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manifolds, after M. Gromov and M. Rumin

Pierre Pansu
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1 Introduction

The purpose of these notes is to explain parts of Gromov’s survey [G2], in the light
of subsequent results of M. Rumin, [R2]. Among the rich material of [G2], most of
which pertains to analysis on metric spaces, we chose to concentrate on the Hölder
equivalence problem for Carnot manifolds.

1.1 Carnot manifolds

Definition 1 We shall call Carnot manifold the data of a smooth manifold M and
a smooth subbundle H of the tangent bundle TM , satisfying the bracket generating
condition : for each x ∈ M , the values at x of iterated Lie brackets of vectorfields
tangent to H generate TxM .

Given a smooth euclidean structure on H, the Carnot-Caratheodory metric is ob-
tained by minimizing the length of horizontal curves, i.e. curves tangent to H. The
bracket generating condition implies that this distance is finite.

Question. How far can a Carnot-Caratheodory metric be from a Riemannian
metric ?

Example 2 Consider the group Heis3 of real unipotent 3×3 matrices

1 x z
0 1 y
0 0 1

.

The differential 1-form θ = dz − xdy on Heis3 is left invariant. So is its kernel
H = ker(θ).

One can use the left invariant Euclidean structure dx2 + dy2 to define a Carnot-
Caratheodory metric. At small scales, this metric is very different from any Rie-
mannian metric in 3 dimensions. Indeed, its Hausdorff dimension is 4 instead of 3.
This follows from the existence of the one parameter group of homothetic diffeomor-
phisms

δε : (x, y, z) 7→ (εx, εy, ε2z).
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Since δε takes unit balls to balls of radius ε and multiplies volumes by ε4, one needs
ε−4 ε-balls to cover a bounded open set.

1.2 Carnot groups

The above Hausdorff dimension calculation immediately extends to the following
family of examples.

Definition 3 A Carnot group is a simply connected Lie group G equipped with a
subspace V 1 ⊂ Lie(G) such that the subspaces defined inductively by V i = [V 1, V i−1]
constitute a gradation of Lie(G), i.e.

Lie(G) = V 1 ⊕ · · · ⊕ V r, and [V i, V j] ⊂ V i+j.

Left translating V 1 yields a subbundle H which satisfies the bracket generating
condition. Choose a Euclidean structure on V 1 and left-translate it. The group
automorphisms defined on the Lie algebra by

δε(v) = εiv for v ∈ V i,

are homothetic for the Carnot-Caratheodory metric. It follows that the Hausdorff
dimension of this metric is equal to

r∑
i=1

i dim(V i).

1.3 Tangent cones

Carnot groups play, in the family of Carnot manifolds, the role played by Euclidean
space among Riemannian manifolds, at least under some restrictive condition.

Definition 4 Let (M,H) be a Carnot manifold. For x ∈ M , define H2(x) as the
linear span of values at x of brackets of vector fields tangent to H. And recursively,
let H i(x) be the linear span of values at x of brackets of sections of H and of H i−1.
Say H is equiregular if x 7→ dim(H i(x)) is constant for all i.

Example 5 The kernel H of the differential 1-form dz−x2dy on R3, known as the
Martinet Carnot structure, is not equiregular.

Indeed, when x 6= 0, the generating vectorfields ∂x and ∂y + x2∂z and their Lie
bracket 2x∂z are linearly independent, so that H2 = R3. At points where x = 0,
H2 = H. Still, H3 = R3, thus the bracket generating condition is satisfied.

Example 6 In 3 dimensions, equiregular Carnot manifolds coincide with contact
manifolds.
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Theorem 1 (Nagel-Stein-Wainger [NSW], Mitchell [M]). An equiregular Carnot
manifold is asymptotic, at each point x, to a Carnot group Gx called its tangent
cone at x. It follows that

Hausdorff dimension = Q =:
r∑
i=1

i (dim(H i)− dim(H i−1)).

It follows for instance that equiregular Carnot manifolds are never biLipschitz
homeomorphic to Riemannian manifolds.

1.4 BiLipschitz equivalence

Theorem 2 (P. Pansu, [P2], see also [Vo]). Two Carnot groups are biLipschitz
homeomorphic (resp. quasiconformally homeomorphic) if and only if they are iso-
morphic.

Theorem 3 (G. Margulis, G. Mostow, [MM1], [MM2], see also [IV]). If f : M →
M ′ is a quasiconformal homeomorphism of equiregular Carnot manifolds, then for
all x ∈M , G′f(x) is isomorphic to Gx.

Question 1 Assume two equiregular Carnot manifolds M and M ′ are quasiconfor-
mally homeomorphic. Does there exist a diffeomorphism M → M ′ mapping H to
H ′ ?

Question 2 Assume an equiregular Carnot manifold M is quasiconformally homo-
geneous, i.e. for every pair of points x, x′ ∈ M , there exists a quasiconformal
homeomorphism of M mapping x to x′. Does there exist a transitive H-preserving
action of a finite dimensional Lie group on M ?

1.5 Hölder equivalence

Since the biLipschitz equivalence problem seems to be understood to some extent,
we turn to a harder problem : when are Carnot manifolds Hölder equivalent ?

Theorem 4 (Rashevski [Ra], Chow [C],...). Let (M,H) be a Carnot manifold with
Hr = TM . Let g be a Riemannian metric on M . Then identity (M, g) → (M,H)
is locally of class C1/r and its inverse is locally Lipschitz.

Remark 7 Let (M,h) be an equiregular Carnot manifold of dimension n and Haus-
dorff dimension Q. If α > n/Q, there are no α-Hölder-continuous homeomorphisms
of Riemannian manifolds to M .

Indeed, if M ′ is n-dimensional Riemannian, then dimHauM
′ = n. If f(M ′) ⊂ M is

open, dimHauf(M ′) = Q, thus the following lemma implies that α ≤ n/Q.
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Lemma 8 If f : M ′ → M is a homeomorphism which is Cα-Hölder continuous,
then

α dimHauf(M ′) ≤ dimHauM
′.

Definition 9 Let α(M,H) be the supremum of exponents α such that there (locally)
exists a α-Hölder-continuous homeomorphism of Rn onto an open subset of M .

Example 10 Theorem 4 and remark 7 imply that 1/2 ≤ α(Heis3) ≤ 3/4.

Question 3 Find estimates for α(M,H). For instance, is it true that α(Heis3) =
1/2 ?

Not much is known. For instance, the best known upper bound for α(Heis3) is
2/3, which, as we shall see, follows from the isoperimetric inequality.

1.6 Results to be covered

Following Gromov, [G2], we shall give two proofs of the isoperimetric inequality in
Carnot manifolds.

The first one relies on the wealth of horizontal curves. More generally, again fol-
lowing Gromov, [G1], we shall show that certain Carnot manifolds admit plenty
of horizontal k-dimensional manifolds, which can be used to prove that n − k-
dimensional topological manifolds have Hausdorff dimension ≥ Q − k. This allows
to sharpen the upper bound on α(M,H) given by the isoperimetric inequality.

The second one makes a clever use of differential forms. We shall describe a de-
formation of the de Rham complex of a Carnot manifold, discovered by M. Rumin,
[R2], which gives alternative proofs of upper bounds on α(M,H). In fact, a combi-
nation of Gromov’s and Rumin’s ideas provides bounds in terms of the homology of
the tangent cone which are rather easily computable for every given Carnot group,
see Corollary 82, and cover all known results. Unfortunately, these bounds are never
sharp.

1.7 Acknowledgements

Thanks to Ya. Eliashberg and M. Rumin for sharing their understanding of the
subject, and to D. Isangulova for carefully reading the manuscript.

2 Hausdorff dimension of hypersurfaces

2.1 The isoperimetric inequality

Let (M,H) be an equiregular Carnot manifold of Hausdorff dimension Q. For sim-
plicity, we denote by vol the Q-dimensional Hausdorff measure, and by area the
Q−1-dimensional Hausdorff measure. The following inequality is due to N. Varopou-
los, [V], in the case of Carnot groups (see also [P1] for the case of Heis3), with a
rather sophisticated proof.
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Theorem 5 Let K be a compact subset in an equiregular Carnot manifold of Haus-
dorff dimension Q. There exist constants c and C such that for every piecewise
smooth domain D ⊂ K,

vol(D) ≤ c⇒ vol(D) ≤ C area(∂D)Q/Q−1.

Remark 11 Gromov, [G2] page 166, observes that the proof applies as well to non
equiregular Carnot manifolds, provided the definition of area be adapted.

Remark 12 In case (M,H) is a Carnot group, the inequality is valid for arbitrary
relatively compact open sets.

Indeed, by dilation homogeneity, the constants do not depend on the compact set
K.

Corollary 13 Let (M,H) be an equiregular Carnot manifold of dimension n and
Hausdorff dimension Q. Then

α(M,H) ≤ n− 1

Q− 1
.

2.2 Flow tube estimate

Gromov’s proof ([G2], pages 159-164) relies on pretty general principles.
Given a vectorfield X on M with (locally defined) flow φt and a subset S ⊂M ,

let Tube(S, τ), the tube on S be

Tube(S, τ) = {φt(s) | s ∈ S, 0 ≤ 0 ≤ τ}.

Lemma 14 Let X be a horizontal vectorfield on M . Let ε and τ be small (depending
on K). Let B be an ε-ball such that Tube(B, τ) is contained in K. Then

vol(Tube(B, τ)) ≤ const.
τ

ε
vol(B).

It follows that for arbitrary S ⊂ K such that Tube(S, τ) ⊂ K,

vol(Tube(S, τ)) ≤ const. τ area(S),

where the constant depends only on X and on K.

Proof. According to [NSW], one can choose coordinates such that X = ∂
∂x1

and

B is contained in a box {∀i, |xi| ≤ εw(i)} of volume ∼ ε
∑
w(i) ≤ const.vol(B). Then

Tube(B, τ) ⊂ {−ε ≤ x1 ≤ τ + ε and∀i ≥ 2, |xi| ≤ εw(i)},

thus

vol(Tube(B, τ)) ≤ const.τ ε
∑
i≥2 w(i) ≤ const.

τ

ε
vol(B).
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Cover set S with small balls Bj with radii rj. There exists a constant η(K) such

that η vol(Bj) ≤ rQj . Then Tube(S, τ) ⊂
⋃
j Tube(Bj, τ), thus∑

j

rQ−1j ≥ η
∑
j

r−1j vol(Bj)

≥ const.τ−1
∑
j

vol(Tube(Bj, τ))

≥ const.τ−1vol(Tube(S, τ)).

2.3 Local isoperimetric inequality

Given smooth vectorfields X1, . . . , Xk, denote by Tubej(S, τ) the τ -tube generated
by Xj and by MTube(S, τ) the multitube i.e. the set of points reached, starting
from a point in S, by flowing X1 during some time t1 ≤ τ , then flowing X2 for time
t2 ≤ τ , and so on.

The bracket generating condition allows to choose smooth horizontal vectorfields
X1, . . . , Xk such that the τ -multitube of any point x ∈ K under them contains
B(x, τ), for all τ ≤ const.(K). Then there exists a constant λ = λ(K) ≥ 1 such
that for all x ∈ K,

MTube({x}, τ) ⊂ B(x, λτ).

Proposition 15 For every ball B of radius R ≤ const.(K), such that the concentric
ball λB ⊂ K, and for every open subset D ⊂ K with vol(D ∩ λB) ≤ 1

2
vol(B),

vol(D ∩B) ≤ const.(K)Rarea((∂D) ∩ λB).

Proof. Let τ = 2R. Some significant portion D0 of D ∩ B must be carried
out of D by the flow of some vectorfield Xi. Indeed, otherwise, the multitube
MTube(D ∩ B, τ) would be almost entirely contained in D. But this multitube
contains B which has volume at least twice that of D, contradiction1. Since the
multitube is entirely contained in λB, Lemma 14 applied to Xi then gives

vol(D0) ≤ vol(Ti(D ∩B, τ)) ≤ const. R area(∂D ∩ λB).

2.4 Covering Lemma

Lemma 16 If vol(D) ≤ const.(K), there exists a collection of disjoint balls Bj such
that

• D is covered by concentric balls 2Bj.

• vol(D ∩ λ−1Bj) ≥ 1
2
vol(λ−2Bj).

1Here, I merely copy without understanding Gromov’s one sentence proof the trivial Measure
Moving Lemma
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• vol(D ∩Bj) ≤ 1
2
vol(λ−1Bj).

Proof. Fix a radius R = R(K) such that all R-balls contained in K have roughly
the same volume const.RQ. Fix const.(K) such that if vol(D) ≤ const.(K), then

vol(D)

const.(λ−1R)Q
≤ 1

2
.

Then for all x ∈ D,

vol(D ∩B(x,R))

vol(λ−1B(x,R))
≤ 1

2
.

Given x ∈ D, consider the sequence of concentric balls β` = B(x, λ−`R). Since
D is open, the ratio

vol(D ∩ β`)
vol(λ−1β`)

tends to λQ ≥ 1. Let B(x) be the last ball in the sequence β` such that this ratio
is less than 1

2
. By construction, the balls B(x)x∈D cover D and satisfy two of the

assumptions of the lemma.
Order the balls B(x) according to their radii, pick a largest one, call it B0, then

pick a largest one among those which do not intersect B0, call it B1, and so on. In
this way, one obtains a collection of disjoint balls. If x ∈ D and B(x) has not been
selected, then B(x) intersects some selected ball Bj which is larger than B(x). This
implies that x ∈ 2Bj. Therefore the concentric balls 2Bj cover D.

2.5 From local to global

Let D ⊂ K have vol(D) ≤ const.(K). Apply Lemma 16 to get disjoint balls Bj

such that vol(D ∩Bj) ≤ 1
2
vol(λ−1Bj). The local isoperimetric inequality 15 applies

in each Bj and yields

vol(D ∩ λ−1Bj) ≤ const.Rj area((∂D) ∩Bj).

Since

RQ
j ≤ const. vol(λ−2Bj) ≤ const. vol(D ∩ λ−1Bj),

vol(D ∩ λ−1Bj) ≤ const. area((∂D) ∩Bj)
Q/Q−1.

Finally,

vol(D ∩ 2Bj) ≤ vol(2Bj)

≤ const. vol(λ−2Bj)

≤ const. vol(D ∩ λ−1Bj)

≤ const. area((∂D) ∩Bj)
Q/Q−1.
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Since 2Bj cover and Bj are disjoint, one can sum up,

vol(D) ≤
∑
j

vol(D ∩ 2Bj)

≤ const.
∑
j

area((∂D) ∩Bj)
Q/Q−1

≤ const. (
∑
j

area((∂D) ∩Bj))
Q/Q−1

≤ const. area(∂D)Q/Q−1,

where a convexity inequality has been used.
This completes the proof of Theorem 5.

2.6 Link with Sobolev and Poincaré inequalities

It is a classical fact that isoperimetric inequalities are equivalent to Sobolev type
inequalities. For a smooth function u on M , let dHu denote the restriction to H of
the differential du.

Proposition 17 The isoperimetric inequality 5 is equivalent to the following Sobolev
inequality, with the same constant. For all smooth functions u with support con-
tained in K,

||u||Q/Q−1 ≤ const.||dHu||1.

Proof. It relies on the coarea formula : for smooth u : K → R and positive f ,∫
M

f dHQ =

∫
R

(

∫
{u=t}

f

|dHu|
dHQ−1) dt.

Assume isoperimetric inequality. Write

|u| =
∫ +∞

0

1{|u|>t} dt

as a sum of characteristic functions. Then take LQ/Q−1 norms,

||u||Q/Q−1 ≤
∫ +∞

0

||1{|u|>t}||Q/Q−1 dt

=

∫ +∞

0

vol({|u| > t})Q−1/Q dt

≤ const.

∫ +∞

0

area({|u| = t}) dt

= ||dHu||1.

Conversely, apply Sobolev inequality to steep functions of the distance to an
open set D. This gives back the isoperimetric inequality.
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Proposition 18 A slightly strengthened form of the local isoperimetric inequality
15, namely

vol(D ∩B) ≤ 1

2
vol(B)⇒ vol(D ∩B) ≤ const.(K)Rarea((∂D) ∩ λB),

is equivalent to the following (1, 1)-Poincaré inequality. For a smooth function u
defined on a ball λB of radius R,

inf
c∈R

∫
B

|u− c| ≤ const.R

∫
λB

|dHu|.

Proof. Assume local isoperimetric inequality holds. Up to replacing u with u−c
for some constant c, one can assume that

vol({u > 0} ∩B) ≤ 1

2
vol(B), vol({u < 0} ∩B) ≤ 1

2
vol(B).

Write u = u+ − u− where u+ = max{u, 0}. Then∫
B

u+ =

∫
B

(

∫ +∞

0

1{u>t} dt)

=

∫ +∞

0

vol({u > t} ∩B) dt

≤ const.R

∫ +∞

0

area({u = t} ∩ λB) dt

= const.R

∫
λB

|dHu+|,

by coarea formula. Then∫
B

|u| ≤ const.R (

∫
λB

|dHu+|+
∫
λB

|dHu−|) = const.R

∫
λB

|dHu|.

Conversely, apply (1, 1)-Poincaré inequality to steep functions of the distance to
an open set D ⊂ λB. This gives back the local isoperimetric inequality.

3 Hausdorff dimension of higher codimensional

submanifolds

Let M be a Carnot manifold. According to lemma 8, if we can show that all
subsets V ⊂ M of topological dimension k have Hausdorff dimension at least d,
then α(M) ≤ k/d. In this section, we prove results of this kind, which in some cases
improve on the upper bound obtained in the previous section.

9



3.1 A topological criterion

Proposition 19 Let M be an n-dimensional manifold and V ⊂M a subset of topo-
logical dimension dimtop(V ) ≥ n− k. Then there exists a k-dimensional polyhedron
P and a continuous map f : P → M such that any map f̃ : P → M sufficiently
C0-close to f hits V . Such a map is called a transversal to V .

Proof. This follows from a homological criterion due to Alexandrov, see [Na]
page 248.

3.2 Wealth

We are looking for horizontal immersions in Carnot manifolds (M,H), i.e. immer-
sions whose image is tangent to H. We want enough of them to foliate open sets. In
view of Lemma 19, we need to approximate continuous maps from arbitrary polyhe-
dra with immersions. Not every polyhedron is homotopy equivalent to a manifold.
Therefore, we enlarge the class of manifolds, by considering spaces, called branched
manifolds obtained by gluing manifolds along open sets. Given continuous maps
f0 : P → M and f : W → M , we say that f is ε-close to f0 if there exist homo-
topy equivalences φ : W → P and φ′ : P → W such that sup |f − f0 ◦ φ| < ε,
sup |φ′ ◦ φ− idW | < ε and sup |φ ◦ φ′ − idP | < ε.

An immersion of a branched manifold

Definition 20 A foliated horizontal immersion in a Carnot manifold (M,H) is a
smooth immersion f : W × R` → M , where W is a branched manifold, and such
that for each z ∈ R`, f|W×{z} is horizontal, i.e. tangent to H.

Definition 21 Say an n-dimensional Carnot manifold (M,H) is k-rich at a point
m ∈M if there exists a neighborhood U of m such that, given ε > 0 and a continuous
map from a k-dimensional polyhedron f0 : P → U , there exists a foliated horizontal
immersion f : W ×Rn−k →M with dim(W ) = k which is ε-close to f0.

Lemma 22 Let M be an n-dimensional Carnot manifold. Assume M is k-rich at
some point m ∈ M . Then for every n − k-dimensional subset V ⊂ M passing
through m,

dimHau(V )− dimtop(V ) ≥ dimHau(M)− dimtop(M).

If follows that

α(M) ≤ n− k
d− k

, d = dimHau(M).
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Proof. Given a foliated horizontal immersion f : W × Rq which is close to a
transversal to V , define the τ -tube on S ⊂ M as the union of f(B(w, τ)× {z}) for
which f(w, z) ∈ S. Since f restricted to W factors is horizontal, the τ -tube on an
ε-ball has volume at most const.τ kεd−k.

Cover V with εj-balls. The corresponding τ -tubes Tj cover the τ -tube U on V .
Since f is close to a transversal to V , U contains an open set. Then∑

j

εd−kj ≥ const.τ−kvol(
⋃
j

Tj) ≥ const.vol(U)

is bounded from below, which shows that dimHau(V ) ≥ d− k.

3.3 Main result

Theorem 6 (M. Gromov). A contact structure in dimension n = 2m+ 1 is m-rich
at all points.

Let 0 ≤ k ≤ h ≤ n. Assume that

h− k ≥ (n− h)k.

Then a generic h-dimensional distribution on a n-dimensional manifold is k-rich at
almost every point.

Corollary 23 If (M,H) is a 2m+1-dimensional contact manifold, then α(M,H) ≤
m+1
m+2

.
If (M,H) is a generic Carnot manifold of dimension n, Hausdorff dimension Q,

with dim(H) = h and h− k ≥ (n− h)k, then α(M,H) ≤ n−k
Q−k .

Proof. The proof has three steps.

1. Linear algebra : analyze the differential of the equation for horizontal immer-
sions.

2. Analysis : an implicit function theorem (J. Nash) yields local existence of
regular horizontal immersions.

3. Topology : passing from local to global existence (S. Smale).

In the next three sections, we outline some of the ideas in this proof, following
[G1]. An alternate approach to the third step is described in [G3].

4 Linearizing horizontality

4.1 Isotropic subspaces

Locally, a h-dimensional plane distribution H on a n-dimensional manifold M can
be viewed as the kernel of a Rn−h-valued 1-form θ.

An immersion f : V ⊂ M is horizontal iff f ∗θ = 0. Observe that this implies
that f ∗dθ = 0.
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Definition 24 Let m ∈M . A linear subspace S ⊂ Hm is isotropic if dθ|S = 0.

Example 25 1-dimensional subspaces are always isotropic. If H is a contact struc-
ture on M2m+1 (resp. quaternionic contact structure on the sphere S4m+3), all
isotropic subspaces have dimension ≤ m.

Here, S4m+3 is the unit sphere in the quaternion vector space Hm+1, and for m ∈
S4m+3, Hm is the quaternionic hyperplane orthogonal to m.

In particular, a contact (resp. quaternionic contact) manifold has no horizontal
immersions of dimension k > m.

4.2 Regular isotropic subspaces

Our goal is to solve the horizontal immersion equation E(f) = 0, where, for an
immersion f : V →M , E(f) is the Rn−h-valued 1-form on V defined by E(f) = f ∗θ.

Let X be a vectorfield along f (i.e. a section of f ∗TM on V ), viewed as a tangent
vector at f : V →M to the space of immersions. The directional derivative of E at
f in the direction X is given by Cartan’s formula

DfE(X) = LXθ = d(ιXθ) + f ∗(ιX(dθ)).

Observe that if X is horizontal, the first term vanishes, and DfE(X) does not
involve any derivatives of X. If the second term is pointwise onto, we have an easy
way to (right-)invert the operator DfE.

Definition 26 Let H = ker(θ) where θ is Rn−h-valued. Let m ∈ M . Say a linear
subspace S ⊂ Hm is regular if the linear map

Hm → Hom(S,Rn−h), X 7→ (ιXdθ)|S

is onto.

Example 27 In contact manifolds (resp. on the quaternionic contact 4m + 3-
sphere), all isotropic subspaces of H are regular.

A distribution H is sometimes said to satisfy the strong bracket generating hy-
pothesis if all 1-dimensional subspaces are regular. Such distributions are very rare.

Note that if H admits a regular k-dimensional subspace, then h ≥ (n−h)k. In other
words, the codimension of H is very small, n− h ≤ n

k+1
, which is already somewhat

restrictive.
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4.3 Genericity of regularity

The existence of regular isotropic subspaces imposes an even stronger restriction on
dimensions. This dimensional condition is genericly sufficient.

Proposition 28 Let H be a h-dimensional distribution on a n-dimensional man-
ifold. If H admits a regular k-dimensional isotropic subspace at some point, then
h− k ≥ (n− h)k.

Conversely, if h − k ≥ (n − h)k, a generic h-dimensional distribution admits
regular isotropic k-planes at almost every point.

Proof. If S ⊂ Hm is isotropic, then S is contained in the kernel of the map
X 7→ ιX(dθ)|S. If S is regular, this map is onto with a ≥ k-dimensional kernel. This
implies h− k ≥ (n− h)k.

Conversely, observe that regular isotropic k-planes are the smooth points of the
variety of isotropic k-planes. Their existence is a Zariski open condition on a 2-form
ω.

The dimension condition guarantees that this open set U ⊂ (Λ2Rh)⊗Rn−h is non
empty. Indeed, pick any surjective linear map L : Rh−k → Hom(Rk,Rn−h), viewed
as a h− k × k matrix with entries in Rn−h, and let ω be the 2-form on Rk ⊕Rh−k

with matrix

(
0 L
−L> 0

)
. By construction, Rk is isotropic and the associated map

Rh → Hom(Rk,Rn−h) is
(
0 L

)
, so that Rk is regular.

Let Z ⊂ (T ∗M ⊕ Λ2T ∗M) ⊗Rn−h denote the set of triples (m,α, ω) with α ∈
T ∗mM ⊗Rn−h and ω ∈ Λ2T ∗mM ⊗Rn−h such that either α ∈ Hom(TmM,Rn−h) is
not surjective or ω|ker(α) does not admit any regular isotropic k-subspaces. Then Z
is a finite union of proper submanifolds.

Let Ω denote the space of smooth Rn−h-valued differential 1-forms θ on M . The
map

Ω×M → (T ∗M ⊕ Λ2T ∗M)⊗Rn−h, (θ,m) 7→ (θ(m), dθ(m))

is transverse to Z. In fact, in case M = Rn, the restriction of this (linear) map to
the finite dimensional space of differential forms of the form

θa,b,y =
∑
i

aidxi +
∑
i,j

bi,j(xi − yi)dxj

is already onto at each point, i.e. a submersion. As a consequence, for a generic
choice of θ, the section (θ, dθ) is transverse to Z. The corresponding H = ker(θ)
admits k-dimensional regular isotropic subspaces at each point except those of
(θ, dθ)−1(Z), a union of proper submanifolds, which has measure zero.

4.4 Infinitesimal existence of regular horizontal immersions

If a smooth germ of immersion f : (Rk, 0) → (M,m) satisfies the horizontality
equation up to order 1, i.e. E(f)(v) = o(|v|1), then S = im(d0f) is isotropic. If S
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turns out to be regular, there is no other algebraic obstruction to deforming f to a
horizontal immersion, at least at the level of finite jets.

Proposition 29 Let (M,H) be a Carnot manifold. Let m ∈M and let S ⊂ Hm be
a k-dimensional regular isotropic subspace. Then there exists a germ of immersion
f : (Rk, 0)→ (M,m) which satisfies the horizontality equation to infinite order, i.e.

E(f)(v) = o(|v|N) for all integers N,

and such that im(df) = S at the origin.

Proof. Choose coordinates on V = Rk and M = Rn. Let us prove, by induction
on N , that there exists a polynomial fN of degree N + 1 such that f(0) = 0,
im(d0f) = S and

f ∗Nθ(v) = o(|v|N), f ∗Ndθ(v) = o(|v|N).

Any linear immersion f0 such that im(f0) = S satisfies

f ∗0 θ(v) = o(|v|0), f ∗0dθ(v) = o(|v|0).

Let N ≥ 1. Assume fN−1 exists. Since for arbitrary f , f ∗θ( ∂f
∂xi

) = θ(f)( ∂f
∂xi

) is a
product, when differentiating f ∗θ N times, all terms but one involve less than N +1
derivatives of f . Therefore, if f = fN−1 + o(|v|N+1), then, at the origin,

∂N

∂xi1 · · · ∂xiN
(f ∗θ(

∂

∂xiN+1

)) = θ(f)(
∂N+1f

∂xi1 · · · ∂xiN+1

) +
∂N

∂xi1 · · · ∂xiN
(f ∗N−1θ(

∂

∂xiN+1

)),

and

∂N

∂xi1 · · · ∂xiN
(f ∗dθ(

∂

∂xiN+1

,
∂

∂xiN+2

)) = (dθ)(f)(
∂N+1f

∂xi1 · · · ∂xiN+1

,
∂f

∂xiN+2

)

+ dθ(f)(
∂f

∂xiN+1

,
∂N+1f

∂xi1 · · · ∂xiN∂xiN+2

) +
∂N

∂xi1 · · · ∂xiN
(f ∗N−1dθ(

∂

∂xiN+1

,
∂

∂xiN+2

)).

We seek fN in the form

fN(v) = fN−1(v) +X(v, . . . , v),

where X ∈ SN+1V ∗⊗ TM is an unknown TM = Rn-valued symmetric tensor. The
equations to be solved are of the form

θ ◦X = −a, A(α ◦X) = −b,

with the following notation.

• θ, evaluated at the origin, belongs to Hom(TM,Rn−h), thus can be composed
with X to yield θ ◦X ∈ SN+1V ∗ ⊗Rn−h.
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• a =
∑

i1,...,iN+1

∂N

∂xi1 ···∂xiN
(f ∗N−1θ(

∂
∂xiN+1

))dxi1 · · · dxiN ⊗ dxN+1 ∈ SNV ∗ ⊗ V ∗ ⊗
Rn−h.

• α ∈ Hom(TM, V ∗⊗Rn−h) is defined by α(w) = ιwdθ◦f0. It can be composed
with X to yield α ◦X ∈ SN+1V ∗ ⊗ V ∗ ⊗Rn−h.

• A : SN+1V ∗⊗V ∗⊗Rn−h → SNV ∗⊗Λ2V ∗⊗Rn−h denotes skew-symmetrization
with respect to the last two variables. It maps an Rn−h-valued tensor T to
A(T ) : (v1, . . . , vN+2) 7→ −T (v1, . . . , vN+1, vN+2) + T (v1, . . . , vN , vN+2, vN+1).

• b =
∑

i1,...,iN+2

∂N

∂xi1 ···∂xiN
(f ∗N−1dθ(

∂
∂xiN+1

, ∂
∂xiN+2

))dxi1 · · · dxiN⊗dxN+1∧dxN+2 ∈
SNV ∗ ⊗ Λ2V ∗ ⊗Rn−h.

For these linear equations to admit solutions, there are two necessary conditions : a
should be fully symmetric (for this, A(a) = 0 suffices) and b should satisfy C(b) = 0,
where C(b) ∈ SN−1V ∗ ⊗ Λ3V ∗ ⊗Rn−h is given by

C(b)(v1, . . . , vN+2) = b(v1, . . . , vN+2) + b(v1, . . . , vN−1, vN+1, vN+2, vN)

+b(v1, . . . , vN−1, vN+2, vN , vN+1).

Indeed, C ◦ A = 0.
By definition, a(v1, . . . , vN+1) = v1 · · · vN(f ∗N−1θ(vN+1)),

A(a)(v1, . . . , vN+1) = a(v1, . . . , vN−1, vN , vN+1)− a(v1, . . . , vN−1, vN+1, vN)

= v1 · · · vN−1(vN(f ∗N−1θ(vN+1))− vN+1(f
∗
N−1θ(vN)))

= v1 · · · vN−1(f ∗N−1dθ(vN , vN+1))

= 0,

since f ∗N−1dθ = o(|v|N).
In the same way, b(v1, . . . , vN+2) = v1 · · · vN(f ∗N−1dθ(vN+1, vN+2)),

C(b)(v1, . . . , vN+2) = v1 · · · vN−1(vN(f ∗N−1dθ(vN+1, vN+2))

+vN+1(f
∗
N−1dθ(vN+2, vN)) + vN+2(f

∗
N−1dθ(vN , vN+1)))

= v1 · · · vN−1(f ∗N−1ddθ(vN , vN+1, vN+2))

= 0,

since ddθ = 0.
Since θ ∈ Hom(TM,Rn−h) is onto, it admits a right inverse θ−1, θ◦θ−1 = idRn−h .

Then Z = −θ−1 ◦a satisfies θ ◦Z = −a. In order to solve simultaneously the second
equation A(α ◦X) = −b, we look for Y ∈ SN+1V ∗ ⊗ ker(θ) such that

A(α ◦ Y ) = −b−A(α ◦ Z).

Thanks to the regularity assumption, the restriction of α to ker(θ) → V ∗ ⊗ Rn−h

is surjective. Pick a right inverse α−1 : V ∗ ⊗Rn−h → ker(θ), α ◦ α−1 = idV ∗⊗Rn−h .
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Look for Y in the form Y = α−1 ◦ Y ′ for Y ′ ∈ SN+1V ∗ ⊗ V ∗ ⊗Rn−h, which must
satisfy

A(Y ′) = −b−A(α ◦ Z).

Note that C(−b − A(α ◦ Z)) = 0. According to Lemma 30, this is a sufficient
condition for the existence of a solution Y ′. This completes the inductive proof.

Once the infinite jet f∞ is found, any germ (Rk, 0)→ (M,m) having this power
series as Taylor expansion satisfies E(f) = o(|v|N) for all N .

Lemma 30 The sequence

0→ SN+2V ∗ ↪→ SN+1V ∗ ⊗ V ∗ A−→SNV ∗ ⊗ Λ2V ∗
C−→SN−1V ∗ ⊗ Λ3V ∗

is exact.

Proof. It is a subcomplex of the de Rham complex of V = Rk. Indeed, elements
of
⊕

` S
N−`V ∗⊗Λ`V ∗, viewed as differential forms with polynomial coefficients, are

exactly the smooth differential forms on V which are homogeneous of degree N .
Therefore, they form a subcomplex. The Poincaré homotopy formula for solving d
is homogeneous, thus the subcomplex is acyclic. Finally, up to a factor of 2, A and
C coincide with exterior differentials.

4.5 Algebraic inverses

Passing from an infinite power series to a true locally converging solution requires
some analysis. We shall use an implicit function theorem. As usual, invertibility of
the differential of the equation is needed.

Proposition 31 Let (M,H) be a Carnot manifold. If f : V → M is a regular
horizontal immersion (i.e. Dvf(TvV ) is a regular subspace of Hf(v) for all v ∈ V ),
then DfE admits an algebraic right inverse.

Proof. It suffices to right invert the map X 7→ f ∗(ιXdθ) pointwise.
To show that such an inverse can be chosen smoothly, consider the set RegIso of

pairs (m,S), m ∈ M , S a regular isotropic subspace of Hm. This is a submanifold
in the bundle of Grassmannians Gr(k,H). This implies that the set RegIsoImm
of triples (v,m, L) where v ∈ V , m ∈ M and L : TvV → Hm is an injective linear
map with regular isotropic image is a submanifold in the bundle Hom(TV, TM)
over V ×M . For (v,m, L) ∈ RegIsoImm, the set Right(v,m,L) of right inverses of
the map

Hm → Hom(TvV,R
n−h) = T ∗v V ⊗Rn−h, X 7→ L∗(ιXdθ),

is an affine space of constant dimension (n−h)k(h−(n−h)k). The spacesRight(v,m,L)
form a smooth bundle with contractible fibers, therefore it admits a smooth section
(v,m, L) 7→ right(v,m, L) defined on RegIso.

For g a Rn−h-valued 1-form on V, consider the vector field along f defined by
X(v) = right(v, f(v), dvf)(g(v)). The map Mf : g 7→ X is a right inverse of DfE.
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Remark 32 The existence of an algebraic right inverse for a differential operator
is not unusual. In fact, it is generic for underdetermined operators, i.e., with more
unknown functions than equations, see [G1], page 156.

Example 33 (J. Nash). A specific example is the linearization at a free map of
the isometric immersion operator which to a map f between Riemannian manifolds
associates the pulled back metric.

A map Rk → Rn is free if all its first and second derivatives are linearly independant.
This notion was introduced by E. Cartan and M. Janet, see [J].

Remark 34 Generic overdetermined operators admit differential left inverses, see
[G1], page 166.

5 Implicit function theorem

5.1 Nash’s implicit function theorem

In his solution of the isometric embedding problem, J. Nash discovered that differ-
ential operators whose linearization admits a differential right inverse can be right
inverted. This implicit function theorem has an unusual feature: the inverse map is
a local operator.

Theorem 7 (J. Nash. This version is taken from [G1], page 117). Let V be a
Riemannian manifold. Let F , G be bundles over V . Let E : C∞(F ) → C∞(G) be
a differential operator whose linearization DfE admits a differential right inverse
Mf , which is defined for f in a subset A of C∞(F ) defined by strict differential
inequalities. Fix a real number ρ > 0. Then there exist an integer s such that the
following holds.

For each f ∈ A, there exists a right inverse E−1f of E, defined on a Cs-

neighborhood of E(f) in C∞(G), such that E−1f (E(f)) = f and whose differential

at E(f) is Mf . Furthermore, E−1f depends smoothly on parameters, and is local:

given f ∈ A, g ∈ C∞(G) and v ∈ V , E−1f (g)(v) depends only on the values of f and
g in a ball of radius ρ centered at v.

Proof. It can be found in textbooks like [G1] or [AG].

5.2 Local existence

Corollary 35 ([G1] page 119). Same assumptions as in Theorem 7. Any germ f0
that solves

E(f0)(v) = o(|v − v0|s)

can be deformed to a true local solution f1: E(f1) = 0.
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Indeed, choose g ∈ C∞(G) such that g = −E(f0) near v0, but g is Cs-small. For
t ∈ [0, 1], set ft = E−1f0 (E(f0) + tg).

In other words, it suffices to construct solutions up to order s (s = 2 is enough
for the horizontal immersion problem). With Proposition 29, this completes the
proof of the existence of local regular horizontal immersions. It even gives a more
precise information on the topology of the space of germs of solutions at a point.

Proposition 36 Let (M,H) be a Carnot manifold. Let m ∈M . Consider the space
Solm of germs of regular horizontal immersions (Rk, 0)→ (M,m). Map a germ to
its derivative at the origin. This gives a homotopy equivalence of Solm to the space
InjRegIsom of injective linear maps Rk → Hm with regular isotropic image.

Proof. The proof of Proposition 29 shows that to construct a solution to order
s from an injective linear map Rk → Hm with regular isotropic image, one merely
needs solve linear equations, i.e. pick points in nonempty affine spaces of constant
dimension. Therefore, the space Jetm = {germs f | f(0) = m, E(f) = o(|v|s)} is
homotopy equivalent to InjRegIsom. The map [0, 1]× Jetm → Jetm, (f0, t) 7→ (ft)
provided by Corollary 35 is a deformation retraction of Jetm to Solm.

5.3 Microflexibility

Here is a second application of Nash’s implicit function theorem. When it applies,
solutions can evolve more or less independantly on disjoint parts of their domains.
This vague statement is made precise in the following definition.

Definition 37 ([G1] page 41). Say an equation is flexible (resp. microflexible) if,
given compact sets K ′ ⊂ K ⊂ V , a solution f defined on a neighborhood of K and a
deformation ft, t ∈ [0, 1], of its restriction to a neighborhood of K ′, the deformation
extends to a neighborhood of K (resp. for a little while, i.e. for t ∈ [0, ε]). We also
require a parametrized version of this property: it should apply to continuous families
of solutions fp and of deformations fp,t parametrized by an arbitrary polyhedron P .

Example 38 Strict inequations are trivially microflexible, but need not be flexible.

Apart from this trivial example, microflexibility is hard to establish. The following
result gives all examples I know.

Corollary 39 ([G1] page 120). Let E be a differential operator such that DfE
admits a differential right inverse for f ∈ A. Then the system A ∩ {E = 0} is
microflexible.

Proof. Given solutions f near K and ft near K ′, construct a family of sections
f ′t defined near K which coincides with ft on the ρ-neighborhood of K ′ for some
ρ > 0. For t small, one can set et = E−1f ′t

(0). It is a solution defined near K.

Furthermore, near K ′, et = ft by locality.

18



Example 40 In the underdetermined case h − k ≥ (n − h)k, for a generic distri-
bution (resp. for a contact distribution), k-dimensional horizontal immersions are
microflexible.

Remark 41 Flexibility means that the restriction map f 7→ f|neigh(K′) between
spaces of solutions near K (resp. near K ′) is a Serre fibration (path lifting property).

Microflexibility sounds like this map being a submersion.

As we shall see in the next section, this opens the way to topological methods for
the study of homotopy properties of spaces of solutions.

5.4 Calculus of variations

Before we proceed, let us mention our last consequence of Nash’s implicit function
theorem.

Lemma 42 ([G2] page 254). Same assumptions as in Theorem 7. There is an open
neighborhood U of A∩ {E = 0} in A and a smooth retraction r : U → A∩ {E = 0}
with differential

Dfr = 1−Mf ◦DfE.

Proof. The domain V of E−1 : (f, g) 7→ E−1f (g) is an open Cs-neighborhood of
{(f, g) |E(f) = g} in A × C∞(G). Let U = {f ∈ A | (f, 0) ∈ V}. For f ∈ U , let
r(f) = E−1(f, 0). Then E(r(f)) = 0. If f ∈ A and E(f) = 0, then f ∈ U and
r(f) = f .

By construction, ∂E−1

∂g
(f, E(f)) = Mf . Since E−1(f, E(f)) = f for all f ∈ A,

∂E−1

∂f
(f, E(f)) +

∂E−1

∂g
(f, E(f)) ◦DfE = id,

and the formula for Dfr follows.

It follows that given a smooth functional Φ on A, one can assert that

f critical point of Φ|A∩{E=0} ⇔ DfΦ vanishes on im(Dfr),

and derive Euler-Lagrange equations for the restriction of Φ to A∩ {E = 0} in the
usual manner.

This applies to the area functional for regular horizontal immersions f in a
Carnot manifold. With the algebraic inverse Mf constructed in Proposition 31, Dfr
maps a vector field X along f to an X ′ = X + Y where Y is horizontal and is
algebraicly chosen to satisfy f ∗(ιX′dθ) = −d(ιXθ). In other words, δ = Dfr is a
first order linear differential operator. Since X can be chosen with arbitrarily small
support, the usual integration by parts yields the third order equation δ∗h = 0 where
δ∗ is the adjoint of δ and h the Riemannian mean curvature of the immersion.

The case of contact 5-manifolds is of particular interest, see for example [SW],
[HR].
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6 From local to global horizontal immersions

6.1 Sketch of proof of Theorem 6

Let us sketch a proof of Theorem 6 for k = 1.
Start with a continuous loop l0 : P = R/Z→M . Assume it admits a continuous

lift F0 which chooses for each p ∈ P a regular isotropic line in Hf0(p). Proposition
36 allows a continuous choice of a germ f̄p of regular horizontal immersion (R, 0)→
(M, f0(p)), tangent to F0(p) at f0(p) for each p ∈ P .

pf

l0

(p)
0
l

A curve of germs of regular horizontal curves

Say f̄p is defined on (p − 1, p + 1). Fix some p. Let K ′ = K ′+ ∪ K ′− where
K ′+ = [p + .5, p + .9] and K ′+ = [p − .9, p − .5], and K = [p − .9, p + .9]. Apply
microflexibility to the parametric deformation fp,t such that fp,0 = f̄p, fp,t = f̄p+t
near K ′+ and fp,t = f̄p near K ′−.

K’ K’− + K’ K’− + K’ K’− +

p,tf
p,tf

A deformation of solutions provided by microflexibility

This gives an ε > 0 and a family of solutions f̃p,t, t ∈ [0, ε]. f̃p+ε interpolates
between f̄p and f̄p+ε (see figure). Divide R/Z in 1/ε intervals, glue them together
along the pattern shown on the figure. One gets a 1-dimensional branched manifold,
together with a regular horizontal immersion to M which is ε-close to l0.

A branched horizontal immersion
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The higher dimensional case requires more topological formalism, some of it is
explained below.

In fact, the technique comes very close to producing global (unbranched) hor-
izontal immersions from honest manifolds. Although this is not needed for our
application to dimensions of submanifolds, we shall collect enough material to prove
a density property of horizontal immersions when the domain is an open manifold.

6.2 Nonholonomic solutions

Definition 43 Let F → V be a smooth bundle. A differential equation of order r
with unknowns in C∞(F ) should be viewed as a subset R in the bundle of r-jets of
sections of F . Sections of R are called nonholonomic solutions of the equation.

Example 44 Horizontal immersions V → (M,H).

This is a first order equation. A 1-jet of map V → M at v ∈ V is a pair (m,L)
where m ∈ M and L : TvV → TmM is linear. Then R is the subset of pairs (m,L)
where L is injective with its image contained in Hm.

A nonholonomic solution consists of a continuous map f : V → M and an
injective bundle map F : TV → H over f , i.e. F maps injectively TvV to Hf(v).

6.3 h-principle

We want to study a refinement of the existence problem for solutions of an equation:
can one approximate nonholonomic solutions with solutions ? Since solutions form
a Cr closed set, one cannot require a Cr approximation, but one can still hope for a
C0 approximation. For instance, in the case of horizontal immersions, the data is a
bundle map (f0, F0), and one wants a horizontal immersion f1 : V → M such that
f1 is C0 close to f0.

It turns out to be very fruitful to investigate simultaneously the homotopy type
of the space of solutions, i.e. to require the r-jet of the approximating solution to
be homotopic to the given nonholonomic solution among nonholonomic solutions.

Definition 45 ([G1] pages 3, 17, 18). Say an equation satisfies the parametric C0-
dense h-principle (h-principle, for short) if for every nonholonomic solution, there
is a C0-small homotopy to a solution (and also familywise).

The h-principle localizes near a compact subset K, and in particular near points.

Proposition 46 Regular horizontal immersions satisfy the h-principle near points.

Proof. This is precisely what Proposition 36 means.
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6.4 h-principle as a homotopy theory

The h-principle has a relative version for a pair (K,K ′) ([G1] page 39): say that
h-principle holds for the pair if for every nonholonomic solution defined near K,
which is a solution near K ′, there is a C0-small homotopy to a solution defined
near K, where the homotopy is constant near K ′ (and again one wants this to hold
familywise).

Proposition 47 ([G1] pages 40, 42). If the h-principle holds near K ′ and for the
pair (K,K ′), then it holds for K.

If the h-principle holds near K1∩K2 and for the pairs (K1, K1∩K2) and (K2, K1∩
K2), then it holds for K1 ∪K2.

Proof. Start with a nonholonomic solution F0 defined on a neighborhood U of
K. The h-principle near K ′ provides a C0-small homotopy Ft defined on a neighbor-
hood U ′ of K ′, with F1 = jrf1 a solution. Extend F1 into a nonholonomic solution
F̃1 defined on U as follows: using a tubular neighborhood of ∂U ′, write

U = U ′ ∪ (∂U ′ × [0, 1]) ∪ U \ U ′,

and set

F̃1 = F1 on U ′,

F̃1(u, t) = F1−t(u) on ∂U ′ × [0, 1],

F̃1 = F0 on U \ U ′.

The relative h-principle finally provides a C0-small homotopy of F̃1 to a solution
defined near K. This works for families as well, thus the h-principle holds near K.

In case K ′ = K1 ∩ K2, the same construction gives a C0-small homotopy to
a solution defined near K1 ∪ K2, thanks to the extension character of the relative
h-principle.

Theorem 8 (S. Smale. Taken from [G1] page 42). Assume that

• the h-principle holds for K and K ′,

• the equation is flexible.

Then the h-principle holds for the pair (K,K ′).

Proof. Consider the diagram

{solutions near K} → {nonholonomic solutions near K}
↓ ↓

{solutions near K’} → {nonholonomic solutions near K’}
,

where horizontal arrows are inclusions and vertical arrows restriction maps. Since
the h-principle holds near K and near K ′, horizontal arrows are weak homotopy

22



equivalences. Flexibility makes vertical arrows Serre fibrations. From the five lemma
applied to the long homotopy exact sequences of these fibrations, we know that the
fibers are weakly homotopic. In particular, if a solution near K ′ admits an extension
as a noholonomic solution, it also extends as a solution, and this works for families
as well. This is the relative h-principle.

Corollary 48 ([G1] page 42). Assume that

• the h-principle holds near points,

• the equation is invariant under diffeomorphisms of the domain,

• the equation is flexible.

Then the h-principle holds in V .

Proof. Triangulate V . By assumption, the h-principle holds in balls embedded
in V . Since each simplex has a basis of neighborhoods diffeomorphic to a ball, the
h-principle holds near simplices. Flexibility and Theorem 8 imply that h-principle
holds for all pairs. Proposition 47 implies that it passes to unions, i.e. to all of V .

6.5 From microflexibility to flexibility

There remains to establish flexibility for certain equations. It turns out that, for
equations which are invariant on reparametrization of the domain, microflexibility
implies flexibility in one dimension less.

Theorem 9 ([G1] page 78). Consider an equation on V which is Diff(V )-invariant
and microflexible. Then flexibility holds for germs of solutions along any proper sub-
manifold.

The proof is sketched in the next paragraph.

Corollary 49 ([G1] page 79). A microflexible Diff(V )-invariant equation which
satisfies the h-principle near points satisfies the h-principle on open manifolds.

Indeed, if V is open, there exists a codimension 1 polyhedron V0 in V and an
isotopy which maps every compact subset of V into arbitrarily small neighborhoods
of V0. According to Theorem 9, microflexibility on V implies flexibility for solu-
tions defined near V0, which implies flexibility for all solutions. One concludes with
corollary 48.
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6.6 Compressibility

For the proof of theorem 9, it is convenient to replace flexibility by the equivalent
notion on compressibility.

Definition 50 ([G1] page 80). Given an equation on a manifold V and a compact
set K ⊂ V , call deformation on K any curve of solutions ft, t ∈ [a, b], defined
in a neighborhood of K. Say a deformation ft on K is compressible if for every
sufficiently small neighborhood U of K, it can be extended to a deformation f̃t defined
on U for t ∈ [a, b], which is constant (i.e. independant on t) in a neighborhood of
∂U . One also needs a parametric version of this definition, for parametric families
of solutions ft,p, p ∈ P .

KK

A compressible deformation

Lemma 51 An equation is flexible if and only if all deformations on all compact
sets are compressible.

Proof. Given K ′ ⊂ K and a solution near K, a compressible deformation of it
on K ′ trivially extends to K by making it constant outside a neighborhood of K ′.
Conversely, given a deformation on K and a compact neighborhood U of K, apply
flexibility to the pair K ⊂ K ∪ ∂U to obtain an extension which is constant in a
neighborhood of ∂U .

In the same way, microflexibility implies that every deformation on K can be
compressed into an arbitrary neighborhood U of for some time ε depending on the
deformation and on U . For equations that are invariant under reparametrizations
of the domain, and when enough space is available, one can arrange that ε depends
on the deformation but not on U .

Lemma 52 ([G1] page 82). Consider an equation on V which is Diff(V )-invariant
and microflexible. Let V0 ⊂ V be a submanifold of positive codimension. Let K ⊂ V0
be compact. Let ft be a deformation on K. There exists ε = ε({ft}) such that for
every neighborhood U0 of K in V0, there exists an extension f̃t defined on U0 for
t ∈ [0, ε], which is constant near ∂U0.

Proof. Microflexibility applied to K ⊂ K∪∂U yields an extension f̄t defined on
U for t ∈ [0, ε], ε = ε({ft}), which is constant near ∂U . Here, U is a neighborhood
of K in V .
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Given a compact neighborhood U0 of K in V0, one can assume that f̄t is constant
on V0 \ U0 for t ∈ [0, ε′], for some ε′ ≤ ε which unfortunately depends on U0.

Choose a compact neighborhood L of U0 in U∩V0, with smooth boundary. There
exists an isotopy δt of V , t ∈ [0, ε], which is constant on a neighborhood of ∂L, such
that δε moves ∂L into the neighborhood of ∂U where f̄t is always constant. For
t ∈ [0, ε], let

f̃t = ft ◦ δt on L,

f̃t = fmin{t,ε′} ◦ δt on V0 \ L.

L

t=0 t= t=  ’ε ε

K

U
Exploiting an extra dimension to improve compression

This f̃t is smooth along ∂L. By Diff(V )-invariance, f̃t is a solution. This works
more generally for parametric deformations ft,p, p ∈ P .

6.7 Proof of theorem 9

We must show that every deformation ft, t ∈ [0, 1], on a compact set K is compress-
ible.

Note that all restrictions of {ft} to smaller intervals [p, 1] belong to a unique
deformation, the parametric deformation ft,p, p ∈ P = [0, 1], defined by

ft,p = fmin{1,t+p}.

Apply Lemma 52 to this parametric deformation. This provides a compression time ε
for all deformations {ft | t ∈ [p, 1]} which depends neither on p nor on a compression
neighborhood.

Fix a neighborhood U of K. Compress {ft | t ∈ [0, ε]} to {f̃t | t ∈ [0, ε]} within
U . There exists a neighborhood U ′ ⊂ U on which f̃t coincides with ft for t ∈ [0, ε].
Compress {ft | t ∈ [ε, 2ε]} to {f̃t | t ∈ [ε, 2ε]} within U ′. This gives a compression of
{ft | t ∈ [0, 2ε]} within U ′. Continue.
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6.8 Proof of theorem 6

According to Proposition 28, in case the polyhedron P is an open manifold, Theorem
6 follows from the following statement.

Proposition 53 Let (M,H) be a Carnot manifold. Assume that at some point
m ∈ M , there exists a regular isotropic linear subspace S ⊂ Hm with dim(S) = k.
Let f0 be continuous map of an open k-dimensional manifold W to a sufficiently
small neighborhood of m. Let ε > 0. Then there exists a local diffeomorphism
f : W ×Rn−k →M such that all f|W×{∗} are horizontal and uniformly ε-close to f0.

Proof. Consider the equation E whose solutions are foliated regular horizontal
immersions, i.e. maps f : V = W ×Rn−k → M such that d(w,z)f maps TwW to a
regular isotropic subspace in Hf(w,z).

The set BijRegIso of bijective linear maps of Rk ×Rn−k to TM mapping Rk

to a regular isotropic subspace in some Hm is a submanifold, with (m′, S) → m′

a submersion. In some neighborhood U of m, one can choose such a bijection
m′ → L(m′) depending smoothly on m′. Then F (w, z) = (f0(w), L ◦ f0(w)) is a
nonholonomic solution of E.

Corollary 39 implies that E is microflexible. Corollary 49 does not apply directly
since the equation is not fully Diff(V )-invariant. Nevertheless, all we need is a germ
of a solution along the leaf W × {0}, so Diff(W )-invariance suffices. This allows
to C0 approximate F with a foliated horizontal immersion.

If P is a closed n-manifold, then the same procedure yields h-principle along the
n− 1-skeleton of some triangulation. View each n-simplex as a 1-parameter family
of n − 1-spheres, and apply the strategy described in paragraph 6.1, to produce a
global solution branched along finitely many spheres.

In fact, the h-principle is not needed for the construction of branched solutions,
microflexibility is sufficient. We refer to [G2] page 262 and [G1], page 112.

7 From submanifolds to differential forms

7.1 Horizontal forms

Let (M,H) be a Carnot manifold. Let p : M → Rq be a submersion with horizontal
fibers. Let vol denote some volume form on Rq. Then the differential form η = p∗vol
has the following property : if θ is a 1-form that vanishes on H, then θ ∧ η = 0.
This suggests the following definition.

Definition 54 Let Ω∗ denote the space of differential forms on M . Let Θ∗ ⊂ Ω∗

denote the ideal of differential forms whose restriction to H vanishes, and A∗ its
annihilator,

A∗ = {η | η ∧ θ = 0 for all θ ∈ Θ∗}.

Elements of A∗ are called horizontal forms.
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Choose locally (globally if H admits a transverse orientation) a smooth n− h-form
φ which is locally the wedge product of 1-forms from a basis of Θ1. Then A∗ consists
of forms which are multiples of φ.

7.2 Existence of closed horizontal forms

k-wealth, which subsumes existence of (at least local) submersions with horizontal
fibers, implies abundance of closed horizontal n− k-forms, n = dim(M).

The abundance of closed horizontal n− 1-forms can be seen in a direct manner
too.

Proposition 55 ([G2] page 156). On an n-dimensional Carnot manifold, every
closed n− 1-form is cohomologous to a (closed) horizontal form.

Proof. The filtration of H ⊂ H2 ⊂ · · · ⊂ TM induces a filtration An−1 =
F1 ⊂ F2 ⊂ · · · ⊂ Ωn−1 as follows : α ∈ F j if and only if there exist an n-form
ω and a vectorfield Z ⊂ Hj such that α = ιZω. We show that for all j ≥ 1,
F j+1 ⊂ F j + im(d).

Let ω be an n-form and X, Y be vectorfields such that X ∈ H, Y ∈ Hj. Then,
using Lie derivatives,

LX(ιY ω) = ιLX(Y )ω + ιY (LXω)

= ι[X,Y ]ω mod F j.

Thanks to Cartan’s formula,

LX(ιY ω) = d(ιXιY ω) + ιXd(ιY ω) ∈ im(d) + F j.

Therefore ι[X,Y ]ω ∈ im(d) + F j.
Let α ∈ F j+1, α = ιZω with Z ∈ Hj+1. Write Z =

∑
` a`[X`, Y`] where a` are

functions, X`, Y` are vectorfields, X` ∈ H, Y` ∈ Hj. Then α =
∑

` ι[X`,Y`]ω` (where
ω` = a`ω), therefore α ∈ im(d) + F j. This shows that F j+1 ⊂ F j + im(d).

The bracket generating assumption, Hr = TM , implies that Ωn−1 = F r ⊂
im(d) + F1 = im(d) + An−1. Given a closed n− 1-form α, the equation

dβ = −α mod An−1

admits a smooth solution β ∈ Ωn−2. Then α + dβ ∈ An−1 is a horizontal form.

7.3 A second proof of the isoperimetric inequality

We prove once more that, for a Carnot group G with Hausdorff dimension Q,
bounded domains D with piecewise smooth boundary satisfy

vol(D) ≤ const. area(∂D)Q/Q−1,

where volume (resp. area) denotes Q-dimensional (resp. Q− 1-dimensional) spher-
ical Hausdorff measure.
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Remark 56 This implies Theorem 5. Indeed, the isoperimetric inequality for piece-
wise smooth domains always extends (possibly with a loss on constants) to arbitrary
open sets.

This second proof, which occupies the 4 next paragraphs, is borrowed from [G2]
pages 167-168. It transposes a Euclidean argument which can be found for instance
in [S]. It relies on homogeneity, scale invariance, an integration by parts and re-
arrangement. Horizontal differential forms, which have the right scale invariance
under homothetic automorphisms, play a crucial role.

7.4 Fundamental solution of the exterior differential

Lemma 57 Let G be a Carnot group of dimension n and Hausdorff dimension Q,
equipped with a left-invariant Carnot-Caratheodory metric. Let p ∈ G. There exists
a smooth closed horizontal n− 1-form ωp on G \ {p} such that

• If D is a bounded domain with piecewise smooth boundary and p ∈ D,∫
∂D

ωp = 1.

• Write ωp = ιXvol for some horizontal vectorfield X. Then

|X(q)| ≤ const. |p− q|1−Q,

where |p− q| is the Carnot-Caratheodory distance from p to q.

Proof. Let δε denote the 1-parameter group of homothetic automorphisms of
(G,H = V 1) (see Definition 3). Consider the discrete group Z = {δ2n |n ∈ Z}.
It acts properly discontinuously and cocompactly on G \ {e}, and preserves H.
Therefore the quotient space M = (G\{e})/Z is a compact Carnot manifold without
boundary.

Let S ⊂ G be a small (Euclidean) sphere centered at e. The map

S × (0,+∞)→ G \ {e}, (q, ε) 7→ δε(q)

is a Z-equivariant diffeomorphism, where Z acts trivially on S and multiplicatively
on (0,+∞). Therefore M is diffeomorphic to S × Sn−1. The cohomology class
c, Poincaré-dual to the homology class of the S1 factor, is represented by closed
differential forms whose integral on the S factor is equal to one. According to
Proposition 55, one can choose a horizontal representative α. Our ωe is the pull-
back of α under the covering map π : G \ {e} → M , ω = π∗α, and ωp is obtained
from ωe by left translation.

If D is a domain that contains the ball β bounded by S, then, by Stokes theorem,∫
∂D

ωe −
∫
S

ωe =

∫
D\β

dωe = 0.
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Thus ∫
∂D

ωe =

∫
S

π∗α

=

∫
π(S)

α

= 1,

by construction.
For ε = 2n, n ∈ Z, δ∗εωe = ωe. From δ∗ε vol = εQvol, we get (δε)∗X = εQX, i.e.

X(δε(q)) = εQ−1X(q), since X is horizontal. In particular, the function

q 7→ |q − e|Q−1|X(q)|

is invariant under the group Z, descends to a continuous function on the compact
manifold M , so is bounded.

7.5 Integration versus area

Lemma 58 Let α = ιXvol be a horizontal n − 1-form on G. Let W ⊂ G be a
hypersurface. Then ∫

W

α ≤ const.

∫
W

|X(q)| dq

where dq denotes area, i.e. Q− 1-dimensional spherical Hausdorff measure.

Proof. It suffices to verify the inequality for very small pieces of W , like inter-
sections with small balls B(q, ε) centered on W . To save notation, let q = e. By
definition of Hausdorff measure,

ε1−Q
∫
W∩B(e,ε)

dq → 1

as ε tends to 0. On the other hand,

ε1−Q
∫
W∩B(e,ε)

α =

∫
δ1/ε(W )∩B(e,1)

ε1−Qδ∗εα

→
∫
V ∩exp−1B(e,1)

ιX(e)vol

= |X(e)|F (V,
X(e)

|X(e)|
),

where V is a hyperplane in the Lie algebra of G that contains V 2 ⊕ · · · ⊕ V r. Since
F is a continuous function on a product of two projective spaces, it is bounded.

29



7.6 Integration by parts

Let D ⊂ G be a bounded domain with piecewise smooth boundary. Then

vol(D) =

∫
D

(

∫
∂D

ωp) dp

≤
∫
D×∂D

const. |p− q|1−Q dq dp

= const.

∫
∂D

(

∫
D

|p− q|1−Q dp) dq.

7.7 Rearrangement

Let B = B(q, R) be the Carnot ball centered at q such that vol(B) = vol(D). Then∫
D

|p− q|1−Q dp =

∫
D∩B
|p− q|1−Q dp+

∫
D\B
|p− q|1−Q dp

≤
∫
D∩B
|p− q|1−Q dp+R1−Qvol(D \B)

=

∫
D∩B
|p− q|1−Q dp+R1−Qvol(B \D)

≤
∫
D∩B
|p− q|1−Q dp+

∫
B\D
|p− q|1−Q dp

=

∫
B

|p− q|1−Q dp

= const.R

= const. vol(D)1/Q.

Putting things together yields

vol(D) ≤ const. vol(D)1/Q area(∂D),

as expected.

8 The weight filtration of differential forms

Gromov’s integral geometric proof of the isoperimetric inequality in the previous
section shows that horizontal n − 1-forms can usefully replace sprays of horizontal
curves. In this section, lower degree forms will be used as well in a Hölder ex-
ponent estimate as a replacement for foliations by higher dimensional horizontal
submanifolds. Horizontal differential forms on a Carnot group are those which are
contracted the most under homothetic automorphisms. This leads to the notion of
weight. Gromov extracts a metric invariant from such weights. This yields upper
bounds for the Hölder exponent α(M,H).
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8.1 Weights of differential forms

Let G be a Carnot group with Lie algebra G. Left-invariant differential forms on G
split into homogeneous components under the homothetic automorphisms δε,

Λ∗G∗ =
⊕
w

Λ∗,w where Λ∗,w = {α | δ∗εα = εwα}.

Example 59 If G = Heis2m+1 is the Heisenberg group, for each degree q 6= 0,
2m+ 1,

ΛqG∗ = Λq,q ⊕ Λq,q+1,

where Λq,q = Λq(V 1)∗ and Λq,q+1 = Λq−1(V 1)∗ ⊗ (V 2)∗.

This gradation by weight depends on the group structure. What remains for
general Carnot manifolds is a filtration.

Definition 60 Let (M,H) be a Carnot manifold, m ∈M . Say a q-form α on TmM
has weight ≥ w if it vanishes on q-vectors of H i1⊗· · ·⊗H iq whenever i1+· · ·+iq < w.
If (M,H) is equiregular, such forms constitute a subbundle Λq,≥wT ∗M . The space
of its smooth sections is denoted by Ω∗,≥w.

Note that each Ω∗,≥w is a differential ideal in Ω∗.

Example 61 Assume (M,H) is equiregular of dimension n and Hausdorff dimen-
sion Q. Then a differential q-form on M is horizontal if and only if it has maximal
weight, i.e. weight ≥ Q− n+ q.

Lemma 62 Assume (M,H) is equiregular. The graded algebra
⊕

w Λ∗,≥w/Λ∗,≥w+1

identifies with the space Λ∗Gm of left invariant differential forms on the tangent
Carnot group Gm.

Proof. According to [NSW], the Lie algebra Gm is the graded space

Gm = gr(H•m) =
r⊕
i=1

H i
m/H

i−1
m

associated to the filtration (H i
m)1≤i≤r of the tangent space TmM , equipped with a

bracket induced by the Lie bracket on vectorfields. Since the filtration of differential
forms is defined by duality,

gr(Λ∗,•) = gr(Λ∗(H•m)∗)) = Λ∗(gr(H•))∗ = Λ∗(Gm)∗.

Corollary 63 The values taken by weights for an equiregular Carnot manifold are
those of Carnot groups, i.e. integers between 1 and Q.

Definition 64 Let (M,H) be a Carnot manifold. Define the weight invariant
Wq(M,H) as the largest w such that there exists arbitrarily small open sets with
smooth boundary U ⊂M and nonzero classes in Hq(U,R) which can be represented
by closed differential forms of weight ≥ w.

Example 65 By Proposition 55, all Carnot manifolds of dimension n and Haus-
dorff dimension Q have Wn−1 ≥ Q− 1.
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8.2 Straight cochains

Following Gromov ([G2], pages 247-249), we define a metric invariant whose be-
haviour is similar to Wq. The starting point is the following characterization of
weight on Carnot groups.

Remark 66 A differential form ω on a Carnot group has weight ≥ w if and only if

||δ∗εω||∞ ≤ const. εw for ε ≤ 1.

The next idea is to replace differential forms, as a tool for cohomology calcula-
tions, by Alexander-Spanier straight cochains, which have the advantage of being
functorial under homeomorphisms.

Definition 67 (Alexander-Spanier). Let X be a metric space, and t > 0. A straight
q-cochain of size t on X is a bounded function on q + 1-tuples of points of X of
diameter less than t. The ε-absolute value a straight q-cochain c is its `∞ norm as
a cochain of size ε, i.e.

|c|ε = sup{|c(σ)| | q + 1− tuples σ of diameter < ε}.

Straight cochains of size t form a complex, since they coincide with simplicial
cochains on the simplicial complex Xt with vertex set X, such that q + 1 vertices
span a q-simplex if and only if their mutual distances in X are less than t. The
simplicial chains on Xt are called straight chains of size t.

If X is a compact manifold with boundary, or biHölder homeomorphic to such,
then, for t small enough, straight chains (resp. cochains) of size t compute homology
(resp. cohomology). Given a cohomology class κ and a number ν > 0, one can define
the ν-norm

||κ||ν = lim inf
ε→0

ε−ν inf{|c|ε | cochains c of size ε representing κ}.

The next two propositions provide opposite estimates on norms.

Proposition 68 In a Riemannian manifold with boundary, all straight cocycles c
representing a nonzero class κ of degree q satisfy

|c|ε ≥ const.(κ) εq.

In other words, ||κ||q > 0.

Proof. Fix a cycle c′ such that κ(c′) > 0. Subdivide it as follows : fill simplices
with geodesic singular simplices, subdivide them and keep only their vertices. This
does not change the homology class. The number of simplices of size ε thus generated
is ≤ const.(c′) ε−q. For any representative c of size ε of κ,

κ(c′) = c(c′) ≤ const. ε−q|c|ε.
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Proposition 69 Let (M,H) be an equiregular Carnot manifold. Let U ⊂ M be a
bounded open set with smooth boundary. Let ω be a closed differential form on U ′

of weight ≥ w. Then, for every ε small enough, the cohomology class κ ∈ Hq(U,R)
of ω can be represented by a straight cocycle cε (maybe defined on a slightly smaller
homotopy equivalent open set) such that

|cε|ε ≤ const. εw.

In other words, ||κ||w < +∞.

Proof. In the case of a Carnot group G. Use simultaneously left-invariant Rie-
mannian and Carnot-Caratheodory metrics. Use the exponential map to push affine
simplices in the Lie algebra to the group. Fill in all straight simplices in G of unit
Carnot-Caratheodory size with such affine singular simplices. Note that the Carnot-
Caratheodory diameters and the Riemannian volumes of these singular simplices (C1

maps of the standard simplex to G) are bounded by some constant V . Then forget
th Riemannian metric, apply δε and obtain a filling σε for each straight simplex σ in
G of Carnot-Caratheodory size ε. Let U ′ be an open set whose closure is contained
in U and which is a deformation retract of U . For ε small enough, the filling of a
straight simplex of size ε in U ′ is contained in U . Define a straight cochain cε of size
ε on U ′ by

cε(σ) =

∫
σε

ω.

Since ω is closed, Stokes theorem shows that cε is a cocycle. Its cohomology class in
Hq(U ′,R) ' Hq(U,R) is the same as ω’s. Furthermore,

|cε(σ)| =

∫
σ1

δ∗εω

≤ V ||δ∗εω||∞
≤ const.(ω) εw.

8.3 The metric weight invariant

Here is the promised metric analogue for Wq.

Definition 70 Let X be a metric space. Define MWq(X) as the supremum of
numbers ν such that there exist arbitrarily small open sets U ⊂ M and nonzero
straight cohomology classes κ ∈ Hq(U,R) with finite ν-norm ||κ||ν < +∞.

Example 71 Proposition 68 shows that Euclidean space has MWq ≤ q.
Proposition 69 shows that equiregular Carnot manifolds satisfy MWq ≥ Wq.

Proposition 72 Let f : X → Y be a Cα-Hölder continuous homeomorphism. Let
κ ∈ Hq(Y,R). Then

||κ||ν < +∞⇒ ||f ∗κ||να < +∞.

In particular, MWq(X) ≥ αMWq(Y ).
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Proof. If σ is a straight simplex of size ε in X, f(σ) has size ε′ ≤ ||f ||Cα εα in
Y . If c is a representative of κ, f ∗c is a representative of f ∗κ, and

ε′−ν |c|ε′ ≥ ε′−ν |c(f(σ))|
= ε′−ν |f ∗c(σ)|
≥ ||f ||−νCα ε

−να|f ∗c(σ)|.

Therefore

ε−να|f ∗c|ε ≤ ||f ||νCα ε′−ν |c|ε′ .

This leads to

||f ∗κ||να ≤ ||f ||νCα ||κ||ν .

Corollary 73 Let (M,H) be an equiregular Carnot manifold. Then for all q =
1, . . . , n− 1,

α(M,H) ≤ q

Wq(M,H)
.

9 Complexes of differential forms

We want that every closed form be cohomologous to another one of high weight.
In other words, we need to compute cohomology with a subcomplex of differential
forms of rather high weights. Such complexes have been discovered by M. Rumin,
first for Heisenberg groups, [R1], later on for general Carnot groups, [R2], and
equihomological equiregular Carnot manifolds, [R5].

9.1 Rumin’s contact complex

We begin with the special case of contact manifolds.

Definition 74 Let (M,H) be a contact manifold, i.e. H = ker(θ) where θ is an
ordinary 1-form, and dθ|H is symplectic. Let

I∗ = {α ∧ θ + β ∧ dθ |α, β ∈ Ω∗}

denote the differential ideal generated by θ. Let

J∗ = {η ∈ Ω∗ | η ∧ γ = 0 for all γ ∈ I∗}

denote its annihilator.

Let us denote by dH : I∗ → I∗ (resp. dH : J∗ → J∗) the operators induced by the
exterior differential.
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Theorem 10 (M. Rumin, [R1]). Let (M,H) be a 2m+1-dimensional contact man-
ifold. There exists a second order differential operator D : Ωm/Im → Jm+1 such that
the complex

0→ Ω1/I1
dH−→· · · d

H

−→Ωm/Im
D−→Jm+1 dH−→· · · dH−→J2m+1 → 0

is homotopy equivalent to the de Rham complex. In particular, it computes the
cohomology of M .

Proof. Start with the 3-dimensional case. View elements η of the quotient space
Ω1/I1 as partially defined 1-form (i.e. sections of the dual bundle H∗). When is
such a partial form the restriction of the differential of a function ? There should
exist an extension α of η in the missing direction Z which is a closed 1-form. Write
Z = [X, Y ] where X and Y are horizontal vectorfields. Since we want in particular
that dα(X, Y ) = 0, there is only one choice for α(Z),

α(Z) = α([X, Y ]) = Xη(Y )− Y η(X).

Thus the necessary condition for η to be a dHu is dα = 0. Since α depends on
first derivatives of η, Dη = dα depends on second derivatives. By construction,
Dη(X, Y ) = 0, i.e. the 2-form Dη is horizontal, Dη ∈ J2.

Locally, a closed form is exact, so Dη = 0 implies η = dHu locally. If γ is a closed
horizontal 2-form, then locally γ = dα = D(α|H). In other words, the sequence of
differential operators

Ω0 dH−→Ω1/I1
D−→J2 dH−→J3,

called the Rumin complex, is locally exact. Therefore, globally, it is as good as the
full de Rham complex for cohomology calculations. A homotopy equivalence is a
sharper way to express this. A homotopy equivalence of complexes C∗ and D∗ is a
pair of maps h : C∗ → D∗ and h′ : D∗ → C∗ satisfying of course dh = hd, dh′ = h′d,
such that there exist B : C∗ → C∗ and B′ : D∗ → D∗ such that h′h = 1− dB−Bd,
hh′ = 1−dB′−B′d. The Rumin complex trivially injects into the de Rham complex,
except in degree 1. In that degree, we set h(η) = α, the unique extension just
described. Conversely, the de Rham complex trivially maps to our complex except in
degree 2. If α is a 1-form, (hh′−1)(α)(Z) = Xη(Y )−Y η(X)−α([X, Y ]) = dα(X, Y ).
Thus, assuming that θ(Z) = 1, we define B′ : Ω2 → Ω1 by B′(γ) = −γ(X, Y )θ,
and decide that B′ = 0 in other degrees. If γ is a 2-form, the wished identity
(hh′ − 1)(γ) = −dB′(γ) suggests to define h′(γ) = γ + d(γ(X, Y )θ), which indeed
belongs to J2. With this choice, hh′ = 1− dB′ −B′d. On the Rumin complex, one
simply takes B = 0. Since h′h = 1, everything fits nicely.

The higher dimensional case requires more care, and we only explain the con-
struction of D, referring to Rumin’s original paper for the homotopy equivalence.
Let η ∈ Ωm. What is the condition for η mod Im to be in the image of dH :
Ωm−1/Im−1 → Ωm/Im ? There should exist γ = α ∧ θ + β ∧ dθ ∈ Im such that
d(η + γ) = 0. Note that

dγ = d(α ∧ θ) + dβ ∧ dθ = d((α + (−1)mdβ) ∧ θ),
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so that β does not bring anything new. Compute

d(η + α ∧ θ) = dη + dα ∧ θ + (−1)m−1α ∧ dθ.

Since dθ|H is symplectic, wedging with dθ|H : Λm−1H∗ → Λm+1H∗ is a bijection.
Therefore there is a unique α|H (and therefore a unique α ∧ θ) such that

α|H ∧ dθ|H = −dη|H .

Let us denote d(η + α ∧ θ) by Dη. By construction, Dη|H = 0, thus Dη ∧ θ = 0.
Furthermore, there exists a form κ such that Dη = κ ∧ θ. Then 0 = d(Dη) =
dκ ∧ θ + (−1)mκ ∧ dθ, showing that κ|H ∧ dθ|H = 0. This implies that Dη ∧ dθ = 0,
i.e. Dη ∈ Jm+1. Thus D connects the complexes dH : I∗ → I∗ and dH : J∗ → J∗

into a single complex.

Corollary 75 If (M,H) is a 2m+1-dimensional contact manifold, then Wq(M,H) ≥
q + 1 for all q ≥ m+ 1.

Remark 76 Rumin’s contact complex does not involve any arbitrary choices, it is
invariant under all contactomorphisms. However, the maps h′ and B′ depend on the
choice of a contact form θ or a complement Z, Z ⊕H = TM .

9.2 The weight preserving part of d

The fact that B = 0 in Rumin’s contact complex suggests to view it as the subcom-
plex im(h) in the de Rham complex, and h′ as a retraction. In spite of its cost (loss
of invariance), this point of view opens the way to generalization.

We are looking for a retraction r = 1− dB′−B′d of the de Rham complex, onto
forms of high weight. In other words, we want r to kill low weight components of
forms. But B′ inverts the exterior differential, inasmuch as possible. Thus B′ should
especially invert d on low weights. How does d behave with weights ?

Lemma 77 Each Ω∗,≥w is a differential ideal in Ω∗. The operator d0 induced on

C∞(
⊕
w

Λ∗,≥w/Λ∗,≥w+1) =
⊕
w

Ω∗,≥w/Ω∗,≥w+1

from the exterior differential on Ω∗ is algebraic (it does not depend on derivatives),
and acts fiberwise as the exterior differential on left-invariant forms.

Proof. If ω is a left invariant form of weight ≥ w and f a function, df ∧ ω has
weight ≥ w + 1, so d0(fω) = fd0ω, and d0 is algebraic. The pointwise computation
of d0 is done in the Carnot group case. There, since d commutes with pull-back
under homothetic automorphisms, if φ is a left-invariant homogeneous differential
form of weight w, so is dφ. This shows that d0 = d on left invariant forms.
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Definition 78 On the tangent Carnot Lie algebra Gm, d0 commutes with the ho-
mothetic automorphisms δε, thus its cohomology is graded by degree and weight,

H∗(Gm,R) =
⊕
q,w

Hq,w(Gm,R).

Example 79 Cohomology of the Heisenberg Lie algebra H2m+1.

Choose θ in (V 2)∗. Every α ∈ Λ∗G∗ can be uniquely written α = η + θ ∧ β with η,
β ∈ Λ∗(V 1)∗. Then

d0α = dθ ∧ β =: Lβ,

where dθ is a symplectic form on V 1. Thus cohomology splits intoHq,q+1 = θ∧ker(L)
and Hq,q = Λq(V 1)∗/im(L).

9.3 Rumin’s complex for equihomological Carnot manifolds

Lemma 77 suggests that B′ should be an inverse of d0. This operator is defined on
a quotient

⊕
w Ω∗,≥w/Ω∗,≥w+1. If (M,H) is equiregular, choices of complements V k

of Hk−1 in Hk allow a lift of d0 to an operator on differential forms.

Example 80 Let (M,H) be a contact manifold. A choice of contact form θ deter-
mines a complement V 2 = ker(dθ). Every differential form can be uniquely written
α = η + θ ∧ β with ιV 2η = ιV 2β = 0. Then

d0α = dθ ∧ β.

Definition 81 Say an equiregular Carnot manifold is equihomological if the dimen-
sions of the cohomology spaces of tangent Lie algebras and of their weight filtrations
are constant.

When this is the case (for instance, for Carnot groups), one can smoothly choose
complements

• Vj of Hj−1 in Hj,

• F of ker(d0) in Λ∗T ∗M ,

• E of im(d0) in ker(d0).

The choice of Vj allows to view d0 as acting on forms (and not on some quotient
space) and so the other choices make sense in turn.

This determines an inverse (d0)−1, with kernel E + F and image F . Set

r = 1− d(d0)−1 − (d0)−1d.

r is a first order differential operator, compatible with weight filtrations.
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Theorem 11 (M. Rumin, [R2]). Let (M,H) be an equihomological equiregular
Carnot manifold. The iterates rj stabilize to a projector p of Ω∗, with image the
subcomplex

E = ker((d0)−1) ∩ ker((d0)−1d) = {η ∈ C∞(E ⊕ F ) | dη ∈ C∞(E ⊕ F )}.

Furthermore, if π denotes the projector onto E with kernel im(d0)⊕ F , then, on E,
p ◦ π = identity.

Proof. See [R2].

Corollary 82 Let (M,H) be an equihomological equiregular Carnot manifold. As-
sume that there exists a point m ∈ M such that, in the cohomology of the tangent
Lie algebra Gm, Hq,w′(Gm,R) = 0 for all w′ < w. Then Wq(M,H) ≥ w, and, as a
consequence, α(M,H) ≤ q/w.

Proof. The vanishing of Hq,w′(G,R) is an open condition on a Lie algebra.
Therefore the assumptions are satisfied in a neighborhood of m. On this neighbor-
hood, by equihomologicality, dim(

⊕
w′≥wH

q,w′(Gm′ ,R)) is constant, thus one can

choose a smooth complement Eq of im(d0) ∩ Λq,≥w in ker(d0) ∩ Λq,≥w, complete
it into a complement E of im(d0) in ker(d0) and pick a smooth complement F of
ker(d0) in Λ∗TM . Let U be some smaller neighborhood of m with smooth bound-
ary, such that Hq(U,R) 6= 0. Let κ be a nonzero class in Hq(U,R). By Theorem
11, κ contains a closed form ω which belongs pointwise to E ⊕ F . Thus πω ∈ Eq

has weight ≥ w. Since p is weight-preserving, ω = p ◦ π(ω) has weight ≥ w too.
This shows that Wq(M,H) ≥ w. The conclusion α(M,H) ≤ q/w then follows from
Corollary 73.

9.4 Duality

The weight gradation of Lie algebra cohomology is invariant under Poincaré duality.
This is useful for calculating examples.

Proposition 83 Let G be a Carnot group with dimension n and Hausdorff dimen-
sion Q. Then, in the cohomology of its Lie algebra G, Hq,w(G,R) is isomorphic to
Hn−q,Q−w(G,R).

Proof. Choose a Euclidean structure on G which makes all V j orthogonal. Ob-
serve that the corresponding Hodge ∗-operator maps Λq,w to Λn−q,Q−w. The adjoint
δ0 of d0 is given by δ0 = ± ∗ d0∗. Choose

E = orthogonal complement of im(d0) in ker(d0) = ker(δ0) ∩ ker(d0).

Then E is graded, and Eq,w maps isomorphicly toHq,w in cohomology. Since ∗Eq,w =
En−q,Q−w, the conclusion follows.
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9.5 Examples

Degree n−1. On any Carnot group, the space of closed invariant 1-forms is (V 1)∗ =
Λ1,1, thus H1,w(G) = 0 for w > 1. Proposition 83 implies that Hn−1,w(G) = 0 for
w < Q − 1, and Corollary 82 gives Wn−1(G) ≥ Q − 1. We already knew this from
Proposition 55.

Contact case. On a symplectic 2m-space, L is injective in degrees ≤ m − 1
and surjective onto degrees ≥ m+ 1. Therefore, following Example 79, for 2m+ 1-
dimensional contact manifolds, Hq,q = 0 for q ≥ m + 1. This implies Wq(M,H) ≥
q + 1 for q ≥ m+ 1, a fact we already knew from Corollary 75.

Quaternionic contact case. The quaternionic Heisenberg Lie algebra is G =
V 1 ⊕ V 2 where V 1 = Hm, V 2 = =m(H) and for X, Y ∈ V 1, [X, Y ] = =m〈X, Y 〉.
The group Sp(n)Sp(1) acts by automorphisms on G, and

Λ2,∗ = Λ2,2 ⊕ Λ2,3 ⊕ Λ2,4

is a decomposition into irreducible summands. d0 does not vanish identicly on Λ2,3 or
on Λ2,4. Therefore d0 is injective on these subspaces, and H2,3(G,R) = H2,4(G,R) =
0. This implies Wn−2(G) ≥ Q− 2 = 4m+ 4.

Rank 2 distributions. If G is a Carnot Lie algebra with dim(V 1) = 2, then
V 2 = [V 1, V 1] is 1-dimensional and [, ] : Λ2(V 1) → V 2 is injective. Its adjoint
d0 : Λ1,2 = (V 2)∗ =→ Λ2(V 1)∗ = Λ2,2 is onto, and H2,2 = 0. Furthermore, if
dim(V 3) 6= 1, [, ] : V 1⊗V 2 → V 3 is injective. Its adjoint d0 : Λ1,3 = (V 3)∗ → (V 1)∗⊗
(V 2)∗ = Λ2,3 is onto, and H2,3 = 0. Hence, for any equihomological equiregular
Carnot manifold (M,H) with dim(H) = 2, W2(M,H) ≥ 3, α(M,H) ≤ 2/3. If
furthermore dim(H3) ≥ 5, then W2(M,H) ≥ 4, α(M,H) ≤ 1/2. Note that this
bound is always worse that what is obtained when considering n− 1-forms.

9.6 Back to regular isotropic subspaces

Proposition 84 Let (M,H) be an equiregular Carnot manifold. If H contains a
regular isotropic horizontal k-plane at some point m, then Hk,w(Gm,R) = 0 for all
w ≥ k+ 1. If (M,H) is furthermore equihomological, it follows that Wn−k(M,H) ≥
Q− k and α(M,H) ≤ n−k

Q−k .

Proof. If S ⊂ Hm is regular isotropic, then S viewed as a subspace in V 1 ⊂ Gm
is regular isotropic for Gm as well. Thus is the sequel, M = Gm is a Carnot group,
H = V 1 is defined by a left invariant Rn−h-valued 1-form θ = (θ1, . . . , θn−h).

Let w ≥ k + 1 and ω ∈ ker(d0) ∩ Λk,w. Then there exists an Rn−h-valued
k − 1-form η = (η1, . . . , ηn−h) such that

ω =
n−h∑
i=1

θi ∧ ηi = θ ∧ η.
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Then

(d0ω)|V 1 = (d0θ)|V 1 ∧ η|V 1 .

Since S is isotropic, for X ∈ V 1,

(ιXd
0ω)|S = (ιXd

0θ)|S ∧ η|S.

Choose a Euclidean structure on S and use its Hodge ∗ operator. By regularity, one
can choose a vector X ∈ V 1 such that (ιXd

0θ)|S = ∗(η|S). Then

(ιXd
0ω)|S = ∗(η|S) ∧ η|S

is nonnegative. Since d0ω = 0, this implies η|S = 0. Since the variety of isotropic
k − 1-subspaces is smooth, the linear span of the set of decomposable k − 1-vectors
associated to isotropic subspaces is all of Λk−1V 1, so η|V 1 = 0 and ω = 0. One
concludes that ker(d0) ∩ Λk,w = 0. In particular, Hk,w(Gm,R) = 0.

By Poincaré duality (Proposition 83), Hn−k,w(Gm,R) = 0 for all w < Q−k. The
conclusion follows from Corollary 82.

Remark 85 According to Proposition 28, Proposition 84 applies to generic h-dimen-
sional distributions on n-dimensional manifolds, provided h− k ≥ (n− h)k.

10 Conclusion

Concerning the Hölder equivalence problem, the direct approach using differential
forms seems to cover all results obtained by the horizontal submanifold method, and
has a wider scope (see [R5]). Nevertheless, the bounds obtained are never sharp,
even in the case of the 3-dimensional Heisenberg group. New ideas are needed.
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