an ILP whose IG has
a bounded treewidth; (iii) we show that the previous approach is pseudopolynomial
since variables xj are upper bounded by (n− 1)umax, where umax = max(i,j)∈A uij .

Proof of (i). Assume that G′ has treewidth k and G has max degree ∆. Note
that IG restricted to constraints (9) is the line graph of G, i.e., the graph where
each vertex represents an edge of G and any two vertices are adjacent iff their
corresponding edges are incident. It can be shown that the treewidth of the line
graph is at most ∆(k +1)−1 [2]. Assuming (T, L) is a tree decomposition of width
k of G′, the idea is to consider the labeled tree (T, L′) where L′(t) is the set of
edges of G incident to some node in L(t). Indeed, one can show that (T, L′) is
then a tree decomposition of the line graph [2]. We now show that (T, L ∪ L′) is
a tree decomposition of IG (where we identify a vertex or an edge of G with the
corresponding variable in the ILP). For this purpose, one can consider the following
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partitions of I and U : I = X ∪ Y , where X = {xj : j ∈ V } and Y = {yij : (i, j) ∈
A}, and U = UX ∪ UY ∪ UXY , where UX = {[xi, xj ] : (i, j) ∈ A}, UY = {[yjk, yij ] :
(i, j) ∈ A, (j, k) ∈ A} and UXY = {[xi, yij ], [xj , yij ] : (i, j) ∈ A}. Condition (a)
holds since ∪t∈T L(t) = X and ∪t∈T L′(t) = Y . Conditions (b) and (c) hold for
edges of UX and for vertices in X since (T, L) is a tree decomposition of G′. They
also hold for edges of UY and for vertices in Y since (T, L′) is a tree decomposition
of the line graph. Besides, condition (b) holds for edges of UXY by construction of
L′. Hence, (T, L ∪ L′) is a tree decomposition of IG. Furthermore, the treewidth
of IG is upper bounded by maxt∈T L(t) + maxt∈T L′(t) − 1 = k + ∆(k + 1).

Proof of (ii). By using a method related to non-serial dynamic programming [6],
we now show how to solve an ILP in the following general form:

(P )







min
∑n

j=1 cjxj
∑n

j=1 aijxj Ri bi where Ri ∈ {≤, =,≥} ∀i ≤ m

xj ∈ Dj ∀j ≤ n

For this purpose, let us introduce the notion of subprogram of an ILP. For each
node t of T , P (t) denotes the subprogram of P restricted to the variables whose
indices belong to D(t) =

⋃

t′ L(t′) for t′ = t or t′ a descendant of t:

(P (t))







min
∑

j∈D(t) cjxj
∑n

j=1 aijxj Ri bi ∀i : [∀j, (aij 6= 0 ⇒ j ∈ D(t))]

xj ∈ Dj , ∀j ∈ D(t)

Given t ∈ T and σ : L(t) → Πj∈L(t)Dj an assignment of values to variables of
L(t), we denote by Rt(σ) the minimum value of a feasible solution x of P (t) under
the constraint xj = σ(j) ∀j ∈ L(t). One sets Rt(σ) = +∞ if no feasible solution of
P (t) is compatible with σ. The dynamic programming algorithm consists of travers-
ing the nice tree decomposition in a bottom up manner, and computing recursively
the tables Rt for each t ∈ T , where table Rt has an entry Rt(σ) for each possible
assignment σ: let t be a leaf node, say L(t) = {j}, then Rt(σ) = cjσ(j); let t be a
join node with two children t′ and t′′, then Rt(σ) = Rt′(σ)+Rt′′(σ)−

∑

j∈L(t) cjσ(j);

let t be an introduce node, say L(t) = L(t′)∪ {j}, then Rt(σ) = +∞ if σ violates a
constraint of P (t), otherwise Rt(σ) = Rt′(σt′)+cjσ(j) where σt′ denotes assignment
σ restricted to the variables in L(t′); let t be a forget node, say L(t) = L(t′)− {j},
then Rt(σ) = mindj∈Dj

{Rt′(σ
′) : σ′(k) = σ(k) ∀k 6= j and σ′(j) = dj}. The opti-

mum is minσ Rr(σ) at the root node r of the nice tree decomposition.

Proof of (iii). We have |I| = n+m since there are n xi’s and m yij ’s in the ILP
formulation of RSP. There are therefore O(n+m) nodes in the nice tree decomposi-
tion. Noticing that a table Rt can be computed in time O(2∆(k+1)((n−1)umax)

k+1)
since there are at most ∆(k + 1) boolean variables and k + 1 integer variables in
L(t), the result follows. 2
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This approach based on properties of the interaction graph of an ILP formula-
tion is quite general, and can be also fruitfully applied to RBPM. As in Section 2,
for any instance of RBPM, we assume that there exists a perfect matching.

Proposition 7 RBPM can be solved in time O((n+ m)2∆(k+1)((n + 1)umax)
k+1)

in graphs of treewidth k and max degree ∆, where umax = max
(i,j)∈E

uij.

6 Concluding remarks

Several results given in this paper deserve to our opinion further research. For
instance, we conjecture that RSP, as well as other problems, can be pseudopolyno-
mially solved in graphs with bounded treewidth (without any degree restriction).
Alternatively, devising a general method for solving in polynomial time any prob-
lem with bounded minmax regret could be very appealing, but the existence of such
a method seems quite hypothetical to us.

Besides, the issue we considered here can also be investigated in the discrete
scenario model. In that model, each edge e is valued by (se

1, · · · , se
b). For example,

the robust shortest path and spanning tree problems can be trivially solved under
the minmax criterion when the set of valuations is comonotone, i.e. se

i ≤ se
j ⇒

s
f
i ≤ s

f
j for any i, j and e, f . Indeed, the value of every solution is maximized under

the same scenario. Then, one can measure the distance from comonotony as the
minimum number of edges the removal of which leads to a comonotone instance.
Interestingly enough, it can be shown that, even if the distance from comonotony
is 1, and even if there are only 2 scenarios, the robust shortest path and minimum
spanning tree problems are NP-hard.
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