N

N
N

HAL

open science

Composing a Web of Audio Applications

Sarah Denoux, Yann Orlarey, Stephane Letz, Dominique Fober

» To cite this version:

Sarah Denoux, Yann Orlarey, Stephane Letz, Dominique Fober. Composing a Web of Audio Ap-

plications. 1st Web Audio Conference, IRCAM, Mozilla Foundation, Jan 2015, Paris, France.

01302902

HAL Id: hal-01302902
https://hal.science/hal-01302902
Submitted on 5 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01302902
https://hal.archives-ouvertes.fr

Composing a Web of Audio Applications

Sarah Denoux
GRAME
11 cours de verdun (gensoul)
69002 Lyon, France

sdenoux@grame.fr

Yann Orlarey
GRAME
orlarey@grame.fr

Stephane Letz
GRAME
letz@grame.fr

Dominique Fober
GRAME
fober@grame.fr

ABSTRACT

The Web offers a great opportunity to share, deploy and
use programs without installation difficulties. In this article
we explore the idea of freely combining/composing real-time
audio applications deployed on the Web using FAUST audio
DSP language.

Keywords
Faust, Composability, Web, DSP programming

1. INTRODUCTION

In his famous 1990 article “Why Functional Programming
Matters”, John Hughes[4] argued that “modularity is the key
to successful programming” and that “our ability to decom-
pose a problem into parts depends directly on our ability to
glue solutions together”. This paper is about gluing, com-
posing, audio applications together, at the Web scale.

The concept of composition is familiar in music as in many
human activities. Composition is usually defined as the ac-
tion of putting together parts in order to form a whole.
Composition implies some compatibility between parts. For
example in mathematics two functions f and g can be com-
posed (f o g) if and only if the image of g is a subset of
the domain of f. A highly composable system offers com-
patible components that share a common interface, and can
be assembled in great variety of combinations. Lego bricks,
Unix scripts combined with pipes, are good examples of com-
posable designs. In the music domain, composable designs,
like modular synthesizers and unit-generator based program-
ming languages, favor expressiveness and creativity.

The idea of composability is also essential to the Web.
The reflexion about how to build bridges between pages and
compose data have brought hyperlinks, iframe, rss streams,
etc. Recently, Web Components have made their apparition,
trying to provide a higher level of composability for Web
pages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WAC ’15 IRCAM Paris France

Copyright 2014 ACM ...$15.00.

The conjunction of asm.js and the WebAudio API offers
an unprecedented situation for realtime audio applications.
Using a reverb, a compressor or a synthesizer could be as
simple as opening the corresponding Web pages. In such a
world, how can we go beyond data composition and do real-
time behavior composition ? How can we turn the Web into
a gigantic reservoir of modular audio components that can
be indefinitely recombined ?

In this article we propose a first solution to the problem
based on FAUST, asm.js and the WebAudio API. It will first
describe the necessary principles of FAUST and its compiler
(Section 2). Then the Web audio tools will be exposed in
Section 3. Two approaches of composition will be explored
in Section 4, to finally present the provided interface for
online composition of FAUST programs (Section 5) and its
performances (Section 6).

2. FAUST - A COMPOSABLE LANGUAGE

FAUST [Functional Audio Stream] [8] [7] is a functional,
synchronous, domain-specific programming language specif-
ically designed for real-time signal processing and synthesis.
It aims to provide an adequate notation to describe signal
processors: mathematical functions on signals. For example
+is a function (of type S? — S') that takes two input signals
z(t) and y(t) and produces one output signal z(t) such that
YVt >0, 2(t) = z(t) + y(t).

Coding in FAUST is essentially composing signal-processors
together to form new ones. For that purpose FAUST relies
on an algebra of five composition operations. For example
+:abs is the sequential composition of + and abs. The out-
put of + is connected to the input of abs. It denotes a func-
tion that takes two input signals x(¢) and y(¢) and produces
one output signal z(¢) such that V¢ > 0, 2(t) = |z(t) + y(t)].

A unique feature of FAUST is that programs are fully com-
piled and can be deployed in several environments (Max/MSP,
VST, ...), programming languages (C++, C, Java, JS, LLVM),
and platforms (OSX, Android, Linux, iOS, Web,...). The
compiler provides advanced optimization techniques allow-
ing the generated code to compete with hand written pro-
grams in terms of efficiency.

2.1 FAUST composing algebra

Since this article is about composing FAUST programs to-
gether, a focus on the composability aspects of the language
is given. Everything in FAUST is a signal processor and pro-
gramming in FAUST is essentially composing signal proces-

sors together using an algebra of five binary composition
operations (see table 1).

(A,B) parallel composition

(A:B) sequential composition
(A<:B) split composition
(A:>B) merge composition

(A™B) recursive composition

Table 1: The five binary composition operations

One can think of each of these composition operations as
a particular way to patch two block diagrams. The alge-
bra is complete and any topology of patch can be expressed.
Nevertheless there are some constraints. Depending of the
number of inputs and outputs of two components not all
compositions are legal. For example the sequential com-
position (A:B) requires that the number of outputs of A
is equal to the number of inputs of B. Therefore (+:abs)
is a legal composition while (abs:+) will trig a type error
because abs provides only one output while + requires two
inputs.

Valid compositions of two components A and B according
to their respective numbers of inputs and outputs are defined
table 2.

(A,B) (S" = S™) = (S” = 8™) = (SVT — g™ty
(A:B) (S"—>S™) = (S™ = SP) — (S" — SP)
(A<:B) (S™ = S™) = (SF™ — SP) — (S™ — SP)
(A:>B) (S™ — SF™) — (8™ = SP) — (S" — SP)
(4°B) (

Table 2: Valid compositions in Faust

Arbitrarily complex expressions can be composed with
these five operations. But an additional level of modular-
ity can be achieved with the component("...") primitive.
It allows a full FAUST program, referred by a filename or
an URL, to be used as a simple primitive inside any FAUST
expression. For example:

component ("http://faust.grame.fr/wahwah.dsp")

can be used to refer to a stereo Wah-Wah effect published
on FAUST web site. All definitions, file imports, etc. of
wahwah.dsp are kept in a separate lexical environment in
order to avoid conflicts with the surrounding expressions.

By using component (), it is very simple to create a pro-
gram that combines two existing programs published on the
Web :

process=component ("urll"): component ("url2");

In the following sections we will see how to use this feature
in conjunction with JavaScript tools to combine Web audio
applications.

2.2 Faust Compiler

2.2.1 Language deployment

By being a specification language the FAUST code says
nothing about the audio drivers or the GUI toolkit to be
used. It is the role of the architecture file to describe how to

S7L+n' — Sm+m/) N (Sm’ N Sn’) — (Sn — Sm+m/)

relate the DSP code to the external world. This additional
generic code is added to connect the DSP computation it-
self with audio inputs/outputs, and with control parameters,
which could be buttons, sliders, num entries etc. in a stan-
dard user interface, or any kind of control using a remote
protocol like OSC or HTTP.

This approach allows a single FAUST program to be easily
deployed to a large variety of audio standards (Max-MSP
externals, PD externals, VST plugins, CoreAudio applica-
tions, JACK applications, etc.).

2.2.2 Static compilation chain

The current version of the FAUST compiler (faust!) pro-
duces the resulting DSP code as a C++ class, to be inserted
in the architecture file. The C++ file is finally compiled
with a regular C+-+ compiler to obtain the final executable
program or plug-in (Figure 1).

ARCHITECTURE FILE

DSP FILE Faust C++ FILE Gcee
Compiler Compiler

EXECUTABLE
APPLICATION OR PLUGIN

Figure 1: Steps of Faust compilation chain

2.2.3 Multiple backends

Faust2 development branch uses an intermediate FIR rep-
resentation (FAUST Imperative Representation), which can
be translated into several output languages.

The FIR language describes the computation performed
on the samples in a generic manner. From this representa-
tion, various backends have been developed to produce C,
C++, Java, JavaScript, asm.js, and LLVM IR (Figure 2).

<]
C++

Block diagram|+ Signals|+ FIR Javal

JavaScript I
asm.js I
LLVM IR I

Figure 2: Faust2 compilation chain

2.2.4 Faust Compiler as a library

In the faust2 development branch, the FAUST compiler has
been packaged as an embeddable library called libfaust, pub-
lished with an associated API. The createDSPFactory(...)
function allows to create a DSP factory for a given DSP
source code, then the createDSPInstance(...) function is
used to create a DSP instance for a given factory.

This instance has to be wrapped by the audio and user
interface architecture logic to connect the DSP computation
with audio inputs/outputs, and the DSP parameters with
the interface.

3. WEB AUDIO TOOLS

3.1 Interacting with the Web Audio API

The Web Audio API [9] specification describes a high-
level JavaScript API for processing and synthesizing audio
in Web applications. The conception model is based on an
audio routing graph, where a number of AudioNode objects
are connected together to define the overall audio rendering.

The actual processing is usually executed in the under-
lying implementation (typically optimized Assembly/C++
code), but direct JavaScript processing and synthesis is also
supported.

3.2 Native nodes

The initial idea of the specification is to give the devel-
opers a list of highly optimized native nodes, implementing
the commonly needed functions : playing buffers, filtering,
panning, convolution etc. The nodes are connected to cre-
ate an audio graph, to be processed by the underlying audio
real-time rendering layer.

3.3 JavaScript ScriptProcessorNode

The ScriptProcessorNode interface allows the synthesis,
processing, or analysis of audio using JavaScript. This Au-
dioNode subtype module is linked to two buffers, one con-
taining the input audio data, one containing the processed
output audio data.

Each time the input buffer contains new data, an “Audio-
ProcessingEvent” is sent to the scriptProcessorNode. The
event handler terminates when the output buffer is filled
with data.

This is the hook given to developers to add new low level
DSP processing capabilities in the system.

3.3.1 Compiling to ASM JavaScript

Started in 2011 to facilitate the port of large C/C++ code
base in JavaScript, Mozilla developers have started the Em-
scripten compiler project[11], based on LLVM technology,
that generates JavaScript from C/C++ code.

Later on, they designed asm.js, a completely typed subset
of JavaScript, statically compilable, garbage-collection free,
that can be highly optimized by the compilation chain em-
bedded in recent Web browsers. It is then possible to reach
performances similar to pure native code *.

Mainly designed to manipulate simple types like floating
point or integer numbers, the asm.js language is particularly
of interest for audio code.

3.3.2 Other works over the Web Audio API

Various JavaScript DSP libraries or musical languages,
have been developed over the years ([2], [5], [1]) to extend,
abstract and empower the capabilities of the official API.
They offer users a richer set of audio DSP algorithms and
sound models to be directly used in JavaScript code.

Lasm.js code is said to be only 2 or 3 times slower than pure

native code.

Using this approach means that developments have to be
restarted from scratch, or reuse already written code (of-
ten in more real-time friendly languages like C/C++) to be
rewritten and adapted in JavaScript.

An alternative interesting approach has recently been de-

veloped by the Csound team [6], using the C/C++ to JavaScript

emscripten compiler, the complete C written Csound run-
time and DSP language (so including a large number of
sound opcodes and DSP algorithms) is now available in the
context of the Web Audio API. Using an automatic C/C++
to JavaScript compilation chain opens interesting possibili-
ties to ease the deployment of well-known and mature code
base on the Web.

3.3.3 Developing a direct asm.js backend

In the FAUST project, a pure asm.js backend has been
added in the faust2 branch. It produces the asm.js module?
as well as some additional helper JavaScript functions, to
be wrapped by generic JavaScript to become a completely
usable Web Audio node. Heap memory access and connec-
tion with helper functions defined in the asm.js module is
managed by the wrapping code.

A new DSP instance is created using the following code,
taking the Web audio context and a given buffer_size as pa-
rameters:

var dsp
= faust.karplus(context, buffer_size);

The user interface can be retrieved as a JSON description:
var json = dsp.json();
The instance can be used with the following code:

dsp.start ();
dsp.connect (context.destination);
dsp.update (path_to_control, val);

3.4 Programming Web Audio nodes with FAUST

Self contained ready to use Web audio nodes can be pro-
duced using the faust2asmjs script, using the static compila-
tion chain previously described (c.f 2.2.2). The script basi-
cally calls the FAUST compiler targeting the asm.js backend,
then wraps the produced code with generic JavaScript to be
usable in the Web Audio API context.

3.4.1 Deploying Faust DSP examples in the Web

Since faust2asmjs produces a usable audio node, an HTML
wrapper is the only missing thing to deploy a Faust DSP
as a self-contained Web page.

A script called faust2webaudioasm executes every step of
this compilation to go from the DSP specification to the
resulting HTML page : the FAUST compiler targeting the
asm.js backend is called, then a more complex HTML code
template is added to the DSP node, and the final HTML
page is obtained. Thus it becomes simpler to publish DSP
algorithms, helping wider the adoption of the FausT DSL
approach.

Adding the -links parameter to the script makes the HTML
page also contain links to the original DSP textual file, as
well as the block-diagram SVG representation.

2a scope consisting of a list of functions definitions and their
exported prototypes, to be used in regular JavaScript code

libfaust js i iJavaScript

DSP source [+ asm.js

> |«eval» | »| Executable code |
; 1]

Figure 3: libfaust.js 4+ asm.js dynamic compilation
chain

3.4.2 Producing the libfaust.js library

Since the Emscripten compiler aims to help deploying
any C+4 code in the Web, it becomes possible to com-
pile the FAUST compiler itself in pure JavaScript®. This has
been done by going from the C++ libfaust library into the
JavaScript libfaust.js library.

A unique createAsmCDSPFactoryFromString(...) entry
point has been defined, allowing to create a DSP factory (as
a result string) from DSP program given as a source string.

3.4.3 Using the libfaust.js library

Following the pattern of the C++ version of libfaust, two
additional entry points have been built on top of the library
entry point to create a DSP and execute it:

createDSPFactory : uses the asm.js backend and produces
the complete asm.js module as a result string. Then calling
JavaScript “eval” compiles it in the browser, as well as sev-
eral additional pure JavaScript methods that are part of the
produced code (Figure 3).

var factory=faust.createDSPFactory(dsp_code);

createDSPInstance : creates a fully working DSP instance
as a Web Audio Node.

var dsp = faust.createDSPInstance (factory,
context,
buffer_size);

The instance can then run with the following code:

dsp.start ();
dsp.connect (context.destination);

To create a user interface, the JSON description can be re-
trieved :

var json = dsp.json();

Once controllers have been identified, they can be accessed
through :

dsp.update (path_to_control, val);

4. TWO APPROACHES TO THE COMPO-
SITION OF FAUST PROGRAMS

With the arrival of Web tools for FAUST, the compilation
and execution of FAUST programs within a Web page is now
possible. The goal of the following sections is to explore their
uses to compose audio applications deployed in the Web.

First, two approaches of composition will be examined.

3More specifically asm.js subset.

4.1 Graph composition

The notion of audio graph is to the numerical domain,
what patching audio modules with cables is to the analog
world. This concept of creating nodes and connecting one
another is shared by the audio community (JACK, Max/
MSP, SuperCollider, the Web Audio API, etc). The com-
munication between nodes of such a graph is possible since
the flowing data types are compatible.

FAUST programs can therefore be deployed in JACK, Max/
MSP or SuperCollider and be composed “externally” in their
respective graph structures. In the Web, FAUST programs
will be Web audio nodes patched together to create a graph.

4.2 Equivalent Faust Composition

Another approach for composing FAUST programs is to
calculate an equivalent FAUST program using the FAUST syn-
tax (c.f. 2.1) to compose them. An interface for this type
of composition could be designed in many ways. The first
implementation imagined is available in FaustLive[3], where
a table permits to create a component graphically : rows
and columns respectively represent sequential and parallel
composition. In each unit, a DSP can be dropped in the
form of a string, a file or a Web URL. Once the visual patch
is assembled, the FAUST equivalent is calculated, resulting
in a standard FAUST program running in FaustLive.

The Web interface is the guideline of the next section. It
combines both the Web audio graph composition with the
equivalent FAUST approach, taking their respective advan-
tages.

5. ON THE WEBAUDIO PLAYGROUND
5.1 Use Case

John, a FAUST user, prototyped a physical model of gui-
tar and wants to share it. So, using faust2webaudioasm (cf.
3.4.1), he deploys his DSP as an HTML page. By adding
it to his website, anybody can play with his guitar. Jane,
another FAUST user plublished a disto on her website.

On the other side of the Web, Jeremy, comes on John
guitar and Jane disto and wants to test them together. A
simple test would be to compose them in sequence. So, he
opens the component-creator page on FAUST website?, drops
the guitar and disto URLs that are compiled and executed
in the page. Then he can adjust the connections as he wants
and play with the parameters. At any point, an equivalent
FAausT DSP can be calculated with the option to deploy it
as a new native HTML page or as any other kind of appli-
cation/plugin supported by the FAUST project®.

5.2 Component creator interface

Following the described use case (cf. 5.1), the idea of
the component creator is to have a tool to compose FAUST
programs as a Web audio graph and also have the possibility
to create the FAUST equivalent composition.

The interface is an extension of Chris Wilson page : “The
Web audio playground”, [10]. Added to this page is the
possibility to create FAUST modules by dropping FAUST code

1a page containing libfaust.js
5This feature uses the remote compilation service, Faust-
Web, available on http://faustservice.grame.fr

John - Website Jane - Website

[] []
" A— - i A— -
Component
Creator User
[]
[A— —
A
I Y
http://john.fr/guitare.html http://jane.fr/disto.html
_|— _|—
- ONC,
oo —

http://faustgrame.fr/
component-creator.html

>——+*y{% K
ooo o_o|_

Figure 4: Use case description

into the page (Figure 5). The code can be dropped in the
form of a string, a file or a Web URL. The DSP is compiled
through libfaust.js to become a functional Web audio node
that can be connected to others. At any time, the source
code of a node can be edited and recompiled. Once a patch
is assembled, tested and satisfying, the equivalent FAUST
node can be calculated, following the algorithm described in
section 5.3.

O /" @ web Audio Playgrounc 4 x

& = C' [file:///Users/denoux/WebAudio/index.html#

Extension of the WebAudio Playground by Chris Wiison

Figure 5: Screenshot of the component creator Web
interface

5.3 Faust equivalent algorithm

Assuming that all nodes have a FAUST description at-
tached, it is possible to translated any acyclic graph of nodes
G, into an equivalent FAUST program. This FAUST program
can be used to replace the graph with a single node.

The equivalent FAUST program is calculated through the

following translation algorithm C[.], taking the output node
of G, notated O[G], as entry point :

C[G] = process = C[O[G]];

The translation of a node is done recursively by composing
in parallel the translation of all its input nodes, composed
with the node’s own Faust code using a merge operator:

CIN] = (CIL[N]],C[L[N]], ... ,CN]] :> ScIN]

with n is number of input nodes of N, and Ix[N] the kth
input node of node N.

The FAUST code F[N] attached to node N is stereoized to
avoid any composition error:

Sc[N] = stereoize (F[N]);

As we can see the translation scheme takes into account
three aspects:

e create a simple expression

e stay coherent with the connections as they are made
in the Web audio API graph, so that the user would
not have a totally different behavior once he computes
the Faust equivalent.

e follow FAUST constraint that the number of channels
have to match in order to compose sequentially two
DSPs.

Considering these, it was chosen to create stereo DSPs
independently from their original characteristics. The func-
tion "stereoize” provides the required processing to trans-
form an arbitrary DSP into a stereo effect:

stereoize (p) = S(inputs(p),outputs(p))
with {
//degenerated processor

S(n,0) = !,! : 0,0;

//processors with no inputs
$(0,1) = p <: _,_;
S(0,2) P;

S(0,n) PsP :> _,_;

//processors with one input
S(1,1) = p,p;
S(1,n) = p,p > _,_;

//processors with two inputs
S(2,1) = p <: _,_;
S(2,2) P

//other cases
S(n,m) = _,_ <: p,p :> _,_;
};

This algorithm to create a single FAUST equivalent node
from a graph of nodes is not optimized. As an example, the
patch on Figure 6 is considered.

When creating the FAUST equivalent node, the algorithm
will create the tree on Figure 7 to be computed by the FAUST
compiler. In the example, the node A is repeated several
times. Fortunately, the characteristic of the FAUST model is

Figure 6: Patch of Faust modules

that this unoptimized code will be compiled and optimized
within the FAUST compiler, so that the computed tree will
be equivalent to the original one (Figure 7).

JTEKL

Figure 7: Computed patch and its equivalent

Thanks to this optimization, the algorithm can be kept
simple and does not have to worry about the redundancies.

6. COMPARISON OF PERFORMANCES

The gathering of the Web audio graph approach with the
FAUST equivalent combines their respective advantages.

On the one hand, the graph approach brings a very short
and ergonomic test/edit/connect cycle but it can be difficult
to handle a large number of modules (ergonomically and
computationally).

On the other hand, the FAUST equivalent approach makes
it more complicated to edit the code/the connections be-
tweens modules but it brings a more compact vision of the
patch along with a computational optimization. Moreover,
the resulting program can be downloaded as any type of ap-
plication/plugin supported by the FAUST project (as can be
each module independently).

A benchmark has been carried out to test the perfor-
mances of a patch of FAUST modules in comparison with
the FAUST equivalent module. It is based on an algorithm
describing the rebound of a ball, built with multiple delay
lines composed together. The Figure 8 displays the results
of the benchmark for different number of rebounds®.

Focusing on the FAUST approaches (patch and equivalent),
the difference of performance can be appreciated. To explain
this gap, two aspects can be inferred :

e First, a graph with many nodes can be heavy since
the audio rendering layer has to evaluate a complex
graph, basically calling each node “process” function
and transferring audio data between nodes etc. Re-
ducing the number of nodes reduces this cost.

SExecuted on 0SX10.6.8 - Chrome 39.0.2171.95 - Values
retrieved from Chrome developer tools

g:l:‘ybfi:l:: Patch of Native Nodes Patch of Faust Nodes Single Fal':‘s‘:dEequivalent

5 9,5% 7% 4%

10 11,00% 11% 4,50%
15 13,0% 14,2% 5%

20 13,5% 16,8% 5,0%
25 14,0% 17% 5,5%
30 16% 19,00% 6,00%
35 16,30% 20% 6,0%
40 17,00% 22,40% 6,3%
45 17,50% 24% 6,4%
50 18% 25% 6,70%

CPU usage depending on the number of delay
lines in different configurations

30,0%
25,0%

20,0%

15,0% e=Gm=patch of Native Nodes

CPU usage

e@=patch of Faust Nodes
10,0% . .
Single Faust Equivalent Node
5,0% -
0,0%
5 10 15 20 25 30 35 40 45 50
Number of delay lines

Figure 8: Comparison of performances for a rebond
algorithm in different configurations

e Moreover, the FAUST compiler has optimization steps
that allow to reduce the CPU usage of the single FAUST
equivalent node. In this particular case, FAUST applies
several rules to simplify and normalize output signal
computation to share the same delay line between a
unique writer and several readers.

Differentiating what can be granted to the FAUST com-
piler and what comes from the Javascript cost is not trivial.

Another test has been carried out with multiple biquad
filters in parallel (Figure 9). The same trend can be ob-
served.

As informative comparison, a patch of native nodes has
been benchmarked, supposing that the implementation of
the delay and biquad nodes are more or less similar to the
FAusT algorithms. It is possible to observe that the patches
of FAUST modules are not so costlier than the native patches
(from what we expected). Having said that, the tests that
were made are not conclusive in knowing what part of the
slopes could be imputed to the processing and which one to
the graph evaluation. This benchmark also has the restric-
tion of the browser it was tested on.

Nevertheless, the results are encouraging for the FAUST
model. And the creation of a FAUST equivalent node from a
graph of modules highly gains in performance.

CPU usage depending on the number of
biquad filters

25,0%

20,0%

.
u
Q
X

e=Gm=patch of Native Nodes

CPU usage

H
o
<
X

e@=Patch of Faust Nodes

Single Faust Equivalent Node

o
2
X
\
\

o
o
B3

5 10 15 20 25 30 35 40 45 50
Number of biquad filters

Figure 9: Comparison of performances for multiple
biquads

7. CONCLUSION

We have demonstrated how the FAUST audio DSP lan-
guage can be used to easily develop new audio nodes in the
Web Audio model, and use them in an audio graph. Com-
plete HTML pages with a working user interface can also be
generated.

Moreover, having the dynamic compilation chain, through
libfaust.js, directly available in the browser made it acces-
sible to develop this composition tool for FAUST programs.
More complete benchmarks with other examples would be
interesting, along with a comparison of performances on dif-
ferent browsers.

Combining the composability of the FAUST algebra, with
the Web audio tools makes composing audio applications as
simple as dropping URLs in a Web page.

Acknowledgments
This work has been implemented under the FEEVER project
[ANR-13-BS02-0008] supported by the “Agence Nationale
pour la Recherche”.

8. REFERENCES

[1] H. Choi and J. Berger. Waax: Web audio api
extension. New Interfaces for Musical Expression
Conference, 2013.

[2] C. Clark and A. Tindale. Flocking: a framework for
declarative music-making on the web. 2014.

[3] S. Denoux, S. Letz, Y. Orlarey, and D. Fober.
Faustlive just-in-time faust compiler... and much
more. Linux Audio Conference, 2014.

[4] J. Hughes. Why functional programming matters.
1990.

[5] Kalliokoski J. audiolib.js, a powerful toolkit for audio
written in js.
https://github.com/jussi-kalliokoski/audiolib.js, 2014.

[6] V. Lazzarini, E. Costello, S. Yi, and J. Fitch. Csound
on the web. Linux Audio Conference, 2014.

[7] Y. Orlarey, S. Letz, and D. Fober. Syntactical and
semantical aspects of faust. 2004.

[8] Y. Orlarey, S. Letz, and D. Fober. Faust: an efficient
functional approach to dsp programming. 2009.

[9] Web audio api.
http://webaudio.github.io/web-audio-api.

[10] The web audio playground.
http://webaudioplayground.appspot.com.

[11] A. Zakai. Emscripten: an llvi to javascript compiler.
ACM international conference companion on Object
oriented programming systems languages and
applications, 2011.

