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We derive an equation relating the pressure at the flat bed and the profile of an
irrotational steady water wave, valid for all classical solutions of the governing
equations for water waves. This permits the recovery of the surface wave from
pressure measurements at the bed. Although we focus on periodic waves, the extension
to solitary waves is straightforward. We illustrate the usefulness of the equation
beyond the realm of linear theory by investigating the regime of shallow-water waves
of small amplitude and by presenting a numerical example.
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1. Introduction

Within the framework of incompressible, homogeneous and inviscid flow modelling
of water waves, the pressure acts as a Lagrange multiplier to enforce the divergence-
free constraint on the velocity field. The pressure plays an important role in
establishing various qualitative properties of travelling water waves in irrotational
flow, e.g. in the description of the particle trajectories beneath the waves (Constantin
2006; Constantin & Strauss 2010), and in showing that an overhanging wave profile
is not possible (Spielvogel 1970; Varvaruca 2006). The pressure is also essential in
quantitative studies because often in practice the elevation of a surface water wave is
determined from pressure data obtained at the sea bed (Kuo & Chiu 1994; Baquerizo
& Losada 1995; Tsai et al. 2005).

The standard approach — used, for instance, in open-ocean buoys (see the discussion
in Oliveras et al. 2012) — consists of assuming that the hydrostatic approximation

n(x) =px)/g—d, xek, (1.1)

is sufficiently accurate. Here the water density p is constant, g is the (constant)
acceleration due to gravity (directed downwards), and

p('x) = [P(x’ _d) - Patm]/lo (12)

is the normalized relative pressure evaluated at the flat bed y = —d, with d
representing the average depth of the fluid, P(x, —d) being the pressure as a function
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of the spatial variable x, evaluated at the flat bed, P, the (constant) atmospheric
pressure at the water surface, and x — n(x) the profile of the steady surface water
wave travelling at constant speed ¢ > 0. However, the discussion by Bishop & Donelan
(1987) shows that, even for waves of moderate amplitude, prediction errors exceeding
15 % frequently occur if one relies on (1.1). These inaccuracies are due to the fact that
(1.1) ignores even linear wave effects.

Within the linear regime of water waves of small amplitude in finite depth, one can
derive (see e.g. Escher & Schlurmann 2008) the so-called transfer-function formula

n(x) =cosh(kd)[p(x) — gdl/g, x€eR, (1.3)

where k = 2m/L is the wavenumber corresponding to the wavelength L > 0. Notice that
the hydrostatic formula (1.1) is recovered in the limit kd — O of (1.3). The benefit
of the simplicity of the linear formula (1.3) is offset by the fact that for waves of
moderate amplitude it often overestimates the wave height by more than 10 %, cf. the
experimental data provided by Tsai et al. (2005).

These considerations motivate the quest for a reconstruction formula that accounts
for nonlinear effects and that is thus applicable to waves of moderate and large
amplitude. Recently, a nonlinear non-local equation relating the dynamic pressure on
the bed and the wave profile was obtained without approximation from the governing
equations (Deconinck et al. 2011; Oliveras et al. 2012). The equation reads

02 —2g77(x) = ikx A
—_— = e"0, cosh(k[n(x) +d]), xeR, (1.4)
1+ [0 ,Z;o ‘
where n, = dn/dx and
n 1 [
b= e /2 — 2p(x) + 2gddx, keZ. (1.5)
T Jo

The entangled character of (1.4) is a considerable impediment in the pursuit of an
in-depth analysis. Our aim is to present a more expedient approach that applies to all
smooth steady waves.

We first establish the existence of a holomorphic function ‘3 on the fluid domain,
whose restriction to the flat bed has zero imaginary part and real part p. The wave
amplitude 7y > 0 is determined as the unique fixed point of the contraction

s (ReP) (0, s)/g —d, (1.6)

and the surface wave profile x — n(x) is given by the unique solution of the ordinary
differential equation

_ (Im ), )
B—gn— ReP)(x,n) +gd’

with initial data n(0) = ny. Here B > 0 is the Bernoulli constant, determined by
requiring that the solution to (1.7) has zero mean. The fact that the right-hand side of
(1.7) is a smooth and bounded function of x and 5 is a byproduct of our approach. In
contrast to the implicit nonlinear equation (1.4), a standard iterative procedure solves
(1.6)—(1.7).

Throughout this paper, we are concerned with periodic waves but the same
approach works for solitary waves. In this context, let us point out that recently

1.7)
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an explicit formula providing a parametric representation of irrotational solitary
wave profiles in terms of the pressure on the flat bed was obtained by Constantin
(2012). We do not pursue the periodic analogue of that procedure here. Instead, our
alternative approach is applicable in the physical variables. This presents a definite
advantage from the practical point of view since a periodic analogue of the approach
pursued in Constantin (2012) would involve a conformal hodograph transform that is
computationally and experimentally less acquiescent.

2. Preliminaries

In a frame of reference moving at the constant wave speed c, the flow beneath
a travelling wave reduces to a steady motion with respect to the moving coordinate
system. Let (x, y) be a Cartesian coordinate system moving with the wave, x being the
horizontal coordinate and y the upward vertical coordinate. Let (u(x, y), v(x,y)) be the
velocity field in the moving frame. The wave is L = (2n/k)-periodic in the x-direction,
and we denote by y = —d, y=n(x) and y =0 the equations of the bottom, of the
free surface and of the mean water level, respectively. The last equation expresses the
fact that (n) =0 for the smooth L-periodic wave profile n, where (-) is the Eulerian
average operator over one wavelength,

k t/k
(n)z/ n(x)dx =0. 2.1)

7t/k

The flow is governed by the balance between the restoring gravity force and the inertia
of the system. With constant density p > 0, the equation of mass conservation and
Euler’s equations are

u, +v, =0, 2.2)
and
uu, +vuy, = —Py/p, uvy+vv,=—-P,/p—g, (2.3)

respectively, where P(x,y) denotes the pressure. We are investigating gravity water
waves, so that the assumption of a homogeneous inviscid flow is appropriate. The
effect of surface tension being negligible, on the free surface we must have

P=P,, ony= n(x), 2.4)

where P,,, is the (constant) atmospheric pressure. The dynamic boundary condition
decouples the motion of the water from that of the air above it. The fact that the
free surface and the rigid bed are interfaces is captured by the kinematic boundary
conditions

v=un, ony=rn(x) 2.5)
and
v=0 ony=-—d, (2.6)
respectively, while the irrotational character of the flow is ensured by requiring
Uy = V. 2.7)

Equations (2.2)—(2.7) are the governing equations for irrotational travelling water
waves in a moving frame. We refer to Constantin (2011) for an in-depth discussion of
the rationale for the underlying physical assumptions.



Throughout this paper, we call a Stokes wave a smooth solution to the governing
equations for which n, u, v, P are all periodic in the x-variable, with the functions
n, u, P even and v odd in the x-variable. Moreover, the wave profile n should
be strictly monotonic between consecutive crests and troughs, and symmetric. (Our
definition of a Stokes wave includes all wavelength over depth ratios.) The existence
theory for Stokes waves is based on bifurcation theory, see the discussions by Toland
(1996) and Constantin (2011). Some of the above assumptions are not restrictive. For
example, a continuously differentiable wave profile must actually be real-analytic and
the velocity components have harmonic extensions across the free surface (see Toland
1996; Constantin & Escher 2011). Moreover, the free surface has to be the graph of a
function (Toland 1996) and the symmetry of the free surface is guaranteed if the wave
profile is monotonic between crests and troughs (Okamoto & Shoji 2001), in which
case 1, < 0 for x € (0, L/2), if x =0 is the location of the wave crest. The only Stokes
waves for which the free surface is not a continuously differentiable curve are the
waves of greatest height, for which the curve is real-analytic except at the crest where
it is just continuous with a corner containing an inner angle of 2m/3 (cf. the discussion
in Toland 1996). Throughout this paper, we are only concerned with smooth Stokes
waves. In this case the flow presents no stagnation points, that is,

ulx,y) <0 forxeR, —d <y<nkx). (2.8)

For the Stokes wave of greatest height the inequality (2.8) breaks down at the wave
crest, where u =0, and this fact is intimately connected with the loss of regularity
(Toland 1996). We refrain from discussing the Stokes wave of greatest height.

Let ¢ and ¥ be the velocity potential and the stream function, respectively, such that

u= ¢x = Wy, V= ¢y = _WM (29)
It is convenient to introduce the complex potential and the complex velocity
f=o+iy, w=u—iv, (2.10)

respectively, that are holomorphic functions of the complex variable z = x + iy, with
f=f(@ and w = df/dz. The equation of mass conservation for a homogeneous
fluid and the irrotational character of the flow are encompassed in the relations
(2.9) together with the requirement that ¢ and i are harmonic functions throughout
the fluid domain. The Euler equation can be expressed by means of the Bernoulli
condition:

2 +2gy+u> +vP =B, xeR, —d<y<n©x), (2.11)
for some constant B, where
px,y) =[P(x,y) = Puml/p, x€R,—d<y<n(), (2.12)
is the normalized relative pressure. From (2.1), (2.4) and (2.11), we get
B= (u+v,%), (2.13)

where u, and v, denote the restrictions of u and v to the free surface, respectively. On
the other hand, applying the divergence theorem to the vector field (—2uv, u*> — v?)
in the domain {(x,y) : —w/k < x < w/k, —d <y < n(x)} and taking into account (2.5),
(2.6) and the periodicity condition in the x-variable, we obtain

(u? +v?) = (w?), (2.14)



where u, denotes the restriction of u to the flat bed y = —d. The relations (2.11),
(2.13) and (2.14) yield
(p) = gd, (2.15)

where p(x) = p(x, —d) is the normalized relative pressure at the bed. The relation
(2.15) is very important for practical applications because it can be used to recover the
average water depth from the measured pressure at the bed.

3. Recovery of the wave profile
Instead of dealing with the complex potential f or with the complex velocity w, it is
advantageous to use the holomorphic function w?. The function
B = %B + gd — %wz(z) = %B + gd — %(uz —v?) +iuv 3.1)

is holomorphic in the fluid domain {(x,y) : x € R, —d <y < n(x)}, and its restriction to
the flat bed y = —d has zero imaginary part and real part p, i.e.

p(r) = Px — id) = gd + 5(B — u}). (3.2)
Thus p determines P uniquely throughout the fluid domain. Note that p defined in
(2.12) coincides with the real part (Re*}3) only on y = —d because the former is not a

harmonic function in the fluid domain (Constantin 2006; Constantin & Strauss 2010).
Using (2.5) and (2.11) on the free surface y = n(x), where p = 0 owing to (2.4) and
(2.12), we have

(uy — vy = (1 —in)®u} = (1 + nHul(1 —iny) /(1 +in,)
=, +v)(1 —in) /(A +in) = (B —2gn)(1 —in) /(1 +iny). (3.3)
Multiplying this relation by (1 + in,) and using (3.1), we obtain at once

gn(l —iny) +iBn, = [Px +in) — gdI(1 + in,). (3.4)

The real and imaginary parts of (3.4) give two equations for n:
gn = (ReP), —gd — n, Im*P),, (3.5)
Bn, — gnne = [(Re P), —gdIn, + AmP),, (3.6)

[

where, as above, the subscript ‘s’ denotes the evaluation at the free surface
y =n(x). Using (3.1), we can see that (3.5)—(3.6) are precisely

gn =1[B—ul —v7], (3.7)

Thus, both are ensured by the validity of the Bernoulli condition (2.11) on the
free surface. For a Stokes wave of non-zero amplitude, it is known that 75, # 0
between consecutive crests and troughs (Constantin 2006; Constantin & Strauss 2010).
Therefore, not only does (3.7) imply (3.8), but also (3.8) ensures the validity of (3.7)
between consecutive crests and troughs, and by continuous extension everywhere.

For the recovery of the surface wave profile 5, given the function p, one can
proceed as follows. Owing to (2.15), the pressure p at the bed y = —d has the Fourier
series expansion

PO =gd+ Y pe™, (3.9)

n#0
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with p_, =p, for n £ 0 since p is real. From (3.9) we get

;B(Z) — ;B(x, y) — gd 4+ Z pneink[x+i(}'+d)]’ (310)
"o
showing that P can be easily obtained from p. The validity of the above series
expansion throughout a horizontal strip that contains the fluid domain in its interior
can be proved by adapting to the flat-bed context the approach pursued in Plotnikov &
Toland (2002) for a fluid of infinite depth. This ensures that even though the complex
velocity field has no holomorphic extension to the entire complex plane, it extends
analytically to a strip of the form {(x,y) e R: —n(0) —2d — ¢ <y < n(0) + ¢} for some
e>0.
We now evaluate (3.5) at the wave crest located at x = 0, where 5, = 0, obtaining
the implicit equation

no = ReP)(0, no)/g — d. (G.11)

(A similar relation holds at the trough, of course.) The crest height ny is obtained
as the unique solution to (3.11). The function on the right-hand side of (3.11) is
a contraction, so that its unique fixed point can be obtained by a standard iterative
procedure; see the discussion in §5 and the numerical example in §6. With 5
determined by solving (3.11) iteratively, we now solve the ordinary differential
equation

B (ImP) (x, 1)

B—gn— (ReP)(x,n) +gd’
with initial data n(0) = no. Equation (3.12) is merely a re-expression of (3.6). We
claim that the right-hand side of (3.12) is smooth, so that the solution can be obtained
by the standard iterative procedure implemented on the formulation of (3.12) as a
nonlinear integral equation; see the discussion in § 5. To prove our claim, note that by
(3.1) we have

B—gn— (ReP),+gd = 1B —gn+ ju> — 2> =u? >0, (3.13)
owing to (2.8) and (2.11) and the fact that p = 0 along y = n(x). The above procedure
is contingent upon the determination of the Bernoulli constant B, obtained by imposing
the constraint of zero mean to the solution 1 to (3.12) with initial data n(0) = ny; see
the discussion in § 5.

For the practical identification of the location of the wave crest from recorded values
of p, the results by Constantin & Strauss (2010) ensure that the maximum of p in
the fluid domain is attained on the bed beneath the wave crest, the minimum of p
is attained all along the free surface, and p is strictly monotonic between consecutive
crests and troughs, its minimum being attained beneath the wave trough. These facts
ensure that recorded data on p determine the location of the wave crest and of the
wave trough.

(3.12)

X

4. Perturbation expansion examples
In this section we illustrate the applicability of our approach in various regimes.

4.1. Hydrostatic approximation
With P(x, y) = P, —gy throughout the fluid we have p(x) = gd. This yields P(z) = gd,
so that (3.11) becomes 1y =0 and (3.12) becomes 1, = 0. We conclude that n =0, a
confirmation that we have a flat horizontal free surface.



4.2. Linear theory of waves of small amplitude
Within this framework, in terms of the small amplitude parameter ¢ > 0, we have

p(x) = gd + egdsech(kd) cos(kx) + O(e?), “4.1)
n(x) = ed cos(kx) + O(&?), 4.2)
B = (g/k) tanh(kd) + O(&?), 4.3)

cf. the discussion by Constantin (2011). Substituting x by x + i(y + d) in (4.1) and
splitting the real and imaginary parts, we get after some trivial algebra

, h(k d . sinh(k d)) .
gd cosh(kd) cosh(kd)
Therefore (3.11) and (3.12) take the form
edcosh(k(ng+ d
o = ( (770 )) + 0(82),
cosh(kd) 45)
ekd sinh(k(n + d)) sin(kx) L O '
x = — . 8 9
g sinh(kd)
respectively. The solution of the first equation is of the form
no=ed + O(e?), (4.6)

so that n = O(¢). In view of (4.3), this allows us to write the above differential
equation as

1. = —ekd sin(kx) + O(g?). 4.7)
This yields (4.2). Notice the validity of (1.3) if we ignore terms of O(g?).

4.3. Cnoidal shallow-water theory

The Korteweg—de Vries (KdV) equation arises as a weakly nonlinear model for the
propagation of shallow-water waves of small amplitude. Its periodic travelling waves
can be expressed using the elliptic functions sn, cn and dn, and the complete elliptic
integrals of the first and second kind K and E, depending on the parameter m € [0, 1].
For example, we have the expressions (Clamond 1998, 1999, 2003)

n(x) = no {dn’(cx | m) — E(m)/K(m)} / {1 — E(m)/K(m)} , (4.8)
u(x, —d) = uy {dnz(/cx | m) — E(m)/K(m)} —c, “4.9)

for the free surface and for the horizontal fluid velocity on the flat bed, respectively.
Here, k = 2K (m)/L is related to the wavenumber k = 2mt/L, while 1y > 0, uy > 0 and
¢ > 0 are parameters, ¢ being the wave phase velocity observed in the reference frame
in which the horizontal velocity has average zero at the bed. Note that the expression
of u(x, —d) used by Clamond (1999, 2003) and Henry (2009) are in that frame of
reference, while (4.9) is expressed in the frame following the wave. Note also that for
m<k1

u(x, —d) = tmug cos(2kx) — ¢ + O(m?), (4.10)

thus recovering the approximation of the previous subsection.
The KdV-regime is characterized by

no/d =0(8%), upy/c=0(* and «d=0(), 4.11)



where § < 1 is a dimensionless parameter characterizing the ratio of depth over
typical wavelength. The approximations (4.8) and (4.9) neglect terms of O(8*). An
approximation of the same order for the square of the horizontal velocity at the bed is

uw* (x, —d) = & — 2cup {dn*(kx | m) — E(m)/K(m) } + O(8*). (4.12)
We obtain the approximation
p(x) =1(B— ) + gd + cup {dn’(kx | m) — E(m)/K(m)} + O(8*), (4.13)
for the pressure at the bed. The conditions (2.13) and (2.14) now yield
B=c"+ 0%, (4.14)
so that
p(x) ~ gd + A {dn’(kx | m) — E(m)/K(m)} , (4.15)

with A = cuy. Once the parameters m, x and A have been obtained (e.g. by fitting
experimental data), the function 3 is easily obtained by replacing x by x 4+ i(y + d)
in the right-hand side of (4.15). Splitting the expression into real and imaginary parts,
one obtains

Rep = gd 1 4] AV EOEO) —mf@A@W0) Em | o
[3(y) 4+ m 57 (x) 3(0)] K(m)
I = —2ma 2D AD ) 20):0) Zdz(y) | )
[3() + msi(x) s3()]

with {s1; ¢1; di}(x) = {sn; cn; dn}(kx | m) and {s2; c2; dx}(y) = {sn; cn; dn}[k (y + d) |
1 —m].

The approximations (4.16) and (4.17) can be used to compute the free surface from
the relations (3.11) and (3.12). While it was demonstrated by Clamond (1999, 2003)
that renormalized cnoidal waves are uniformly valid for all depths, and that they
are also quite accurate for large waves, we focus on the KdV-regime. The Taylor
expansion

Px +1iy) = expli(y + d)d.]p(x) (4.18)

around y = —d (Clamond 1999) allows us, in the KdV-regime, where 9, = O(§) and
n = 0(8?), to use the approximation

Px +in) = p(x) + idp,(x) + OH). (4.19)
Thence
ReP)(x, n(x)) = gd + A {dn’(kx | m) — E(m)/K(m) } + O(8*), (4.20a)
(Im*P) (x, n(x)) = —2mdAsn(kx | m) en(kx | m) dn(kx | m) + O(8).  (4.20D)
These approximations enable us to write (3.12) as
ne = —2mkd(A/B) sn(kx | m) cn(kx | m) dn(kx | m) + O(8°) “4.21)
and integration on [0; x] yields

n(x) — no = d(A/B) [dn’ (kx | m) — 1] + O(8*). (4.22)
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Using (3.11), we determine the wave amplitude
no=A[l—E(m)/K(m)]/g. (4.23)

Finally, the last relation needed to completely recover the solution (4.8) is obtained by
enforcing (2.1). Indeed, (2.1) and (4.22) lead to

no =d(A/B) [1 — E(m)/K(m)] . (4.24)
Eliminating A and B between (4.22), (4.23) and (4.24) yields (4.8), up to O(8%).

5. The general reconstruction procedure
Knowing p, we determine ‘P using (3.10). Denoting
F(y)=ReP)(0.y)/g —d. yel=d, nl (GRY)

we can recast (3.11) as 5y being a fixed point of F. In view of (3.1) and (2.11), we
have that ‘B = p + g(y 4+ d) all along the crest line x = 0, where v = 0. Thus

F(y) =y+p0,y)/g=[B—u*0,9]1/(28), yel—d. nol. (5.2)
The results by Constantin & Strauss (2010) ensure that
uy(oa Y) > 0 >py(05 Y), y € [_da ’70], (53)

for every smooth Stokes wave. The above inequality combined with (2.8) and (5.2)
shows that F is a contraction. Consequently, starting at any y, € [—d; 0], the sequence
of iterates {y,},-;, given by y, = F(y,_) for n > 1, converges to the unique fixed point
no of F (Coppel 1965). It is of interest to point out that since the function p attains its
minimum throughout the fluid domain only at the free surface (Constantin & Strauss
2010), where p =0 in view of (2.4) and (2.12), the first equality in (5.2) implies that
the sequence {y,},-, is strictly increasing. This iterative procedure determines the wave
amplitude 7y, while B and n(x) remain to be found.
Let us now observe that by (2.11) and (3.1), we have for all —d <y < n(x) that

B—gy— ReP)(x,y) +gd =p(x,y) + u’ (x,y) = u’(x,y)

> u*(0,m9) = B — gno — Re P)(0, 1) + gd > 0, (5.4)
in view of the results by Constantin & Strauss (2010). Therefore, for b such that
b > g(no — d) + (Re*P)(0, no), (5.5)

we have

b—gy— ReP)(x,y) +gd=(0b—B)+B—gy— ReP)(x,y) + gd
>b—g(ny —d) — (ReP)(0, ny) > 0, (5.6)

for all —d <y < n(x). For b subject to the constraint (5.5) and close enough to
gno — d) + (ReP)(0, o), we have b < B. These considerations provide us with an
estimate of the possible range of values of B, in terms of the values of p.

For a given approximation b of the Bernoulli constant B, the corresponding surface
elevation n”(x) is obtained by the following iterative procedure. Define, for n > 1 and
x € [0, L/2], the successive approximations

(Im P) (', no(x)) &
b —gnh(x) — ReP)(¥', nb(x)) +gd

My () =10+ / (5.7)
0

9
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FIGURE 1. (Colour online) Numerical example of the surface reconstruction procedure: (@)
pressure at the bed: profile; (b) pressure at the bed: Fourier spectrum; (¢) fixed-point iterations
of 7ny: absolute errors between two consecutive approximations; (d) recovered free surface:
profile; (e) difference between recovered and exact free surfaces.

with initial data nj(x) = no. The smoothness and uniform boundedness of the above
integrand ensure, by means of the classical Picard-Lipschitz theorem for integral
equations (see e.g. Coppel 1965), that the sequence of successive approximations
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converges uniformly on [0, /2] to some function n°(x). Notice that
vx,y) >0, x€(0,L/2),—d <y<n), (5.8)

in view of the considerations by Constantin & Strauss (2010). In combination with
(2.8) and (3.13), this shows that at every fixed (x, n) with x € (0, L/2), the right-hand
side of (3.12) is a strictly increasing function of the parameter B. The above iterative
procedure yields

1 (x) < n2(x) <nfx), 0<x<L/2, (5.9)

if by < b, < B. This shows that there is a unique constant B for which the function n®
has zero mean. This value of B provides us with the surface wave profile. It can be
found by sampling values of b subject to (5.5). Owing to (5.9), we will have (n°) <0
as long as b < B, with n°(0) = n,. Since

) x (ImP) (', n°(x')) /
_ d¥, 0<x<L/2, (5.10
n (x) no + A b— gnb(x/) _ (Re m)(x/’ nb(x/)) =+ gd X / ( )

taking averages we can state the condition (nf) =0 equivalently as
2 /”2 < L) (Im P) (', n° () ay
Mo = + Y ’
"Ly 2) B—gnP(x) — ReP)(w, nP(x)) + gd

L
obtained by means of integration by parts. In practice, B can be computed by a
standard numerical procedure, such as Newton’s iterations (see e.g. Press et al. 2007).

(5.11)

6. Numerical example

We provide a numerical example of the reconstruction procedure when the pressure
at the bed is known numerically at some discrete sampling points. We do not
make any attempt to introduce sophisticated numerical techniques. On the contrary,
in order to illustrate the efficiency of our recovery procedure, we adopt a layman’s
straightforward basic numerical implementation of the analytical formulae given above.

We consider an exact surface wave with wave-height/depth ratio equal to 0.25 and
wavelength/depth ratio equal to 5 (i.e. ny/d =~ 0.25, kny =~ 0.314). This is thus a wave
of significant amplitude in rather deep water, for which the surface reconstruction
procedure is a priori difficult (the shallower the water, the easier the reconstruction
because of a higher signal/noise ratio). This exact solution is computed numerically
by solving the Euler equations (Fenton 1988) and the exact pressure at the bed is
thus obtained. We take 32 samples of the bottom pressure equally spaced over one
wavelength. These are the pressure ‘measurements’ we use for the reconstruction. We
suppose that p, g and P,,, are known parameters, the other parameters having to be
computed from the data. We define the accuracy of any computed quantity (i.e. the
number of exact digits) by

accuracy = —log, (||1 — approximated/exact”oo) , 6.1)

where, since we are working in double precision (about sixteen digits), accuracy values
higher than sixteen are meaningless and thus rounded down to sixteen.

An analytic approximation of the pressure at the bottom is obtained fitting, via
least-square minimization, a fifth-order Fourier polynomial among the pressure data at
the bed. (One could also fit the cnoidal profile (4.15) or any other relevant function.)
We thus determine accurately the water depth d (cf. the zeroth harmonic in table 1),
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Harmonics 0 1 2 3 4 5
Accuracy 16 145 132 125 11.6 9.8

TABLE 1. Accuracy of the harmonics of the fitted fifth-order Fourier polynomial.

as well as the pressure profile (figure 1a) and the main Fourier components (table 1,
figure 1b).

The reconstructed value of 5, is obtained via straightforward iterations of (3.11),
with ny = 0 as initial guess and the fitted fifth-order Fourier polynomial used for 3.
The machine precision is reached after 27 iterations with an exponential decay of
the error (linear convergence), as shown on figure 1(c). More sophisticated algorithms
(e.g. Newton iterations) would reach this precision with fewer iterations. The value of
no thus obtained has an accuracy of 4 digits, i.e. the reconstructed amplitude has a
relative error of 10~ compared to the exact amplitude. Fitting a higher-order Fourier
polynomial would give a higher accuracy, provided that there are enough sampled
data per period and that these data are precise enough so that the harmonics can be
determined with sufficient accuracy.

For a given approximation b of the Bernoulli constant B, the reconstruction of
n’(x) can be obtained as follows. We start with the (constant) initial guess ng x) =no
discretized over 1024 equally spaces nodes. This large number of nodes ensures
that the errors are due to the reconstruction procedure, and not to the quadrature
formula needed to iterate (5.7). From the nth discrete approximation nfj(x), the
integrand of (5.7) is computed by direct substitution and its mean value is subtracted.
An antiderivative with zero mean is then obtained via the fast Fourier transform,
thus yielding a new discrete intermediate approximation 7’ , ;2 (x). This intermediate

approximation is subsequently adjusted so that 7’ 41(0) = no exactly, i.e.

Moy (00 =101 () = b4y 2(0) + 70 (6.2)

The procedure is repeated until convergence, thus giving n°(x). Since (n®) # 0 if b # B,
it remains to determine the value of b = B for which (n®) = 0. This equation can be
solved for B using standard equation solvers. Here, we use the function fzero of the
MATLAB® software. The reconstructed free surface n®(x) thus obtained matches the
exact one (figure 1d) with high accuracy (figure le).

This simple example shows that it is possible to reconstruct the free surface
with high accuracy, even without using advanced numerical techniques. In practical
applications, the accuracy of the recovered surface will depend on the accuracy of the
experimental data.
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