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General tube law for collapsible thin and thick-wall tubes

Ariel J. Jaffa
Ultrasound Unit in Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky, Medical Center, Tel Aviv and Sackler Faculty of Medicine, 
Tel Aviv University, Tel Aviv, Israel
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Modeling the complex deformations of cylindrical tubes under external pressure is of interest in engineering and physiological applications. The highly 
non linear post buckling behavior of cross section of the tube during collapse attracted researchers for years. Major efforts were concentrated on 
studying the behavior of thin wall tubes. Unfortunately, the knowledge on post buckling of thick wall tubes is still incomplete, although many 
experimental and several theoretical studies have been performed. In this study we systematically studied the effect of the wall thickness on post
buckling behavior of the tube. For this purpose, we utilized a computational model for evaluation of the real geometry of the deformed cross sectional 
area due to negative transmural (internal minus external) pressure. We also developed an experimental method to validate the computational results. 
Based on the computed cross sections of tubes with different wall thicknesses, we developed a general tube law that accounts for thin or thick wall tubes 
and fits the numerical data of computed cross sectional areas versus transmural pressures.

1. Introduction

Modeling complex deformations of cylindrical tubes under
external pressure is of interest in engineering and physiological
applications. One of the applications is fluid flow through com
pliant tubes, which usually represents physiological flows such as
blood flow in arteries or air flow in the airways. This problem is
known as fluid structure interaction (FSI) since the fluid and the
structure (i.e., tube wall) are continuously in contact and at
dynamic equilibrium. The flowing fluid is governed by the con
tinuity and momentum equations and the motion of the tube
wall is governed by dynamic equilibrium and constitutive equa
tions. Fluid flow through a compliant conduit represents a three
dimensional problem which is complicated for analytical solutions
and requires advanced numerical solutions. This complexity has
been overcome by solving simplified one dimensional (1D) mod
els of fluid flow through collapsible tubes. In 1D models, the
equilibrium and constitutive equations that govern the tube wall
motion are replaced by a tube law that relates the transmural
pressure Ptm¼Pi Pe (i.e., Pi is the internal pressure and Pe the
external pressure) to the corresponding cross sectional area of the
tube (Shapiro, 1977).

The pressure area curve of the tube law of compliant cylind
rical conduits exhibits two distinct regions. For positive transmural
pressures, the cross section inflates and becomes circular, the
walls are stretched and the perimeter increases. For negative
transmural pressures, the tube buckles and the cross section
flattens until the opposite walls come into contact. While the
inflation of the tube can be easily solved analytically, the highly
non linear post buckling behavior requires more complex theore
tical and numerical solutions, and thus, attracted researches for
years. Major efforts were focused on studying the post buckling
behavior of thin wall tubes and models were developed using the
thin shell theory (Yamaki, 1969; Flaherty et al., 1972; Heil and
Pedley, 1996; Kounadis, 2006; Whittaker et al., 2010). Several
attempts were made to fit the classical thin shell theories for
studying the post buckling deformation of thick wall tubes by
adding correction factors (Simitses, 1996; Chroscielewski et al.,
2010). These efforts led to more accurate results for tubes with
moderate wall thickness, but failed to properly describe the post
buckling behavior of tubes with very thick walls. Several experi
mental works (Bertram, 1982, 1987; Bertram et al., 1990; Bertram
and Elliott, 2003) and numerical studies (Marzo et al., 2005; Zhu
et al., 2008, 2010, 2013) were performed to study the post
buckling behavior of thick wall tubes, but for limited values of
wall thickness.

Computational investigations of 1D models of fluid flow in
collapsible tubes require analytical formulations of the tube law
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with continuity between the collapse and inflated regions. How
ever, a good fit to experimental data requires complex formula
tions with many coefficients (Bassez et al., 2001). Several simple
analytic relationships were introduced for the tube law of com
pliant tubes, but they did not account for the full mechanical
contribution of wall thickness on the dimensionless pressure area
curves (Shapiro, 1977; Elad et al., 1987; Ottesen, 2003).

In this study we explored the role of wall thickness in post
buckling behavior of collapsible tubes. We utilized a computa
tional model for evaluation of the accurate geometry of the tube
deformed cross sectional area due to negative transmural pres
sure. We also developed an experimental method to validate the
computational results. Based on the computed cross sections of
tubes with different wall thicknesses, we developed a general tube
law for both thin and thick wall elastic tubes.

2. Methods

2.1. Physical model

The physical model of this work was a very long tube, L⪢Ri, with γ h/Ri, where
L was the tube length, Ri the internal radius and h the wall thickness. The tube
cross-section was assumed to be circular and unstressed for Ptm 0 (Fig. 1).
In this work we investigated the 2-fold symmetric collapse of thin- and thick-
wall tubes when subjected to Ptmo0.

2.2. Computational model

The computational analysis of the post-buckling geometry of the tube cross-
sectional areas was conducted for two-dimensional (2D) models of the collapsed
cross-section for thin- and thick-wall tubes. Since the tube was relatively long (i.e.,
L⪢Ri), it was reasonable to neglect axial strains and the problem was reduced to a
plain strain analysis. The 2D model was formulated for an unstressed circular cross-
section at Ptm 0 (Fig. 1). The deformation of the tube cross-section for a given
Ptmo0 is a static problem, and thus, the solid domain of the tube wall deformation
was governed by

KU F ð1Þ
where K is the stiffness matrix, U is the displacement vector, and F is the vector of
external loads.

Similar to Marzo et al. (2005), convergence problems were observed for tubes
with wall thickness ratios of γZ0.333. Hence we applied the “low speed dynamics”
analysis by implementing a damping term in Eq. (1) (ADINA, 2011). Thus, the solid
domain for very thick-wall tubes (i.e., γZ0.333) was governed by

βK _UþKU F ð2Þ
where _U is the velocity vector and the coefficient β40 is an empirical damping
parameter.

The model was fully constrained by defining the following boundary condi-
tions:

Uxðx 0; yÞ 0 ð3Þ

Uyðx; y 0Þ 0 ð4Þ
where Ux and Uy are the x and y components of the displacement vector. In
practice, lines AB and CD could move only in the x-direction, while line EH could
move only in the y-direction (Fig. 1).

The tube wall may undergo large displacements and strains, and thus, it was
further assumed to behave as a Neo-Hookean hyperelastic material for which the
strain energy density function is given by

W
G
2
U
�
λ21þλ22þλ23�3

�
þκ
2

�
λ1λ2λ3�1

�2

ð5Þ

where λ is the stretch ratio, G E/2(1þν) is the shear modulus, κ E/3(1–2ν) is the
bulk modulus, E is the Young's modulus and ν is the Poisson's ratio of the tube.

The model was discretized with 9-node quadrilateral elements and solved with
ADINA finite-element software package (version 8.8, Watertown, NY, USA). The
external pressure, Pe, was incrementally applied in thousands of load steps to the
lateral surface of the tube, while the internal pressure was kept at Pi 0. Applying a
uniform external pressure on the unstressed circular cross-section of the tube did
not yield the 2-fold collapse mode of buckling, but resulted in decrease of the
diameter and led to non-convergence of the numerical solutions. To overcome this
problem we imposed an ad-hoc initial geometry perturbation and assumed a
slightly elliptical initial cross-section of the tube with a semi-major axis of 1.001 Ri
and semi-minor of 0.999 Ri.

We conducted the analysis for tubes with Ri 9 mm, h 0.09, 0.9, 2, 3 and
4.5 mm (i.e., γ 0.01, 0.1, 0.222, 0.333 and 0.5), E 3.43 MPa and ν 0.4. Since the
cross-section of the tube demonstrated strongly unstable behavior on the onset of
the buckling, we carefully performed comprehensive convergence tests to explore
the optimal mesh density and number of load steps in which the external pressure
was applied. For each transmural pressure, the cross-sectional area was calculated
and compared to the cross-sectional area obtained from the finer solution (i.e.,
larger number of elements or load steps). Such tests were performed for each
simulated thickness ratio, γ. For tubes with γo0.5 a mesh of 500 elements was
found to give the solution with a maximal difference of �0.2% with respect to finer
mesh. For the tube with γ 0.5, a mesh of 3600 elements was needed to give the
accuracy of 3.4% in the calculated cross-sections. A number of 10,000 load steps for
a thin-wall tube (γ 0.01) and 50,000 load steps for the thicker-wall tubes (γZ0.1)
resulted in cross-sections with maximal differences of 1.4% and 0.1% compared to
the finer case, respectively. A damping parameter of β 1�10 6 was used for
tubes with γZ0.333 in order to ensure numerical convergence. Sensitivity tests
showed that β 1�10 6 resulted cross-sections with maximal difference of 0.21%
with respect to the steady state analysis (i.e., β 0).

2.3. Experimental investigation

2.3.1. Experimental system
Commercial tubes made of Silicone rubber were used to explore the contours of

post-buckling deformation of the cross-section of thick-wall tubes with different
γ when subjected to Ptmo0. The water-filled tube was mounted horizontally
between coaxial supports in a water-filled tank (Fig. 2). One end of the tube was
connected to a vacuum pump via a water reservoir, while the other end was
connected to a pressure transducer. The pressure transducer (143PC05D, Omega
Engineering, USA; accuracy of 71.5 mm Hg) was connected to a laptop equipped
with an analog-to-digital card. The tube length was at least 10 times longer than
the outer diameter. A system for B-mode ultrasound (US) imaging (Voluson E6, GE,
USA) was used to acquire the geometry of the collapsed cross-sections at the
middle of the tube and far away from the ends. The US transducer was held with a
custom designed fixture perpendicular to the tube axis. Acquisition of the US image
and Ptm was done after stabilization of the tube geometry at the given pressure.

2.3.2. Image processing of US images
The recorded US images were converted to BMP files for image processing and

data analysis using Matlab. The region of interest was selected for processing as
shown in Fig. 3a. For identification of the contour of the inner cross-section of the
tube we utilized the Vector Field Convolution (VFC) method of the active contour
model using the Active Model Toolbox of Matlab (Li and Acton, 2007, 2008). This
method required manual initialization of the expected contour by several points
and conversion of the image into a binary image using a threshold algorithm. Visual
inspection of a US image revealed a clear bright band on both sides of the tube wall
at the interface between the tube wall (i.e., Silicone rubber) and the water (Fig. 3a).
Based on ultrasonography experience in obstetrics, the inner wall-fluid interface is
expected to be outside of the bright band for the inner cross-section of the tube
(Salomon et al., 2010). Accordingly, we first marked 8–10 points on the image on
the expected contour of the collapsed cross-section (Fig. 3b). These points were
connected with straight lines to generate the initial iteration for the contour vector
of about 200 points. The missing points on the straight lines were computed with
an active contour re-mesh routine. In order to yield the binary image, the 30%
brightest pixels in circles of 10 pixels radius around each of the vector points were
detected and the remaining black pixels inside the detected band were converted
to white pixels (Fig. 3c). Application of the VFC algorithm provided smooth contour
for the inner cross-section within 40 iterations (Figs. 3d and e). Finally, the inner
cross-sectional area of the collapsed tube was calculated by integration of the
detected contour.Fig. 1. Schematic model of the circular unstressed collapsible tube.
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2.4. Validation of computational model

2.4.1. Thin-wall tubes
The contours of the collapsed cross-sections for a thin-wall elastic tube were

computed both with ADINA (as described in Section 2.2) and the analytic model of
Flaherty et al. (1972). For the computation with ADINA we assumed a tube with
Ri 9 mm, h 0.09 mm (i.e., γ 0.01), E 3.43 MPa and ν 0.4. The boundary value
problem of the analytic model is governed by a system of six ordinary differential
equations and boundary conditions (for details see Flaherty et al. (1972)), and was
solved using MATLAB bvp4c subroutine.

2.4.2. Thick-wall tubes
The computed contours of the cross-sectional areas of thick-wall tubes using

ADINA were validated by comparison to the experimental cross-sections obtained
from the analysis of US images. We measured the collapsed geometry of 2 tubes;
one with γ 0.24 (e.g., Ri 12.5 mm, h 3 mm, E 2.44 MPa, ν 0.4) and a thicker

one with γ 0.333 (e.g., Ri 9 mm, h 3 mm, E 4.0 MPa, ν 0.4). Circumferential
strips of the tested tubes were stretched in an Instron 5544 system in order to
evaluate their Young's modulus for the computational analysis. The tubes were
subjected to negative transmural pressures and the cross-sections were detected
using the VFC algorithm.

2.5. Normalization of the results

The results were presented using non-dimensional variables in order to allow
comparison with the theoretical solution by Flaherty et al. (1972), as well as
comparison between tubes with different ratios γ. The transmural pressure was
scaled by the flexural rigidity of the tube Kp (for details see Appendix A)

Π
Ptm

Kp
ð6Þ

Fig. 2. Experimental setup for imaging the collapsed cross-sections of thick-wall elastic tubes.

Fig. 3. Analysis of the collapsed cross-section. (a) Ultrasound (US) image of collapsed cross-section of the thick-wall tube obtained using the experimental system; (b) the
initial mark of 8–10 points on the contour of the inner cross-section (green line); (c) the detected 30% brightest pixels around each of the initial contour points (green line).
The black pixels inside the detected band were converted to white pixels; (d) the final contour after application of the Vector Field Convolution method; and (e) the final
contour displayed on the original US image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Kp
E

12ð1�ν2Þ½ lnð1þγÞ�3 ð7Þ

The cross-sectional area of the tube, A, was scaled by the undeformed cross-
sectional area, A0,

α
A
A0

ð8Þ

The x and y coordinates of the physical domain were scaled by the internal radius of
the tube

ξ
x
Ri

η
y
Ri

ð9Þ

3. Results

In this work we explored the effect of wall thickness on the
behavior of elastic tubes during collapse. Accordingly, we investi
gated the whole range of wall thickness from very thin to very
thick walls; namely, γ¼0.01, 0.1, 0.222, 0.333 and 0.5. All the tubes
demonstrated similar patterns of deformation during collapse,
as shown in Fig. 4. When the transmural pressure became
negative, the tube cross section underwent small axisymmetric
pre buckling deformations, the perimeter slightly decreased and
wall thickness slightly increased. As the negative transmural
pressure exceeded the buckling pressure Πb, the cross sectional
area rapidly decreased; it first became elliptical and then flattened
until the opposite walls came into contact point for which the
transmural pressure is Πcp.

3.1. Validation of numerical solution

3.1.1. Thin wall tubes
The computed pressure area curve for a thin wall tube (i.e.,

γ¼0.01) perfectly fitted the results of the classical model of
Flaherty et al. (1972) for a wide range of transmural pressures
(Fig. 5a). A maximal difference of 0.72% was observed on the onset
of buckling at Πb¼ 3 (Fig. 5a). The calculated contours of the
cross sections were also identical to those predicted by the
analytical solution (Figs. 5b d).

3.1.2. Thick wall tubes
The collapsed cross sections of the thinner thick wall tube (e.g.,

γ¼0.24) were acquired via US imaging for several values of
transmural pressures and later analyzed to provide the relevant
contours and cross sectional areas. The contours of the cross
sections obtained from the processing of US images matched the

computed cross section (Figs. 6b d). The experimental data fitted
well with the pressure area curve obtained from the numerical
simulations, with maximal deviations of 5.22%, which is within
the range of accuracy of the pressure transducer (Fig. 6a).
The computational results for the thicker thick wall tube (e.g.,
γ¼0.333) were also in good agreement with experimental data
with maximal differences of 4.35% (Fig. 7).

3.2. The effect of thickness ratio on behavior of collapsible tubes

The computational results for all the tubes were summarized as
pressure area curves as shown in Fig. 8. An interesting outcome is
that all the tubes buckled at the same transmural pressure,
Πb¼ 3. This single point of buckling in the region of the smooth
knee at the onset of buckling was found by extrapolating the
almost straight segments on both sides until they met. As the tube
wall was thicker, it underwent larger axisymmetric pre buckling
deformations and buckling occurred at smaller cross sections αb

(Fig. 8). Throughout the axisymmetric pre buckling deformations,
the perimeter of the cross section decreased by 0.05 1.5% and the
wall thickness increased by 0.001 2.8% from its initial values for
thinner (γ¼0.01) and thicker (γ¼0.5) tubes, respectively. During
the transit from buckling to opposite wall contact point (αcp), the
slope of the pressure area curve (i.e., dΠ/dα) decreased as wall
thickness of the tube increased. Accordingly, the contact point
pressure Πcp was less negative and the cross sectional area αcp

was smaller for tubes with thicker walls.

3.3. Development of the general tube law

Based on the computed cross sections, which are given in
Fig. 8, we assumed the following general tube law similar to
Elad et al. (1987) for each of the computed tubes

Πðα; γÞ ¼ c1ðγÞU ðαm1ðγÞ am2ðγÞÞ ð10Þ
where c1(γ), m1(γ) and m2(γ) are tube wall coefficients, which
were assumed to be functions of the wall thickness ratio γ. Using a
non linear least square fitting procedure, the coefficients were
found for each tube for the range αcp (γ)rαr1. These coefficients
were then expressed as functions of the wall thickness ratio γ as
follows:

c1 ¼ 3:1¼ const m1ðγÞ ¼
60
γ0:5

65 m2ðγÞ ¼ 0:7γ 0:4 ð11Þ

Substituting Eq. (11) into Eq. (10) yielded a general tube law that
also counts for elastic tubes with either thin or thick walls,

Πðα; γÞ ¼ 3:1 ðα60=γ0 5 �65 α0:7γ�0:4Þ; αcpðγÞrαr1 ð12Þ
The general tube law for different values of γ is plotted in color
solid lines together with computational results in color circles as
shown in Fig. 9.

4. Discussion

In the present study we have investigated the collapse char
acteristics of thin and thick wall elastic tubes subjected to negative
transmural pressures. The computed data was generated using the
commercial finite element software of ADINA, whereas the experi
mental data was obtained via US imaging. The effects of wall
thickness on the post buckling behavior of the tubes were thor
oughly studied for a wide range of wall thickness values. A general
tube law that accounts for thin and thick wall tubes was developed
to fit the numerical data of the computed cross sectional areas
versus transmural pressures.

Fig. 4. Typical non-dimensional pressure-area curves for thin (thin line) and thick
(thick line) wall collapsible tubes. Buckling point (circle), contact point (rectangle),
and collapsed cross-sections are marked on the curves.
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The validation of numerical scheme is an important phase
in developing a computational model. Due to strongly unstable
behavior of elastic tubes during collapse, we paid special attention

to numerical stability tests such as the number of mesh elements
and load steps. We also carefully examined the validation of the
numerical predictions comparing the computational results with

Fig. 5. Comparison of the computational results (black solid lines) with the theoretical solutions of Flaherty et al., 1972 (red circles) for a thin-wall tube with γ 0.01. (a) The
pressure-area curves. The cross-sectional contours for some transmural pressures of: (b) Π1 �3.299; (c) Π2 �4.314; and (d) Π3 �7.358. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of the computational results (black solid lines) with experimental data (red circles) for a thick-wall tube with γ 0.24. (a) The pressure-area curves. The
cross-sectional contours for some transmural pressures of: (b) Π1 �3.149; (c) Π2 �3.481; and (d) Π3 �4.144. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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classical theoretical solutions for thin wall tubes (Flaherty et al.,
1972) and to experimental data for thick wall tubes. We demon
strated very good agreement of the computational results with
the theoretical and experimental data for both thin and thick
walls. Previous attempts to compare computational and experi
mental results for thick wall collapsible tubes yielded much
greater differences (Marzo et al., 2005).

Comprehensive evaluation of the effect of wall thickness
on post buckling behavior of tubes revealed several behavior
patterns. First, before buckling occurred, the tubes underwent
axisymmetric deformation, which was previously observed (Heil
and Pedley, 1995). The flexural rigidity, Kp, increases with the wall
thickness to radius ratio γ (Eq. 7), and thus, the resistance of
thicker tubes to bending is much greater. Hence, the axisymmetric

pre buckling deformations increased for thick wall tubes. Accord
ingly, the buckling cross sectional area αb was significantly lower
for tubes with thick walls. Nevertheless, all thick wall tubes that
were simulated in this study, as well as thin wall tubes, buckled
at the same transmural pressure Πb¼ 3, as previously demon
strated (Weissman and Mockros, 1967; Bertram, 1987). Once
buckling occurred, thick wall tubes were more compliant than
thin wall tubes (Bertram, 1987; Marzo et al., 2005; Zhu et al.,
2013), and accordingly, larger reductions of the cross sectional
area occurred at less negative transmural pressures.

The collapse patterns of thick wall elastic tubes found in this
work have already been demonstrated in previous studies, but for
a limited number of wall thicknesses (Bertram, 1987; Marzo et al.,
2005; Zhu et al., 2013). The effects of wall thickness to radius and

Fig. 7. Comparison of the computational results (black solid lines) with experimental data (red circles) for a thick-wall tube with γ 0.333. (a) The pressure-area curves. The
cross-sectional contours for some transmural pressures of: (b) Π1 �3.104; (c) Π2 �3.203; and (d) Π3 �3.670.

Fig. 8. Non-dimensional pressure-area curves for tubes with different γ computed
from the data obtained from ADINA simulations. Symbols were added on each curve
to mark the buckling points with “circles” and the contact points with “rectangles”.

Fig. 9. Non-dimensional pressure-area curves as obtained from ADINA simulations
(circles), and the general tube law given by Eq. (12) (solid lines) for tubes with
different γ.
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length to radius ratios on obtaining different theoretical long
itudinal and axial modes of buckling in thin and thick wall tubes
were systematically studied (Zhu et al., 2008). However, the effects
of wall thickness on the pressure area curve were not clearly
demonstrated. In our modeling, we used a validated computa
tional model to demonstrate the pattern of post buckling defor
mation of elastic tubes for a wide and continuous range of wall
thicknesses. We successfully modeled the post buckling behavior
including the point contact and line contact conditions, which
were not conducted in previous computational studies (Marzo
et al., 2005; Zhu et al., 2008, 2010, 2013).

The simplified tube laws that have been implemented in previ
ous studies of 1D fluid flow in compliant tubes did not describe
the physical pressure area curve (Shapiro, 1977; Elad et al., 1987;
Ottesen, 2003; Bringley et al., 2008). Specifically, the buckling
itself was ignored, since large deformations occurred even for
negative transmural pressures while 3oΠo0. Moreover, none
of the published models that describe the pressure area curves of
compliant tubes considered the effect of wall thickness ratio and
hence they can at most describe the post buckling behavior of a
specific tube with single value of γ.

The major outcome of this study is the new general tube law
that includes the physical contribution of wall thickness for
description of the pressure area relationship for a wide range of
thickness to radius ratios. The relatively simple analytical formu
lation of the tube law (Eq. 12) is very important for utilization in
1D models of fluid flow in compliant tubes. Application of this
tube law will allow more accurate modeling of fluid flow through
thick wall compliant tubes with longitudinally varying geometri
cal and mechanical properties, which are naturally presented in
physiological conduits.
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