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Abstract 

We address the problem of the representation of resemblances involved in analogical 
reasoning. We use fuzzy relations to compare situations. We provide constructive 
methods to adapt the solution of an already solved situation to a similar new situation 
according to the degree of resemblance between  these two situations. We give a general 
definition of analogical scheme which can be considered from a more or less 
constrained point of view. 

 
1. Introduction 

Analogy is a natural means of drawing a conclusion in human reasoning. Analogy is 
common in problem solving, such as mathematical problem solving or problems 
regarding the way to use a new device, where knowledge of the domain and already 
solved problems are used together to help solving a new problem. Analogy is also used 
in classification, where we use already classified objects of the same kind to decide 
which class we must assign to a new object, for instance classification of handwritten 
characters or image processing elements. Two approaches of natural analogy exist in 
literature. The first one regards analogy as a way to manage a new piece of information 
ʹ A  on the basis of already processed pieces of information Ai / i ∈I{ }, and basic 

knowledge on the domain which is concerned ; we look for the already processed piece 
of information Aio which resembles most the new one ʹ A  and we construct a solution to 
manage ʹ A  which resembles or is identical to the existing solution Bio of Aio

. The 
second approach considers two domains Ω1 and Ω2 (for instance electricity and 
hydrology) and proposes to solve a problem ʹ A  in Ω2 on the basis of its resemblance 
with an already solved problem Aio

 in Ω1 ; general knowledge is given on Ω1 and Ω2, 
and resemblances are established between their components. In both cases, the concept 
of resemblance is fundamental. Then, once Aio

 has been identified for a given ʹ A , it is 
not obvious to construct the solution of ʹ A  from the solution Bio  of Aio

. In the first 
approach, the solution of Aio

 can be preserved to solve ʹ A , but it must sometimes be 
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modified since ʹ A  is not identical but only similar to Aio
. In the second approach, it is 

clear that the solution of Aio
 must be adapted to domain Ω2. 

In human reasoning, a resemblance is identified globally between pieces of 
information or situations and intensive work has been done in psychology [Richard 95] 
to study the recognition of resemblance. Let us take the example of an analogical 
determination of the price of a house, according to several criteria, such as its size, its 
state, its location… When we have to assign a price to a house H, we look for houses 
similar to H according to the criteria, and their prices are used to determine the price of 
H. 

In artificial intelligence, analogy is also an explored domain, analogical reasoning is 
generally regarded from the second above-mentioned point of view, while case-based 
reasoning corresponds to the first one. In both approaches, the definition of 
resemblances is crucial and very often given in a prior way, but there exist very few 
studies on adapting the existing solution to the new piece of information.  

Analogical reasoning has been formalized in a fuzzy set based approach in various 
directions. Approximate reasoning has been pointed out by L.A. Zadeh [Zadeh 79] as 
underlying the "remarkable human ability to … make rational decisions in complex 
and/or uncertain environments", it has been initiated in fuzzy logic as a method of 
automatic reasoning as close as possible to human reasoning [Zadeh 83]. Then, it seems 
natural that it provides a convenient framework for the representation of analogy, which 
is at the root of most of human reasoning processes. Several kinds of connections 
between approximate reasoning and analogy have been explored [Baldwin 79], [Dubois, 
Prade 92], [Magrez, Smets 89], [Mukaidono  et al. 90], [Smets 91], [Turksen, Lucas 
91], [Turksen, Zhong 88]. We approach this problem through properties of the measures 
of similarity or the resemblances underlying the analogy.  

In this paper, we give a general analogical scheme which can be made more specific 
in different ways to capture several aspects of analogy which exist in the literature or 
which can be analyzed.  

 
2. Analogical scheme 

We consider two variables V and W defined on universes X and Y. Let us denote by 
F(X) and F(Y) respective sets of fuzzy sets of X and Y, which are either the sets [0,1]X  
and [0,1]Y  of all fuzzy sets of X and Y, or subsets of [0,1]X  and [0,1]Y . For instance, 
with the example of houses, V can be the size, the state, the location, W the price. 
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Definition 1 [Bouchon-Meunier et al. 97] - For a given relation β  on [0,1]X × [0,1]Y  
and two relations RX  on [0,1]X × [0,1]X  and RY  on [0,1]Y × [0,1]Y , an analogical 
scheme is a function:  

 ℜβRXRY : F(X) ×F(Y)× [0,1]
X →[0,1]Y   satisfying   

∀A ∈F(X) and ∀B ∈F(Y)  such that AβB,∀ ʹ A ∈ [0,1]X  such that  AR X ʹ A 

 
(AS1) B = ℜβRXRY

(A,B,A)  
(AS2) ʹ B =ℜβRX RY

(A,B, ʹ A )  satisfies ( ʹ A β ʹ B  and  BRY ʹ B ) 

We can interprete this scheme as follows, as soon as β , RX  and RY  are defined 
properly : if A and B are known to be linked by β , and if ʹ A  resembles A through RX , 
we are able to find ʹ B  such that ʹ A  and ʹ B  are linked by β  and ʹ B  resembles B through 
RY (figure 1).  

 
X Y

ß
A

A'

B

B'

Figure 1 : Analogical scheme

RYRX

 
 
Our purpose is to study proper definitions of β , RX  and RY , so that an analogical 

scheme can be defined as a modelization of natural analogy, in the framework of fuzzy 
logic. In this paper, we use the same notation for a fuzzy set and for its membership 
function.  

 
3. Resemblance relations  

In order to focus on relations RX  and RY  corresponding to the idea of resemblance 
or closeness at the root of an analogical scheme, we study a particular family of fuzzy 
relations on the set of fuzzy subsets of a given universe [Bouchon-Meunier 92], 
[Bouchon-Meunier, Valverde 92] defined through a triangular norm  [Schweizer, Sklar 
63]. 

 
3.1. General definition of resemblance relations 

Definition 2  - A resemblance relation on [0,1]X  is defined as a fuzzy relation : 
 rX : [0,1]X × [0,1]X → [0,1]  

satisfying the following properties for every A, ʹ A , ʹ ́ A  in [0,1]X  : 
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(RR1) T rX(A, ʹ A ), rX ( ʹ A , ʹ ́ A )( ) ≤ rX (A, ʹ ́ A )  (T-transitivity), where T stands for a 
continuous triangular norm. 

(RR2) if A ⊇ ʹ A  then rX A, ʹ A ( ) =1  (containment) 
 
We use the classical definition of the inclusion of fuzzy sets : 
 A ⊇ ʹ A  if and only if ∀x ∈X  A(x) ≥ ʹ A (x)   
Let us remark the following : 
• Property (RR2) implies the reflexivity property : 

(RR3) rX (A,A) = 1 , 
• We do not ask a resemblance relation to be symmetrical, since A and ʹ A  do not 

have the same status, A serving as a reference, ʹ A  being compared to A. 
• The T-transitivity is weaker than the min-transitivity (classical extension of 

transitivity of crisp relations to fuzzy ones), which means that a min-transitive fuzzy 
relation rX is also T-transitive, and the contrary is false. More precisely, for any 
threshold ρ  in [0,1], if rX (A, ʹ A ) ≥ ρ  and rX ( ʹ A , ʹ ́ A ) ≥ ρ , we only get 
rX (A, ʹ ́ A ) ≥ T(ρ,ρ)  with T(ρ,ρ) ≤ ρ. 

• Properties (RR1) and (RR3) prove that a resemblance relation is a T-preorder and a 
symmetrical resemblance relation is a T-indistinguability operator [Valverde 85]. If T = 
min, a resemblance relation is a reflexive fuzzy ordering [Zadeh 71] or a similarity 
relation if it is symmetrical. If T has an additive generator (stricly decreasing) ϕ  then d 
defined by 

d(A, ʹ A ) = ϕ rX(A, ʹ A )( )         (1) 
has the properties of a pseudo-distance (non necessarily symmetrical) and it can be 
regarded as a “proximity” of ʹ A  with regard to A. Conversely, if d is a pseudo-distance 
on [0,1]X  and f a continuous strictly decreasing function from [0,+∞] into [0,1] , then 
  rX

d (A, ʹ A ) = f d(A, ʹ A )( )        (2) 
is a resemblance relation on [0,1]X , T-transitive for a t-norm T with additive generator f 
[Valverde 85]. 

 
3.2. Particular resemblance relations 

An example of resemblance relation on [0,1]X  is the following :  
 rX (A, ʹ A ) = inf

x∈X
T∗ ʹ A (x) | A(x)( )     (3) 

with  the quasi-inverse of T defined by T ∗ u | v( ) = sup{w ∈[0,1] / T(u, w) ≤ v}  
It is easy to prove that rX satisfies properties (RR1) and (RR2), because of the 

following properties satisfied by the quasi-inverse T ∗ of any continuous t-norm T : 
- T T ∗(u | v), T ∗(v | w)( ) ≤ T ∗(u | w)  for any u, v, w in [0, 1].  
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- T ∗(u | v) =1   if and only if u ≤ v . 
 
For instance, with the Lukasiewicz triangular norm defined as  
 T u, v( ) = max(u + v −1, 0) ,      (4)  

with T ∗ u | v( ) = min(1− u + v,1) and ϕ(u) = 1− u , we have  
rX (A, ʹ A ) = inf

x∈X
min(1− ʹ A (x) + A(x),1) ,     (5) 

associated with the pseudo-distance  
 d(A, ʹ A ) = sup

x∈X
max( ʹ A (x) −A(x), 0) .  

The greatest the resemblance, the smallest the pseudo-distance. 
 

For sake of simplicity, let us consider the example of houses characterized by their 
sizes, with X the universe of positive real numbers. We suppose that a reference house 
is characterized by the description A = “around 120 m2”, represented by the fuzzy set of 
X, also denoted by A in figure 2. Another house is characterized by the description ʹ A  
= “around 135 m2” represented by the corresponding fuzzy set of X with membership 
function given in figure 2. Its resemblance with the reference house can be evaluated by 
rX (A, ʹ A ) = 0.5. 

 

0                                        90  105 120 135 150 165                        X

1

A = "around 120 m2"
A'  = "around 135 m2"

0,5

Figure 2 : Resemblance of fuzzy sets  
 

3.3. General form of resemblance relations 
The representation theorem [Valverde 85] for fuzzy binary relations rX on a given 

universe indicates that, if rX defined on [0,1]X  satisfies (RR3), and it is particularly true 
if it satisfies (RR2), then rX satisfies (RR1) for a continuous triangular norm T if and 
only if there exists a family h k,k ∈K{ }  of fuzzy subsets of [0,1]X   such that : 

 rX (A, ʹ A ) = inf
k∈K

T∗ hk( ʹ A )| hk (A)( ) ,     (6) 

which generalizes the particular form of resemblance relations given in (3), 
corresponding to K = X and the functionsh x (A) = A(x)  for any x ∈X . For a fuzzy 
binary relation rX on [0,1]X , formula (6) gives the general form of resemblance 



 6 

relations that are T-transitive for the triangular norm T if and only if, for any k∈K , h k  
is an increasing function [Bouchon-Meunier, Valverde 93b], i.e.  
 if ʹ A ⊆ A  then h k( ʹ A ) ≤ hk (A) . 

 
4. Analogical scheme based on the compositional rule of inference 
4.1. Compositional rule of inference 

The compositional rule of inference corresponds to an extension of the modus 
ponens procedure to fuzzy logic, also called generalized modus ponens. Let us consider 
a set E of situations associated with crisp or fuzzy values of V and W, which can be 
known or not. We are supposed to be given a base of rules L j( ), j ∈J , of the form “if V 
is A j  then W is B j“, with normalized (with a maximum membership degree equal to 1) 
fuzzy sets A j  of X and B j  of Y. 

The compositional rule of inference corresponds to the utilization of one of these 
rules, for instance “if V is A then W is B”, for a situation described by “V is ʹ A ”, with 
an unknown value of W. It yields  a conclusion of the form “W is ʹ B ”, computed as :  

 ∀y∈Y  ʹ B (y) = sup
x∈X

t( ʹ A (x), I(x, y)),    (7) 

for an implication I defined on X ×Y  as  
∀(x, y) ∈X ×Y  I(x, y) = Φ A(x), B(y)( ) , with Φ : [0,1]× [0,1]→ [0,1] .  (8) 

I is supposed to be identical with the implication in classical logic if A and B are not 
fuzzy, and the generalized modus ponens operator t is chosen as a triangular norm such 
that ʹ B  is identical with B as soon as ʹ A  is identical with A, which means that the 
compositional rule of inference is compatible with the classical modus ponens. We 
usually restrict ourselves to normalized fuzzy sets. 

For instance, we can think of the rule “if the size is big, then the price is expensive”, 
with a representation of “big” and “expensive”  by means of fuzzy sets of the universe 
of positive real numbers. For a house characterized by “the size is around 120 m2”, the 
compositional rule of inference provides a conclusion regarding its price. 

 
There exist several classes of fuzzy implications and we consider the following 

definitions, among the most classical : 
 • the Kleene-Dienes implication defined as : 

 ∀x ∈X  ∀y∈Y  I(x, y) = max 1 −A(x), B(y)( )    (9) 
• the Lukasiewicz implication defined as : 
 ∀(x, y) ∈X ×Y  I(x, y) = min 1 −A(x) + B(y),1( )     (10) 
With these fuzzy implications, we can use the Lukasiewicz triangular norm (4) as a 

generalized modus ponens operator t. 
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4.2. General form of the analogical scheme 
 In order to define an analogical scheme ℜβRXRY  corresponding to the compositional 
rule of inference, we consider F(X) = A j, j∈J{ } , and F(Y) = Bj, j ∈J{ }  respective finite 

subsets of [0,1]X  and [0,1]Y obtained from the base of rules L j( ), j ∈J . 

 The relation β  is defined by : AβB⇔  i) or ii) holds with : 
i) ∃   a situation in E associated with the value A of V and the value B of W 
ii) ∃L j  such that  A = A j  and  B = Bj   

We look for two relations RX  and RY  defined from resemblance relations. Then, we 
can introduce an analogical scheme in different ways.  

 
4.3. Heuristic definition of the analogical scheme 

Let us consider resemblance relations rX on [0,1]X  defined in (3) and rY on [0,1]Y  of 
the same form : 

 rY(B, ʹ B ) = inf
y∈Y

T∗ ʹ B (y) | B(y)( )      (11) 

The simplest way to define an analogical scheme compatible with the compositional 
rule of inference is the following. 

 
Let us start from a particular implication, for instance Kleene-Dienes implication (9). 

With the Lukasiewicz triangular norm as a generalized modus ponens operator and for 
the definition of rX and rY in (3) and (11), yielding the form (5), it can be proven that, in 
particular cases of the resemblance between ʹ A  and A, we can describe immediatly the 
resemblance between ʹ B  and B. More precisely, we consider the four following 
situations : 

 (C1) ʹ A = m(A) for a modifier m such as “rather”, “about” [Bouchon-Meunier 88], 
(C2) ʹ A  = “A with an uncertainty 1− ρ”, ρ ∈[0,1] , which means that : 
 ∀x∈X  ʹ A (y) = max A(y),1−ρ( ) , 
(C3) A and ʹ A  have the same support and ʹ A  is less specific than A ( ʹ A ⊇A ), 
(C4) B is precise and certain and corresponds for instance to the crisp description of 

a decision. 
 
In the four situations, the conclusion ʹ B  provided by the compositional rule of 

inference can be expressed as “B with an uncertainty 1− ρ”, with membership function  
∀y∈Y  ʹ B (y) = max B(y),1−ρ( )  
where ρ  depends on the parameter of the modifier [Bouchon-Meunier 90]. 
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We further remark that if rX (A, ʹ A )  = ρ  then rY(B, ʹ B )  = ρ . This means that, if ʹ A  
resembles A at the level ρ , then ʹ B  resembles B at the same level. 

 
In the case of Lukasiewicz implication (10), in situation (C1), the result ʹ B  can be 

expressed as “m(B) with an uncertainty 1− ρ”, ρ  depending on the parameter defining 
m, with again rX (A, ʹ A )  = rY(B, ʹ B )  = ρ .  

For cases (C2) to (C4), the conclusions ʹ B  are the same as those obtained with the 
Kleene-Dienes implication. 

 
More generally, similar results can be proven for other classical implications 

[Bouchon-Meunier 93], such as implications defined through residuation of a given 
triangular norm T by  
 ∀(x, y) ∈X ×Y  I(x, y) = T ∗ A(x) | B(y)( ) . 

 
From these four situations, we induce a heuristic construction of an analogical 

scheme. For any ʹ A , ʹ B = ℜβRXRY
(A, B, ʹ A )  is defined in such a way that, if rX (A, ʹ A )  

= ρ , then rY(B, ʹ B ) = ρ . We define the analogical scheme ℜβRXRY  by means of 

relations RX and RY obtained from rX and rY as follows : 
 ∀A,  ∀ ʹ A ∈[0,1]X  AR X ʹ A ⇔ rX (A, ʹ A ) = ρ     (12) 
 ∀B, ∀ ʹ B ∈[0,1]Y  BRY ʹ B ⇔ rY(B, ʹ B ) = ρ .    (13) 
 
With the only constraint rY(B, ʹ B ) = ρ , the membership function of ʹ B  is not 

uniquely determined. The choice of the shape of ʹ B  depends on the kind of 
imperfection we want to manage. Obviously, if ʹ A  is not exactly identical with A, we 
have to adapt the information regarding W.  

• We can use an uncertainty, like in the case of the Kleene-Dienes implication and 
express ʹ B  as “B with an uncertainty 1 −ρ”. In this case, we define an analogical 
scheme by : 

(F1) ℜβRX RY
(A,B, ʹ A ) = ʹ B ⇔  ʹ B = max(B,1−ρ) , with ρ  = rX (A, ʹ A ) . 

• We can also use an imprecision, for instance represented by means of a modifier 
and ʹ B  is then expressed as m(B), for a modifier m of the form “rather”, “about”, with a 
parameter depending on ρ  [Bouchon-Meunier 87]. An analogical scheme is defined by 
: 

(F2) ℜβRX RY
(A,B, ʹ A ) = ʹ B ⇔  ʹ B = m(B)  for a modifier m with a parameter linked 

to ρ  in such a way that rY(B, ʹ B ) = ρ . 
• We can also use a combination of uncertainty and imprecision, like in the case of 

Lukasiewicz implication and we have  
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(F3) ℜβRX RY
(A,B, ʹ A ) = ʹ B ⇔  ʹ B = max m(B),1− ρ( )   

 
In the example of the house, we can choose one of the three following types of 

conclusion: 
• “the price is expensive, with an uncertainty 1 −ρ“ (form F1), 
• “the price is rather expensive” with the modifier “rather” defined by parameter ρ , 
or “the price is about expensive” with the modifier “about” defined by parameter 
1 −ρ , for instance (form F2). 
• “the price is about expensive, with an uncertainty 1 − ρ“ (form F3) . 
 

0                           90      120     150    180           X

1

A = big
A'  = about 120 m2

0,5

Figure 3 : Heuristic analogical scheme
Y

1

B = expensive
B'  = expensive with uncertainty
B'  = rather expensive

0,5

ρ

1−ρ

 
 
We check that we get property (AS1) : B =ℜβRXRY (A,B,A)  since ʹ A  = A implies 

rX(A,A) = 1 and then either ʹ B = B with a null uncertainty, or ʹ B  = m(B) and the 
parameter defining m provides m(B) = B. 

 
An automatic means of reasoning by analogy in the framework of fuzzy logic (more 

precisely in compatibility with the compositional rule of inference) is the following : 
1.Choose a resemblance relation rX on X and a resemblance relation rY on Y, for 

instance of the form (5).  
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2. For a given situation where the variable V is characterised by ʹ A , look in the list 
A j / j∈J{ }  for a fuzzy set Aio

 of X such that rX(Aio
,A’) is maximum among all values 

rX(Aj,A’). 
3. Construct ʹ B  from the corresponding Bio

, as indicated above by choosing one of 
the three forms (F1), (F2) or (F3), in such a way that rY(Bio

,B’) = rX(Aio
,A’). 

 
We can summarize the underlying process as indicated in figure 4. 
 

 natural analogy     fuzzy logic 
 
         resemblance relations  
                   rX and rY 
 
 analogical scheme  relations RX and RY 
 
 Figure 4 : Link between the main concepts 
 
4.4. Formal definition of an analogical scheme 

The automatic construction of ʹ B  from Bio
 is based of results obtained through the 

compositional rule of inference on various but particular situations and we perform a 
kind of extrapolation of these results to any situation. In this section, we propose to 
justify this extrapolation by showing that the shapes of fuzzy sets obtained by one of the 
three forms (F1), (F2) or (F3) is determined by a more formal approach of an analogical 
scheme, based of the continuity of the reasoning process. This means that, if we know 
that ʹ A  is close to A, then we deduce that ʹ B  is close to B, with respect to resemblance 
relations rX on [0,1]X  and rY on [0,1]Y  satisfying (RR1) and (RR2).  

For a given implication I, it is possible to introduce the following : 
Definition 3 [Bouchon-Meunier, Valverde 1993a] - An rX-rY analogical reasoning 
function ℑ :[0,1]X × [0,1]X×Y → [0,1]Y  satisfies : 
(AR1) ℑ(A,I(A,B)) = B  
(AR2) with ʹ B = ℑ(A,I(A,B)) , for any σ ∈[0,1]  there exists ρσ such that if 
min(rX(A, ʹ A ), rX( ʹ A ,A)) ≥ ρσ  then min(rY(B, ʹ B ),rY( ʹ B ,B)) ≥ σ . 
 

If we introduce β, F(X), F(Y) as in section 4.2, we can prove that an rX-rY analogical 
reasoning function is a particular analogical scheme. It is sufficient to choose 
ℜβRXRY : F(X) ×F(Y)× [0,1]

X →[0,1]Y  such that : 
∀A ∈F(X),∀B∈F(Y),∀ ʹ A ∈[0,1]X  ℜβRX RY

(A,B, ʹ A ) = ℑ( ʹ A ,I(A,B)) .  (14) 
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Property (AS1) is clearly satisfied by (AR1) and, if we define RX and RY, for a given 
threshold σ and its corresponding value ρσ, in such a way that  

∀A  ∀ ʹ A ∈[0,1]X  AR X ʹ A ⇔ min(rX(A, ʹ A ),rX( ʹ A ,A)) ≥ ρσ  
∀B ∀ ʹ B ∈[0,1]Y  BRY ʹ B ⇔ min(rY(B, ʹ B ), rY( ʹ B ,B)) ≥ σ ,  

then ℜβRS   satisfies (AS2) also and it is an analogical scheme. 

 
4.5. Justification of the heuristic approach by means of the formal definition of an 
analogical scheme 

Since rX and rY are resemblance relations, they satisfy property (6), which gives 
upper and lower bounds of ʹ B  for given A, B, ʹ A  and a fixed threshold σ. The 
resemblance relation rY is such that there exist a family of increasing functions 
h k,k ∈K , defined on

 
[0,1]Y  such that rY(B, ʹ B ) = inf

k∈K
T∗ hk ( ʹ B ) | hk (B)( ) . Then, for any 

ʹ A  close to A at the level ρσ (or equivalently such that min(r(A, ʹ A ), r( ʹ A ,A)) ≥ ρσ ), 
then inf

k∈K
T∗ hk ( ʹ B ) | h k(B)( ) ≥ σ  and also inf

k∈K
T∗ hk (B) | hk ( ʹ B )( ) ≥ σ .  

Consequently, for any k∈K , we have : 
T∗ hk ( ʹ B ) | hk (B)( ) ≥ σ  and T∗ hk (B) | hk ( ʹ B )( ) ≥ σ .   (15) 

Since any continuous triangular norm T satisfies for any x, y, z,T ∗(x | y) ≥ z  if and 
only  if T(z, x) ≤ y , then the former conditions (15) are respectively equivalent to : 

• T σ,h k( ʹ B )( ) ≤ hk (B)  or equivalently T hk ( ʹ B ),σ( ) ≤ hk (B)  and then  
T∗ σ | hk (B( ) ≥ h k( ʹ B ) , 

• T σ | hk (B)( ) ≤ hk ( ʹ B ) , 
which provides upper and lower bounds of ʹ B  because of the monotonicity of h k . 

 
In the particular case of resemblance relations defined by (3), we get 

K = X and  hx(A) = A(x)  for  any  x∈X . Thus, the upper and lower bounds of ʹ B , 
respectively denoted by ʹ B U  and ʹ B L  are defined by : 

 ∀y ∈Y  T∗ σ | B(y)( ) = ʹ B U (y)      (16) 
and  ∀y ∈Y  T σ, B(y)( ) = ʹ B L(y) .     (17) 

The shapes of the upper and lower bounds of ʹ B  justify in a formal way the heuristic 
possible definitions of ʹ B  we gave in section 4.3. We must distinguish the cases of strict 
and non-strict triangular norms [Bouchon-Meunier, Valverde 93b]. 
 
4.5.1. Case of strict triangular norms 

In this case, equation (16) yields  a conclusion ʹ B U  with a complement of its support  
defined by : 
ʹ B U(y) = 0 ⇔ T∗ σ | B(y)( ) = 0 ⇔ B(y) = 0 
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and a core defined by : 
ʹ B U(y) = 1 ⇔ T∗ σ | B(y)( ) = 1⇔ σ ≤ B(y)  
We recognize the support and the core of a fuzzy set obtained from B through a 

modifier such as "approximately "  [Bouchon-Meunier 87], with a parameter 1/ σ  : 
∀y ∈Y  ʹ B U(y) = min 1, B(y) /σ( ) .      (18) 

Equation (17) yields a conclusion ʹ B L  with a complement of the support defined by : 
ʹ B L (y) = 0 ⇔ T∗ σ,B(y)( ) = 0 ⇔ B(y) = 0  

and a maximum value of the membership defined by : 
sup
y∈Y

ʹ B L(y) = sup
y∈Y

T σ,B(y)( ) = σ  

We can interpret  ʹ B L  as m(B), for a restrictive modifier m such as "very".  
We represent the upper and lower bounds of the conclusion, for instance in the case of 
the product triangular norm T(x,y)=xy in Figure 5, where ʹ B U  is exactly defined by (18) 
and ʹ B L  by the following membership function : 
∀y ∈Y  ʹ B L(y) = σB(y)        (19) 

Figure 5 : Bounds of the conclusion with the product t-norm T
Y

1

B = expensive
B'    = approximately expensive
B'    = very expensive

σ

L
U

 
 
4.5.2. Case of non-strict triangular norms 

In this case, equation (16) yields a conclusion ʹ B U  with a minimum value of 
membership function defined by T ∗ σ | 0( ) since  
∀y∈Y  ʹ B U (y) = T∗ σ | B(y)( ) ≥ T ∗ σ | 0( ) , 
because of T∗ x | z( )  being non-decreasing in z, and a core defined by : 
ʹ B U(y) = 1 ⇔ T∗ σ | B(y)( ) = 1⇔ σ ≤ B(y)  
We recognize the support and the minimum of a fuzzy set ʹ B U  obtained from B 

through a modifier such as "about" [Bouchon-Meunier 87], defined by a parameter 
T∗(σ | 0)  and an uncertainty  also equal to T∗(σ | 0) , with membership function : 
∀y ∈Y  ʹ B U(y) = min 1, max(0,B(y) + T∗(σ | 0)( ).    (20) 
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Equation (17) yields a conclusion with a complement of the support of ʹ B L  defined 
by : 
ʹ B L (y) = 0 ⇔ T∗ σ,B(y)( ) = 0 ⇒ B(y) = 0 , 

which proves that the support of ʹ B L  may be strictly included in the support of B, and 
the maximum value of the membership is equal to σ , like in 4.5.1. We can interpret ʹ B L  
as m(B), for a restrictive modifier such as "really".  

In the case of Lukasiewicz triangular norm (4) for instance, we obtain a 
representation of ʹ B U  by means of (20) and a representation of  ʹ B L  as follows : 
∀y ∈Y  ʹ B L(y) = max 0, B(y) − (1− σ)( )      (21) 
 described in in Figure 6. 
 

Figure 6 : Bounds of the conclusion with the Lukasiewicz t-norm T
Y

1

B = expensive
B'    = about expensive
B'    = really expensive

σ

1−σ

U
L

 
 

We check that, if we choose also the Lukasiewicz triangular norm as a generalized 
modus ponens t in (7), the results we have obtained in cases (C1) to (C4) with the two 
fuzzy implications (9) and (10) are compatible with these formal results and the 
conclusions ʹ B  we have obtained are included between the two bounds ʹ B U  and ʹ B L  or, 
more precisely, between ʹ B U  and B. This is due to the fact that the compositional rule of 
inference provides conclusions ʹ B  which are equal to B or which include B. It is 
impossible to obtain ʹ B  included in B. Consequently, the formal definition of an 
analogical  scheme by means of (AR1) and (AR2) allows more flexibility in the results 
of analogical reasoning than the strict utilization of resemblance relations and the 
heuristic definitions given in (12) and (13), mainly because of the symmetry appearing 
in (AR2). 

 
5. Conclusion 

We have given a formal definition of the concept of resemblance underlying any 
form of analogical reasoning. We have proven that resemblance relations can be used to 
define a kind of analogical scheme compatible with approximate reasoning in fuzzy 
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logic, when we choose certain fuzzy implications for the compositional rule of 
inference. We have presented a less restrictive analogical scheme also based on 
resemblance relations. In both cases, we have given a constructive definition  of the 
modification which must be applied to the conclusion  Bao, solution of Aao, with the 
notations introduced in section 1, to provide a solution ʹ B  to a new situation ʹ A . We 
have also shown that resemblance relations are not the only measures of comparison 
available for the representation of similarities in the framework of approximate 
reasoning and that other so-called measures of satisfiability are compatible with the 
compositional rule of inference defined by means of several other fuzzy implications. 
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