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Abstract

In 2011, Rideau and Winskel introduced concurrent games on event
structures, generalizing prior work on causal formulations for games. In
this paper we give a detailed, self-contained and slightly updated account
of the results of Rideau and Winskel: a notion of pre-strategies playing on
event structures and a characterisation of those (called strategies) which
are preserved by composition with a copycat strategy, and the construc-
tion of a bicategory of these strategies. Furthermore, we prove that the
corresponding category has a compact closed structure, and hence forms
the basis for the semantics of concurrent higher-order computation.

1 Introduction

Games are ubiquitous in multiple subjects, such as economics, logic, or computer
science. They provide a valuable language in which one can model situations
where the evolution of a system is determined by the choices of several agents.
The agents are players exchanging moves according to rules that model the
situation at hand, and the evolution of the system follows from the sequence of
moves reflecting the decisions of the players. The outcome of the game might
be a payoff for each player, a successful refutation of a logical formula, a bug
exposed in a program — or, in some instances, we might just be interested
in the play itself as a description of the evolution of a system. In many of
those cases (and in this paper), the games have two players: Player (Proponent,
Eloise, Verifier, ...) defends the system, while Opponent (Abélard, Spoiler,
..) attacks it.

In their classical formulation, games are very sequential objects: the game
forms a tree whose nodes are the positions and branches describe the different
choices available to a player. The interaction between the players results in the
selection of a potentially infinite branch of the game tree. Most of the time,
each position belongs to exactly one player and the other has to wait until a
move is played. Oftentimes, the game also obeys the condition of alternation
where players are additionally required to play in turns.

Despite this sequential nature, one also would like to use games to represent
situations that are concurrent or distributed, eg. several systems running in
parallel, possibly with synchronizations or shared resources. Of course such



concurrent applications of games exist, but it is worth pointing out that in their
overwhelming majority, they represent concurrency indirectly via interleavings.
Rather than using a notion of game that gives justice to the distributed nature
of the system, they opt for a tree-based, inherently sequential representation
where a branch is a total ordering of the implicitly partially ordered evolution
of the system. In other words, concurrency is modeled by removing alternation,
but the basic tree-based metalanguage remains unquestioned. Of course, that
representation is accurrate to a large extent, and a significant and successful
body of work follows from that choice — but we believe nonetheless that a more
precise causal representation, if possible at all, should be preferred. A further
discussion on this point can be found in Section

However, causal representations of concurrent processes have a richer struc-
ture than trees, and require more elaborate tools to be dealt with properly —
it is not clear at first on what mathematical formalism one should rely for this
endeavour. The first causal foundations for concurrent games emerged in the
late nineties in the game semantics community: due to Abramsky and Mellies
[AM99], they were used to build a fully complete model of multiplicative addi-
tive linear logic (MALL). The idea was to switch from a tree to a domain of
positions, and formulate (deterministic) strategies as closure operators on this
domain. Later, Mellies and Mimram [MMO7] connected this position-based ap-
proach to a more traditional play-based formulation in the framework of asyn-
chronous games — in this setting (deterministic) strategies were manipulated
as traditional sets of plays, but with closure properties ensuring an underly-
ing causal order between moves. In parallel, Faggian and Piccollo [FP09] had
developped a setting where the (deterministic) strategies were manipulated ex-
plicitely as partial orders, rather than the partial order being recovered a poste-
riori. Finally, in 2011 Rideau and Winskel [RWTI] generalized all prior work by
proposing a setting where (non-deterministic) strategies are described as event
structures, benefiting from a whole body of prior work on event structure models
for concurrency.

The present paper aims to be a detailed and self-contained introduction to
this latter formulation of concurrent games: it covers, details and extends the
results of [RW11]. In Section [2] we start with a gentle introduction to the basic
ideas behind the representation of concurrent processes in event structures, with
an eye towards the application to games. In this setting, both games and “pre-
strategies” playing on them are event structures, one labelled by the other. But
pre-strategies are too expressive: the formalism allows them to impose unrea-
sonable constraints on the Opponent, or simply to behave in ways that are not
consistent with their interaction in an asynchronous distributed environment.
As an answer to that, strategies are introduced in Section[Blas the pre-strategies
that are preserved by their composition with an asynchronous forwarder, for-
malized as a copycat strategy. This provides an adequate notion of strategy on
an event structure, and a non-deterministic generalization of the earlier notions
of concurrent strategies mentioned above. We prove the main result of [RW11]:
that strategies are exactly the pre-strategies obeying conditions called receptiv-
ity and courtesy. But [RW11] also constructed a bicategory of concurrent games



and strategies between them, akin to Joyal’s category of Conway games [Joy77].
In Section ] we give a detailed proof of that result. Finally in Section Bl we show
that just as Joyal’s, our category is compact closed and can provide a basis for
games-based models of higher-order computation. In Section [6 we conclude.

Other related works. Many other notions of games for concurrency have
appeared in the literature.

In the verification community, “concurrent games” [dAHO00, [dAHKOQ7)] refer
to variations of Blackwell games [Mar98|: there is a tree (or a graph) of positions.
The game is played in round: at each round, both players select their behaviour
from a pool of possible actions. This selection is independent, and with no
information on the other player’s choice. The next position is decided as a
function of both player’s choices. With respect to our setting, the focus is
on enforcing the independence of the two players in each rounds, rather than
describing a general concurrent computation. In particular, plays are still totally
ordered. Games on event structures are closer to the games played on Zielonka
automata [GGMW13], which could be unfolded as event structures. However,
our focus is more on the unfoldings themselves, and on their compositional
structure.

Through that focus on compositionality, we are very close to the notions of
games for concurrency studied in the semantics community [Lai01l [GMOS§|. Just
as us, they form categories of games and strategies where concurrent processes
can be modeled. However, these models are based on interleavings rather than
partial orders: rather than opting for a primitive representation of concurrency
based on partial orders, they represent the execution of a concurrent process as
the non-deterministic choice of all its possible schedulings.

Finally, in a different direction, let us cite the playgrounds of Hirschowitz
et ol [HP12| [Hirl3], and the multi-token Gol of Dal Lago et ol [LEHY14].
Both formalisms aim at providing a non interleaving-based representation of
concurrent processes and of their execution. They should both relate to us, in
the sense that from their settings one could extract an event structure, which
is more abstract and syntax-independent.

2 Event structures, games and pre-strategies

In this section we introduce the basic notions underlying our development, from
event structures to pre-strategies playing on them.

2.1 Events for concurrent and distributed systems

Causality and independence. It is common to describe the evolution of
a process or system by listing its events, i.e. the observable actions occurring
through time. For instance, one could describe an interaction with a coffee
vending machine as a sequence:

coin - coffee



that we call a trace, where coin represents the action of inserting a coin in
the machine, and coffee represents the action of getting a coffee. In fact, the
input/output behaviour of the vending machine may be appropriately modelled
by the set:

Coffee = {¢, coin, coin - coffee}

where € is the empty sequence (and with possibly more iterations of the inter-
action if one is not interested in a one-use coffee vending machine). Nearby the
coffee machine, there is a tea machine modelled by:

.« / ./
Tea = {¢, coin’, coin’ - tea}

where we use coin’ to distinguish it from coin.

The two machines may be interacted with in parallel — one may for instance
pay for a coffee, then, while waiting for the machine to deliver, also pay for a
tea, and then obtain both. This behaviour may be represented as coin - coin’ -
coffee - tea. In fact, the system formed by both machines can be modelled as:

{¢, coin, coin - coin’, coin - coffee, coin - coin’ - coffee, coin - coffee - coin’,
coin - coin’ - tea, coin - coin’ - coffee - tea, coin - coin’ - tea - coffee,

coin - coffee - coin’ - tea, coin’, coin’ - coin, coin’ - tea, coin’ - coin - tea,
coin’ - tea - coin, coin’ - coin - tea - coffee, coin’ - coin - coffee,

coin’ - coin - coffee - tea, coin’ - tea - coin - coffee}

This follows the so-called interleaving-based approach to modeling concur-
rent and parallel systems: that two independent processes interacted with in
parallel should behave as the set of interleavings of the traces of the original
processes. This approach proved incredibly powerful and versatile, and gives
the basis for most developments on models of concurrency.

However, it suffers from some drawbacks. To cite two of them: (1) as should
appear clearly in our example, this representation gets exponentially bigger
than the original system — this is the so-called state explosion problem, which is
the main challenge in interleaving-based model-checking of concurrent systems,
(2) it is unreadable, and obfuscates the key information about which events
depend on which events. Instead of the large set of traces above, one would
like to manipulate only the partial order generating it displayed in Figure [I]
for which the set of traces above is the set of all linearizations. This idea is

coffee tea

coin coin’
Figure 1: Partial order semantics for the coffee and tea machines

far from new: advocated first by Petri, it is known as the partial order, or
causal, or truly concurrent approach to models of concurrency. Although causal



models yield smaller and more intuitive representations of the dynamics of a
concurrent process, they can be quite subtle to manipulate. Operations that
are straightforward for interleavings can be more mathematically involved to
carry out in a partially ordered setting.

Event structures. Our example above is purely deterministic: it appears
visibly in the partial order of Figure [Il that no irreversible choice is ever made
in the evolution of the system. Whatever order the events of a prefix of the
partial order of Figure [Il appear, they can be completed to the maximal set
{coin, coffee, coin’, tea}. In that sense the order in which these events appear
is irrelevant. To express non-determinism, one needs to enrich the partial order.
A natural way to do that is to follow Winskel [Win86] and add a consistency
relation on top of the partial order, as follows.

Definition 2.1 (Event structures). An event structure (es for short) is
(E,<g,Cong) where E is a set of events, <g is a partial order on E called
causality and Cong is a set of finite subsets of E called consistency, such
that:

Vee€ E, [e]={e' € E| e <g e} is finite,

Ve € E, {e} € Cong,

VX € Cong, VY C X, Y € Cong,

VX € Cong, Ve € X, Ve' <ge, XU{e'} € Cong

We will often omit the indices in <g, Cong if they are obvious from the context.

If X C E is in Con, then we say that it is consistent, and its events
are authorized to occur together. The states of an event structure E, called
configurations, are the finite sets * C E that are both consistent and down-
closed (i.e. for all e € z, for all ¢’ < e, then €' € x) — the set of configurations
on E is written € (F), and is partially ordered by inclusion. Configurations
with a maximal element are called prime configurations, they are those of
the form [e] for e € E. We will also use the notation [e) = [e] \ {e}. Between
configurations, the covering relation r—Cy means that y is obtained from
x by adding exactly one event: y is an atomic extension of z. We might

also write z—C to mean that e ¢ v and z U {e} € ¥(FE). Finally, when
drawing event structures, we will not represent the full partial order < but
the immediate causality generating it, defined as e — ¢’ whenever e < ¢
and for any e < €’ < ¢/, either e = €’ or €’ = ¢/. Two events e,e’ are said
compatible when {e, e’} € Cong and concurrent when they are compatible
and incomparable for <g.

Event structures can express non binary conflicting schemes, e.g. one can
have three events {1, 2,3} where consistent sets are defined to be those subsets
with less or equal than two elements: all events are pairwise compatible, but not
the three of them together. This extra generality makes for a smooth theory, but
in many examples consistency is equivalently described by an irreflexive binary
conflict relation f, that relates any two events that can not occur together,
i.e. X € Con iff for all e,e’ € X, =(e § €’). It follows then from the axioms



of event structures that if e ¢/ and ¢/ < e”, e § €” as well — we call this
conflict inherited. A conflict e # ¢’ that is not inherited is called minimal,
and represented as e ~ ¢’ . In order to alleviate the notation, when drawing
event structures with binary conflict we only represent minimal conflicts.

As an example, consider a (less popular) variant of the coffee machine above:
when a coin is inserted it will produce a tea or a coffee, nondeterministically.
The corresponding event structure can be represented as follow:

coffee tea

coin

Its configurations are {{0}, {coin}, {coin, coffee}, {coin,tea}}. We will
never get both tea and coffee even though both are enabled by coin.

Simple parallel composition. Whereas in traces the operation of putting
two systems in parallel without communication or interaction was the cause of a
combinatorial explosion, in event structures it only consists in putting two event
structures side by side. For instance, the event structure of Figure[Ilis obtained
in a transparent way from event structures for the coffee and tea machines. In
all generality:

Definition 2.2. Given two event structures E and F their simple parallel
composition (or just parallel composition for short) E || F is defined as the
event structure comprising:

e Events: {0} x EU{1} X F (tagged disjoint union of E and F),

e Causality: (i,c) <gr (j,¢') wheni=j=0andc<pc ori=j=1and
c<f 0/7

e Consistency defined as:

X € Congp iff {a] (0,a) € X} € Cong & {b| (1,b) € X} € Conp

Thus, E || F is £ and F put side-by-side with no causality or conflict
between them. As a result, configurations of F || F can be easily described
in terms of those of £ and F' — namely there is a canonical order-isomorphism
C(E | F)=%(F)x%€(F) (where configurations are ordered by inclusion). We
will denote by = || y € €(F || F) the configuration corresponding to (x,y) €
€ (E) x €(F). When denoting events of a parallel composition E; || Ea, we will
not always write the explicit injections (as in (0,€) or (1,€)). Instead, we will
often annotate or name the events so as to disambiguate the components they
belong to (as in eg. ey, e3).



Conjunctive causality and projection. In the setting of event structures
causality is conjunctive rather than disjunctive: states/configurations need to
be down-closed, so for an event to occur it is required that all of its dependencies
have occurred before. For instance, in the event structure of Figure [2] the user
needs to both insert a coin and press a button in order to get a drink (inserting
a coin and pressing both buttons results in a non-deterministic choice).

coffee t

eav\

coin SelectCoffee SelectTea

Figure 2: An event structure for a vending machine with selection

Plain event structures cannot express that an event may occur for two dis-
tinct, independent reasons — such as saying that coffee can be obtain through
a coin or through a debug menu. In event structures, expressing that would re-
quire two distinct events coffee and coffee’, with different causal histories. The
apparent limitation that each event has a unique, unambiguous causal history
enables us to perform the following projection operation:

Definition 2.3. If E is an event structure and V- C E is a subset of events,
then the projection E | V has V as events, and causality and consistency
directly inherited from V: if e1,ea € V then e1 <gv ez iff e1 <g ez, and for
X a finite subset of V, X € Cong,v iff X € Cong.

In other words, the projection F | V is obtained by considering the events
not in V' to be invisible: they occur silently, and are not observable anymore.
Because causality is conjunctive, for an event e € E | V there is never any
ambiguity as to what events caused it in E. Each configuration y € € (FE)
projects to yN'V € €(E | V) — reciprocally, any x € €(F | V) has a minimal
witness [z]p ={e' € E | ¢/ <g e € 2} € ¥(FE), yielding a bijection:

CELV) =2 {xeb(F)]|Vecxrmaximal, eV}
x — [z]g
ynv <~y

that preserves and reflects inclusion. This feature will be key for the hiding step
of the composition of strategies, introduced later.

Polarity and pre-strategies. We now move towards games. We consider
two-player games played between Player (considered as having positive polarity)
and Opponent (considered as having negative polarity). Each event is equipped
with a polarity, indicating which player has the responsibility to play it.

Definition 2.4. An event structure with polarities (esp for short) is an
event structure A along with a function

poly : A— {—,+}



associating to each event a polarity.

When introducing events of an esp A, we might annotate them in order to
indicate their polarity. For instance, in “let a= € A”, a ranges over all events
of A of negative polarity. For configurations z,y € €(A), we will write x C~ y
if z C y and all events in y \ = are negative; x CT y is defined dually. For a
game A, we will write AL for its dual, i.e. A with the same data, except for
the polarity which is reversed.

A game is just an esp. In a configuration x € ¥ (A) of a game, there might
be many events available. Unlike in most of the literature on games, it is not
the case here that any state x belongs to either Player or Opponent: there

might be :C—C and :C—C in which case both players have the possibility of
playing their moves concurrently. The game specifies the interface on which
the two players interact. For instance, one could model the interface of the
vending machine above by saying that Player plays for the software of the coffee
machine, Opponent plays for the user, and the game describes the observable
actions by which they interact on the physical device. Following this idea,
the game for the physical interface of the coffee machine would have events
{coin", SelectCoffee ™, SelectTea coffee™, tea™}, for causality the discrete
partial order (i.e. the order contains only the reflexive pairs), and all sets
consistent. In this example the game is a discrete partial order, but in general
it can feature non-trivial causality and consistency,

The strategy for Player would then describe the behaviour of the vending
machine on this interface, represented as an event structure as well (such as
Figure 2)). Both games and strategies are esps; they will nonetheless play very
different roles in the development. Following this idea, we now define pre-
strategies — strategies, defined later, will be subject to further conditions.

Definition 2.5. A pre-strategy on a game A is an esp S labelled by A, that
is, a function o : S — A which:

(1) Obeys the rules of the game (preserves configurations):
Vo € €(S), ox € €(A)

(2) Plays linearly (local injectivity):

Vs,s' €x € €(S), os =05 = s=34

(3) Preserves polarity:

Vs €S, poly(os) = polg(s)

As announced, a pre-strategy on A is an esp S along with a labeling function
o0 :S — A. The esp structure of A brings constraints, that the labeling function
has to respect. It is easy to check that the event structure of Figure 2] is a
pre-strategy on M, with the obvious map to M given by the labels. In the rest



of this paper, when drawing pre-strategies we will follow the presentation of
Figure[2 we will draw the event structure S, with events written as their image
through o.

In fact, the definition above is simply the notion of a map of event struc-
tures (1,2) (that additionally preserves polarities (3)), as defined by Winskel
in [Win86]. Such maps include the identity and are closed under composition,
so they form a category denoted by £ (£P in the presence of polarities).

We note in passing that simple parallel composition extends to esps by defin-
ing the polarity of A || B as pol 4 5(0,a) = pol,(a) and pol4g(1,b) = polg(b).
Two pre-strategies o : S — A and 7 : T — B playing respectively on A and
B can be combined to form a pre-strategy o || 7 : S || T — A || B defined by
(e || 7)(0,a) = (0,0(a)) and (o || 7)(1,b) = (1,7(b)). In fact with this definition,
simple parallel composition acts functorially on maps of es and esp and equip
the categories £ and EP with the structure of a symmetric monoidal category
(with the empty event structure 1 as unit).

At this point, the reader may find confusing the fact that although there
are polarities in games and pre-strategies, none of the conditions take those
into account. This is because the current definition is an intermediate step,
towards the notion of strategy introduced in SectionBlthat will take polarity into
account. Whereas pre-strategies axiomatize the polarity-agnostic description of
the evolution of a concurrent process on an interface, strategies will satisfy
polarity-specific constraints, e.g. a strategy cannot prevent its opponent from
playing a move that is enabled in the game. But for the remainder of this
section, polarities will be there only to set the stage for Section

2.2 Interaction of pre-strategies

Pre-strategies playing on A+ can be seen as counter-pre-strategies. Given a
pre-strategy o : S — A and a counter-pre-strategy 7 : T — AL, we proceed
to explain how they interact with each other. The result of their interaction
should be an event structure S AT labelled by the common interface A, i.e. a
map o AT : SAT — A without polarities. In fact, as pointed out in the previous
section, polarities do not matter as far as pre-strategies are concerned — we will
therefore ignore them for now.

As we will see, interaction is very close to the product of event structures
used in [Win86] to interpret the synchronising parallel composition of CCS (we
will see that it corresponds to a pullback in &).

Secured bijections. The interaction of o and 7 should follow the behaviour
that o and 7 agree on: in a given state, it should be ready to play ¢ € A
whenever ¢ and 7 are. In particular, this means that an event ¢ € A played by
o and 7 should be played in their interaction only after all the dependencies in
S and T are satisfied. For instance the interaction of the following two event
structures labelled on the interface A = a b ¢ (consisting in three concurrent
events)



—p0
> 0

(o) (1)

should give rise to the interaction o A 7:
/ CV\
a

(e AT)

b

with immediate causal links imported from both S and 7. Similarly, a set of
events should be consistent in the interaction when the corresponding projec-
tions in S and T are.

At this point, one is tempted to define the events of S AT as synchronized
events: pairs (s,t) € S x T such that os = 7¢t. This works correctly when
the maps o and 7 are injective but fails in general. For instance, consider the
interaction of the two labelled event structures:

i

(@) (1)

Here, o has two copies a and a’ of the event a € A (by local injectivity, the
two copies must be in conflict) and 7 plays b after a. However, because o has
two ways of playing a, the interaction has two possible causal histories for b:
either after (a,a) € S x T or after (a/,a) € S x T. Since in event structures,
each event comes with a unique causal history, those two histories for b must
correspond to two different events in S AT, which should therefore look like:

b b
t1

a/

We see that S AT has four events, whereas there are only three possible
synchronized pairs: (a,a), (a’,a) and (b,b) — thus events of S AT will be more
than just pairs. However, we observe in this example that configurations of
S AT are in one-to-one correspondence with synchronized configurations: pairs
(z,y) € €(S)x€(T) such that ox = 7y. By local injectivity, in such a situation
o and 7 induce a bijection ¢, : © >~ ox = Ty ~ y that is not order preserving
in general. Note that its graph is a set of synchronized (paired) events as above.

10



Such bijections will be used to represent configurations of the interaction.
But as configurations of an event structure (yet to be defined), the graph of
these bijections should be ordered as well. As shown above, the order on S AT
should be inherited from that of S and T. However, the transitive closure of
the relation induced by the orders of S and T is, in general, not an order. For
instance in the following picture

Drug Money
Money Drug

(o) (7)

there is a deadlock: o (the dealer) waits for the money to be delivered before
taking out the drug where 7 (the buyer) waits for the drug before showing the
dollars. Their interaction should be empty as in the empty configuration there
is no common event that ¢ and 7 are both ready to play. This is reflected by
the fact that on the bijection {(Money, Money), (Drug, Drug)} the preorder
induced by S and T is not an order: it has a loop. To eliminate such loops, we
introduce secured bijections:

Definition 2.6 (Secured bijection). A secured bijection between two orders
(q,<q) and (¢',<y) is a bijection ¢ : ¢ ~ ¢ such that the reflexive and transitive
closure of the following relation on the graph of ¢ is an order:

(a,b) <1 (a’,b') when a<ga orb<gyV

Secured bijections need not preserve the order but they do not contradict it:
if a <4 b then b £4 @a as this would constitute a cycle.

Equivalently, secured bijections are those which can be reached from the
empty bijection by successive additions of pairs, remaining bijections between
configurations — a property akin to configurations of event structures, which can
be reached from the empty configuration by successive additions of events.

Secured bijections can be used to give a very concise description of the
desired states of S AT write %577 for the following set, ordered by inclusion.

Byr={p|le:z L ox =Ty © y is secured, with 2 € €(5),y € €(T)}.

Since secured bijections are by definition equipped with a canonical order,
the elements of %5°7 can be seen as ordered sets.

Immediate causal links in a secured bijection are related to those of the
underlying orders:

Lemma 2.7. Let ¢ : q >~ ¢ be a secured bijection. If we have (a,b) —, (a’, 1)
then either a —4 a’ or b —4 b'.

Proof. From (a,b) —, (a’,b") we deduce (a,b) < (a’,V’) hence either a <, o’
or b <y b'. Assume for instance a <, a/. If we do not have a —, a’ then

there exists ag € ¢ such that a < a9 < a’. Then (ag,pap) € ¢ and we have
(a,b) <4 (ag, pap) <, (a/,b") contradicting the hypothesis. O

11



Prime secured bijections. The order (#5°,C) is (up to isomorphism) the
order of configurations of the event structure we are looking for. We can now
reconstruct an event structure whose order of configurations matches this order:
events are identified as the prime secured bijections, ie. those with a top syn-
chronized event (s,t). In other words, for each synchronized pair (s, t), there is
one such prime secured bijection for each consistent causal history reaching it.
In particular, if there is none (because of a cycle), it would not appear in the

interaction. This forms an event structure:

Definition 2.8 (Interaction of pre-strategies). Let o : S - A and 7: T — A
be maps of event structures. We define the event structure S AT as follows:

e Events: those elements of 5% that have a top event,
e Causality: inclusion of graphs,

e Cousistency: a finite set X of (graphs of ) secured bijections is consistent
when its union is still (the graph of) a secured bijection in B}%.

It is routine to check that S AT is an event structure such that €(S AT) is
order-isomorphic to %577

Lemma 2.9. For each configuration x € €(S AT), there exists a secured bijec-
tion @y : xg >~ xp € B3 such that

o,T

Qg —> T
(5:8) = [(5:8)]pn

~

is an order-isomorphism ¢, = x, where [(s,t)], denotes the down-closure of
(s,t) inside the ordered set .. Moreover, the mapping x — @, defines an order
isomorphism € (S NT) = B35

Proof. Let € €(S AT). By definition of consistency in S AT, Uz is the graph
of a secured bijection ¢, € #5°7. Any element of x is a secured bijection with
a maximal element (s,t), hence is [(s,t)],,. Thus, [(s,%)],, — (s,t) defines an
order-isomorphism = = ¢,. This yields a map €' (S AT) — %5°¢. The converse
maps a secured bijection ¢ to the set of elements of S A T included in ¢. O

By local injectivity of o and 7, a secured bijection ¢ : & ~ y is entirely de-
termined by = and y. Therefore, €(S AT) is also order-isomorphic to the set of
pairs (x,y) € €(S) x €(T) such that cx = 7y and such that the induced bijec-
tion between x and y is secured, partially ordered by componentwise inclusion
— we will use this description later on in the proofs.

The interaction pullback. Events of S AT have the form ¢, , with a top
element (s,t). The mappings II; : ¢z, — s and Iy : ¢, , — t induce maps of
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event structures SAT — S and S AT — T that make the following diagram
commute:
SANT

Slzl/ QT
N,

Writing ; for the (set-theoretic) projections, by Lemma [Z0] for every z €
€ (S NT) we have
T, =1z

as m(s,t) = s = II1[(s, t)],, and similarly for m» and II5. Those maps further-
more satisfy a universal property making formal the intuition of a “generalized
intersection”: (S A T,1I;,1I5) is the pullback of 0 : S — A and 7 : T — A,
meaning that that the above diagram commutes and for each maps of event
structures a: X — S and B : X — T satisfying:

X
(a:)

Y
N
v

N
~

1 2

/X
N4

A

there is a unique map {(a,8) : X — S AT such that II; o (o, 8) = « and
H2 o <Oé, B> = ﬁ

To construct {(a, 3), we will need the following lemma stating that maps of
event structures reflect the causal order:

Lemma 2.10. Let f : A — B be a map of event structures and a,b € A such
that {a, b} is consistent. If f(a) < f(b) then a <b.

Proof. Since f is a map of event structures, f[b] is down-closed as a configuration
of B. Since f(a) < f(b) € f[b] by hypothesis, it follows that f(a) € f[b] and
thus f(a) = f(c) for some ¢ < b. Since {a,b} is consistent so is {a,b, c} and
local injectivity implies a = ¢ < b as desired. O

We can now prove that our construction yields a pullback:

Lemma 2.11 (The interaction is a pullback). Leto : S — A and7:T — A be
maps of event structures. The triple (S AT, I11,113) is a pullback for o and 7.

Proof. We have already noticed that the inner square commutes.
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Ezistence of («, 3): Assume we have an event structure X with two maps
a:X — Sand f: X — T such that c oa =70 3. Let a € X. The bijection:

0o ={(ad,8d") | d <x a}:ala] ~ Bla

is secured as a consequence of Lemma 210, as a cycle in it would be reflected
to X. Define (o, 8)(a) = [(a(a), B(a))]s. to be the secured bijection obtained
as the down-closure of (a(a),3(a)) inside the canonical order on the graph of
Yq: it has a maximal event by construction, and thus is an event of S A T.
This function defines a map of event structures that makes the two triangles
commute.

Uniqueness of {«, 8): Assume we have another map ¢ : X — S AT making
the two triangles commute. Let z € %(X). Its image through ¢ and («, 3)
are (under the order-isomorphism ¢'(S A T) = %5°7) secured bijections ¢y
and ¢, . By definition we have x = m¢,, = II;((o, 8)2) = az. Likewise,
' =az=uxand y =y thus ¢, = @z hence (o, ) = ¢ as desired. O

In the proof of uniqueness, we only compared the maps by their action on
configurations and deduced they were equal on events. This is justified by the
following simple fact, that will be useful later on:

Lemma 2.12. Let f,g: A — B be parallel maps of event structures such that
for all configuration x € €(A) we have fx = gz. Then f =g.

Proof. Let a € A. Write [a) for the configuration [a] \ {a}. By hypothesis we
have fla] = gla] and fla) = ga) as sets, thus {f(a)} = fla]\ fla) = gla]\ gla) =
{9(a)} hence f(a) = g(a). O

2.3 Composition of pre-strategies

Building on our understanding of the interaction of pre-strategies as a pullback,
we can now proceed to define the notion of composition, which is of critical
importance in particular for the application of our games to semantics of pro-
gramming languages. For that we need to define what is a pre-strategy o from
game A to game B, and given also 7 from B to C, what is 7 ® ¢ from A to C.

Following Joyal [Joy77], we will define a pre-strategy from A to B to be
simply a pre-strategy on the composite game A+ || B. Let us show how to
compose such pre-strategies. From o : S — A+ || Band 7: T — Bt || C, we
need to build a pre-strategy 7 ® o on the game A* || C. Note that from such
a notion of composition we can recover a notion of application when A is the
empty event structure 1. As usual in game semantics, composition is defined in
two steps: firstly, we construct the interaction of the two strategies as an event
structure where the two strategies communicate freely. Secondly, the internal
synchronisation steps are hidden away. We will now detail these two steps.

To illustrate them, let B be the game tt*™ ~ ££T of booleans (two conflict-
ing positive events). Consider the following pre-strategies o and 7 respectively
playing on 1+ || B; and B || Ba:
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££5 ttd

1 t

tt] £ tt] ~ ££]

(o) ()

The pre-strategy o performs a nondeterministic choice: it can either play true
or false. Likewise, 7 computes the negation of a boolean: when Opponent plays
true or false on B; it answers the negation of that in Bs.

Interaction. Ignoring the polarities, o and 7 are maps of event structures
S — A| Band T — B || C. They do not play on the same game so it is not
possible to make them interact directly. To solve this problem we pad them in
order to get pre-strategies on A || B || C.

Thus we consider o || id¢g : S ||C = A || B|| Candida | 7: A || T —
A|| B || C. Since the identity map on any A accepts all possible behaviour
appearing in A, only o and 7 give constraints on A and C' respectively. In our
example, the interaction is:

ffo tto

tty

ffy

(o lide) A (ida || 7)

Note that events sent to B do not have a clear polarity since o and 7 disagree
— but these ones will be hidden. This interaction will be written T®oc : T®S —
A || B | C. (Note the change of order from (¢ || id¢) A (id4 || 7) to T ® o, which
reflects the standard notation for composition. In particular, when A = C =1,
o AT is the same as 7 ® 0.)

Hiding. From7®0:T®S — A || B || C we need to obtain a map to A || C.
For an event p € T ® S we say that it is visible if it maps to A or C, invisible
otherwise. Let us write V' for the set of visible events of T'® S.

We now obtain the composition through hiding to visible events: formally,
ToOS=T®S)|V. The obvious function 7 © o : T©® S — A || C defines a
map of event structures. Polarities on T'® S are inherited from those of A+ || C
to make 7 ® o a pre-strategy on A+ || C. In our example this yields the pre-
strategy on B (notice the inheritance of conflict — the conflict between £f5 and
tte becomes minimal after hiding):

£ e 1]

TOO
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We get back the original nondeterministic boolean — the non-deterministic
boolean is invariant under negation. But in what sense is it the same, exactly?

Isomorphisms of pre-strategies. They are not equal (set-theoretically) be-
cause the underlying sets are not the same, but they are isomorphic:

Definition 2.13 (Isomorphism of pre-strategies). Leto: S — Aand7:T — A
be two pre-strategies on a common game A. They are isomorphic when there
s an isomorphism of event structures ¢ : S =T commuting with the action on
the game:

In this case, we write ¢ : 0 = 1 or simply o = 7.

Isomorphism is the most precise equivalence that makes sense on pre-strategies:
two isomorphic pre-strategies have the same intensional behaviour.

Constructing isomorphisms at the level of events can be sometimes cumber-
some especially in the case when the event structures are generated from an
order of configurations as for the interaction (Section [Z2]). Fortunately, order-
isomorphisms between configurations of event structures induce isomorphisms
on the event structures.

Lemma 2.14. Let A and B be event structures. An order-isomorphism o :

€ (A) =2 €(B) induces an isomorphism ¢ : A =2 B satisfying ¢(x) = ¢(z) for
every configuration x € €(A).

Proof. Since it is an order-isomorphism, ¢ preserves the covering relation on
configurations.

As a consequence, ¢ preserves commuting squares. Indeed if we have a
commuting square of the form:

Y1 Lo %
ooy
L

Since ¢ preserves —C, its image has the form:

e(y1) i e(z)
oY oY

elx) 2 o(y2)
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But then, o) = a}, and b} = b}. Indeed otherwise we would have b} = a), so
©(y1) = ¢(y2), hence y; = ya, contradiction.

Now, let a € A. We have [a)—aC [a] thus there must exist a unique b € B

b
such that ¢([a))—C ¢([a]). Writing ¢(a) = b, this makes a function A — B.
By induction on z, we prove that gz = @z. If x is empty then ¢ = @) since
@ preserves minimum elements.

b
If 20— y, then pr—C @y. First, we remark that if we have a square like:

T vy pxr - py
Y Y Y Y
Y Y Y Y
[a) “c [a] pla) 2% ola]

Since the diagram on the left commutes, it follows that ¢(a) = b by iterating
the fact that ¢ preserves commuting squares, hence py = pxU{b} = paxU{pa} =
py whose direct image of a configuration 2 € €(A) is pz. This entails that ¢
is a map of event structures. From ¢~ follows the existence of an inverse to ¢
hence A and B are isomorphic event structures. o

It will follow from the developments of Section Ml that up to this notion of
isomorphism of prestrategies, composition is associative:

Proposition 2.15. Leto:S — A+ | B,7: T — Bt ||C andp:U — C*+ || D
be prestrategies. Then, there is an isomorphism o 7, : (UOT)0S — UO(TOS)
making the following diagram commute:

Ao, 7,p

UeT) oS Uo(ToS)

(m %)

A+ | D
Proof. The isomorphism is constructed in Section O

The next section details how to identify well-behaved pre-strategies by en-
forcing the invariance under composition with a well-chosen idempotent acting
as a forwarder.

3 Strategies on event structures
As previously hinted at, pre-strategies currently ignore polarity, and hence have

an unreasonable expressive power: they can for instance constrain the order in
which Opponent plays his moves, or even prevent him from playing them at all.
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One guiding principle for the notion of strategy is that there should be a
copycat strategy (an asynchronous forwarder, whose behaviour is solely to copy
the other player’s actions), which is neutral for composition against strategies.
This is of course key to the application of our setting in denotational semantics,
which rely on categorical formalisms, but we argue that there is a more down-to-
earth motivation for such a definition: inherent to an asynchronous, distributed
world is the concept of latency. One player might decide when he plays a certain
event, but he will never be able to constrain when its opponent will receive it —
such artifacts allowed by the notion of pre-strategy disappear after composition
with a copycat strategy.

Therefore, in this section we will define the copycat (pre)strategy, and then
characterise the strategies: those pre-strategies invariant under their composi-
tion with copycat. We provide examples of pre-strategies that do not behave
well in presence of latency and give two criteria (courtesy and receptivity) that
are proved necessary and sufficient for a pre-strategy to be a strategy (Theorem

B.16).

3.1 Copycat and its action on strategies

On At || A, each move of A appears twice (with dual polarities). The copycat
pre-strategy waits for a negative occurrence to be played and then plays the cor-
responding positive move. In formal terms, it has the causality (1—1,a) — (i, a)
for every positive move (i,a) of A+ || A. Note that this behaviour corresponds
to that of the usual copycat strategy in game semantics.

For instance, on the game W = Click~ Done™ of an interface where Player
(the program) can signal it has finished a long computation or Opponent (the
user) can click on the screen, the copycat strategy looks like:

Wi Wo

TClickf %}—lrcfici;jl

I [ I I
Done; ———+Done;
L - L - <
(@w)

Copycat forwards the negative events from one side to the other: acting as
the program on the right and as the user on the left. Even if copycat is a pre-
strategy from W to itself, it does not entail a left-to-right flow of information as
can be seen for the event Click, rather from negative to positive. This general
construction yields a pre-strategy playing on A || A for any game A.

Definition 3.1 (The copycat pre-strategy). Let A be a game. Define © 4 to be
the following event structures:

e Events: those of A+ || A,
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e Causality: the transitive closure of
SAJ-HA U{((l - iua)v (7’7@)) | (iua)+ € AJ_ || A}
(which is a partial order),

e Consistency: X is consistent in © 4 iff its down-closure [X] ={a € ©4 |
b e X,a <g, b} is consistent in AL || A.

This makes an event structure and the identity map is a pre-strategyca : €4 —
AL A

Immediate causal links in copycat have a very specific shape:

Lemma 3.2. We have that (i,a) —q, (j,a’) if and only if one of the two
following conditions is met:

1. Either i = j, a —4 o' and either (i,a) is positive in ©4 or (j,a') is
negative in C4.

2. Ori#jand a=ad and (i,a) € €4 is negative.

Proof. Tt is clear that both conditions imply (i,a) —¢, (j,a’). Conversely, we
know <, is generated by — 414 U{((i,a),(1 —i,a) | (i,a)” € €a}. This
means that (i,a) — (j,a’) implies either i # j, a = o’ and (i,a)” € €4 (as
desired) or ¢ = j and @ —4 a’. In this case, if (i,a) is negative and (j,a’) is
positive, we have (i,a) »¢, (1 —14,a) <g, (1—1,a) =g, (i,a') contradicting
(i,a) =g, (j,a’) hence (i,a) is positive. O

Copycat acts on pre-strategies on A via composition: o — €4 © o. This
action adds latency to pre-strategies: whenever the pre-strategy plays a positive
move it has to be forwarded by copycat before being visible. We can now define
strategies:

Definition 3.3 (Strategy). A strategy on a game A is a pre-strategyo : S — A
such that g ©® o = 0.

Let us try to understand this definition through examples. Consider first
the composition cw © cw with A =W, B =W, and C = W3:

Wi Wy W3
o T — - T
| Clickf?—rClickgé—‘ Click;

I I
| I I I I I
Done; —+Done; —+Done;
(I S S

(ew ® ew)

Hiding events in Wy yields a pre-strategy isomorphic to @w. The latency
can be observed: immediate causal links of the form — — + get delayed in the
interaction to — — . — + where , denotes an invisible event of the interaction.
After hiding, the effect disappears here but it is not the case in general. Two
situations can appear, calling for two conditions.
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Courtesy. Assume we have the pre-strategy o with event structure Done™ —
Click™ on W that forces the user to wait for the computation to be over before
allowing them to click. Computing the interaction cw ® o with A =, B = W,
and C' = Wy yields:

Wy Wo

— — - T
lfDoneljl—%Donegr |
I I I I
I I I I
I A | | ey — |
 Clicky —— |_Cll(%{2 _

After hiding of B = Wy, @w ® ¢ has event structure Click, Compute; .
There is no causal link anymore because in the interaction the two events are
concurrent. Copycat will allow the user to Click without waiting for ¢’s con-
straint: there is no way for o to impose this particular order of moves. In other
terms the causal link is not stable under the latency added by copycat.

As a consequence, for a pre-strategy to be invariant under the action of
copycat it must not have immediate causal links of the form + — — that were
not already present in the game. In our setting, playing a move is similar to
sending a packet whose sender (Player or Opponent) is given by the polarity.
This condition means that unless the protocol (the game) specifies it, there is
no way to force Opponent to wait for a Player message before sending their
message.

A similar reasoning can be made for immediate causal links — — — (one
cannot control the order in which Opponent sends out messages) and + — +
(latency can change the order in which independent messages arrive).

A pre-strategy respecting these constraints will be called courteous:

Definition 3.4 (Courtesy). A pre-strategy o : S — A is courteous when for
all s,8" € S such that s — s’ and (pol(s),pol(s')) # (—,+), then gs — os’.

Receptivity. Consider the game Y = o~ comprising a single negative event,
and the two pre-strategies ¢ and 7 on this game, with respective event structures
() (no moves played by o) and 0o~ ~ o~ (7 acknowledges the unique negative
event in two non-deterministic different ways).

Their respective interactions with copycat on A give (with A =, B = Y,
and C = Ys):
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Yl Yg Yl Y2

(ey ® o) (ey ®7)

After hiding, only o is left in both cases. The problem with these pre-
strategies is that they either duplicate or ignore a negative event — yet as we have
seen, copycat acknowledges available negative moves first without depending on
the pre-strategy’s behaviour. Strategies must therefore have the same behaviour
regarding the negative events as copycat: to accept them as soon as they are
enabled in the current state of the game, and play them once. Such pre-strategies
will be called receptive:

Definition 3.5 (Receptivity). A pre-strategy o : S — A is receptive when

a
for each configuration x € €(S) such that cx—C there exists a unique s € S

(necessarily negative) such that 2—C and os = a.

For readers familiar with game semantics, it might be helpful to note that in
standard games models receptivity is always present in one way or another. It is
explicit and named contingent completeness in [HOO00], but most of the time it is
hard-wired by asking that strategies contain only plays of even length (Opponent
extensions being always present, they bring no additional information).

3.2 The characterisation of strategies

The rest of the section is dedicated to proving that the notion of strategy is
exactly captured by courtesy and receptivity. We start by giving a high-level
description of the proof.

According to Definition B3] o : S — A is a strategy if €4 ® 0 & . By
Lemma 2.14] that means that there is a order-isomorphism

C(S)2E(CL095)

commuting with the projection to A. In order to characterise the existence
of such an isomorphism, we need to study configurations of ©4 ® S for any
pre-strategy o : S — A. This will be done is several steps.

Decomposing interactions. Taking z € €(C4 ® S), we have its minimal
witness [z] € ¥(C4®S). By Lemma[2.90] [z] corresponds to a secured bijection:

<p[z]:x2y
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with @ = 25 || 24 € €(S | A) and y = yar || ya € F(C4) such that
ocxs = yar and T4 = y, — in fact, as remarked below Lemma 2.9 by local
injectivity, o) (and so [2]) is determined by such x and y, i.e., by x5 and ya.

We write U([z]) = (zs,y4) € €(S) x €(A) for this pair, which satisfies that
xs € €(S) and oxg || ya € €(C4). Reciprocally (by Lemma [2.9) any such
pair induces a configuration of © 4 ® S provided the corresponding bijection is
secured — but that is always the case, as we will see; so ¥ is an iso. We will
also characterise the such pairs which, through ¥, correspond to an interaction
whose maximal elements are visible (i.e. a minimal witness of a configuration
of €4 ®S). This will yield a complete description of configurations of €4 ® S
in terms of certain pairs of configurations (x,y) € €(S) x € (A) (step #1).

For z € €(€C4 ® S) and ¥(z) = (xs,74), one may regard x4 as a not
completely updated version of o xg: some negative events of x4 may not have
made their way to o xg, and reciprocally.

Example 3.6. Consider the pre-strategy o playing on Wy || Wa, with event

structure Done; — Doney . The following diagram represents an interaction

z2€C(Ca®S) of o with copycal.

(Wi 1 Wy) (W, I Ws)
‘FDBrfef ! ‘r o 7: :_Cfich_: rD;n;ﬂ
\ \D % |
L__ | ones L L _ 1

Here, we have ¥(z) = ({Done], Donej }, {Click; , Donej }).

In the example above, we observe two phenomena: the event Click; is
played on the right hand side but not forwarded to the left hand side, and the
event Done] is played on the left hand side but not forwarded to the right hand
side. In general, with ¥(z) = (zg,z4), the constraint that cxg || x4 € €(C4)
means that o xg has less negative events and more positive events than x 4, i.e.

+

xAQ_xAﬁ(st)g oxs

This relation D~ C* y is in fact a partial order on €' (A) called the Scott
order [Winl3b], which will yield (step #2) a characterisation of configurations
of copycat as pairs (zg,24) € €(S) x €(A) such that x4 C4 o xg.

To summarise, after steps #1 and #2, we will have achieved an equivalent
description of interactions z € € (C 4 ®.S) as the data of (zg,z4) € €(S)x € (A)
such that x4 C4 o xg, i.e. as diagrams:

s

Ia

ra LCa oxg
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whose projection to the game viaca ® 0 : Co®S — A || Ais o xg || 24, where
only x4 will be visible after hiding. We now try to produce an isomorphism
between configurations of © 4 ® S that are minimal witnesses of configurations
of €4 © S (those whose maximal events are visible), and configurations of S.
We will build transformations of configurations in the two directions.

The isomorphism. Constructing the left-to-right part of the isomorphism
Csps®S ~ S, we need to associate to any representation of an interaction
(xs,z4) € F(S) x €(A) as above, some xy € F(S) mapping to x4 via o.
Diagrammatically:

Ts = Ja'y Ts

[ Fd

ra Ea oxg x4 Ca ozxg

In fact, it will turn out that 2’y Cg g, and (for the correspondence to be an
iso) that its choice is unique. In other words, we will extract zs by proving that
strategies are discrete fibrations, as in Definition 311l (step #3).

We now focus on the right-to-left part of the construction. From z € €(5),
we need to provide some configuration of €4 ® S; so we need to provide a
witness in €(C4 ® S). As we have seen, via U we are looking for a pair
(xs,z4) such that z4 T4 oxg. Note that x4 is forced by the requirement
that o2 = x4. From that it seems that the pair (x,24) does the trick: we
do indeed have z = U1 (z,24) € € (C4 ® S) — and restricting it to its visible
events yields the desired configuration of © 4 ® S. However, it will be useful in
proving the isomorphism to have the minimal interaction — the minimal witness
— corresponding to this configuration of the composition through hiding. The
interaction W~ (x,z4) is not always minimal:

Example 3.7. Consider o : S — W with S comprising only one event s mapped
to Click; . Following the paragraph above, its configuration {s} leads to an
interaction with copycat corresponding to ({s},{Click] }), represented as:

W I W
Click;<+—— Click;

Disposing of the left hand side Clicky yields a smaller interaction witnessing
the same configuration of the composition, as it is maximal and not visible.

In fact, for x € €(S) there is a unique x* C z such that (z*, 0 x) yields the
same configuration of the composition as (x,c x), and such that the maximal
events of the represented interaction are all visible. As we will see * is obtained
from x as above, by removing maximal negative events (step #4). From this
uniqueness property and the discrete fibration property, it follows that these
constructions are inverses of each other.
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Necessity. From the above, we know that strategies, as discrete fibrations,
compose well with copycat. It remains to show the converse: that strategies
which compose well with copycat are discrete fibrations. In other words, we
need to show that strategies of the form €4 ® o are always discrete fibrations.
That will be a direct verification, once we have charaterised the Scott order on
C4 O S (step #5).

3.2.1 Step #1: Composition witnesses as pairs

We start by showing that there are no possible causal loops in an interaction
with copycat, so that such interactions are entirely characterised by matching
pairs of configurations. In fact we prove a slight generalisation of that.

Lemma 3.8 (Deadlock-free lemma). Let 7 : T — AL || B be a pre-strateqy such
that if t <t' and both t and t' are sent by T to A, then 7t < 7t'. Then given a
pre-strategy o : S — A, and configurations x of S and y of T with cx = TyN A,
the bijection x || (Ty N B) ~ y is secured.

As a consequence, we have an order isomorphism:

C(T®S)={(x,y) €e€(S)xE(T)|ox=71yn A}

Proof. Assume that the bijection is not secured. Without loss of generality,
there is a causal loop of the form (vy,¢1) < ... < (van, tan) such that tg; < t2;41
and vg;11 < vV2;42 and ta, < t1. Note that v; € S || B for every i.

Assume that ve;+1 € B. Then vg;42 € B and we have that 7(to; 1) =
V2i41 S V2i4+2 = T(t2i+2) hence by Lemmam it follows that t2i+1 S t2i+2. If
the only two steps of the causal loop were (va;t1,t2i+1) and (va;, s2;), we have
a loop in T and a contradiction. Otherwise, we can remove the steps 2¢ + 1 and
2i + 2 and keep a causal loop. Removing them, if there is a loop of length one
remaining, then we have a direct contradiction (ie. t; < ¢1). Otherwise without
loss of generality we can assume v; € S for every . In this case, by hypothesis
on T we have that to9; < to;41 implies that ove; = Tty < Tte;41 = oviy1. By
Lemma 2.10 again, it follows that v; < ... < v; — a contradiction.

This establishes that the bijection 1nduced by any pair of synchronized con-
figurations (w,y) is secured and thus is a configuration of the interaction. We
conclude by the sequence of order-isos:

(T ®S)={p:w~y secured |

we E(S| B),ye € (T) such that 7y = (o || B) w}
{p:w~y|lweF (S| B),y€€(T)such that 7y = (¢ || B) w}
{(lzy) eC(S|B)xET)|ox|z=ry}
{(z,y) € €(S) x€(T) | ox = Ty N A} O

1R

Il

Let 0 : S — A be pre-strategy. The previous lemma, instantiated with
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T = €4, gives an order-isomorphism:

U, : G (Ca®S) = {(z,51 || y2) €C(S) x C(Ca) | ox =y1}
= {(2,y) € €(S) xC(A) |ox ||y € €(Ca)}

Every such pair represents an interaction, which gives through hiding a con-
figuration of ©4 ® S. However, many interactions correspond to the same
configuration of the composition. In fact, as we have seen in Section [Z.3] con-
figurations of ©4 ® S bijectively correspond to interactions in ©4 ® S whose
maximal events are visible. We now characterise them.

Lemma 3.9. Let p: x| y ~ ox || y be a secured bijection corresponding to a
configuration of ©4 ® S. The following are equivalent:

(i) All mazimal events of ¢ are visible
(i) Every mazimal event s of x is positive and os € y.
Moreover, in this case, if o is courteous, we have ox C~ y.

Proof. (i) = (ii). Let s € x be a maximal event. The event ¢ = ((0, s), (0,05))
is not visible in ¢ hence it is not maximal: there exists ¢’ € ¢ such that ¢ —, ¢’.
By Lemma 2.7, there are two cases:

e Either mic — g4 mi, ie. ¢/ = ((0,5),(0,05")) and s —, s’: this is absurd
as s is maximal in x.

e Or mc —¢, mc: by Lemma B2 there are two possibilities. Either
d =((0,5),(0,08")) (absurd, as it would entail os — o5’ and s < s’ by
Lemma [ZT0l contradicting maximality), or ¢/ = ((1,0s), (1,08)).

This means that (1, 0s) is positive in © 4, ie. s is positive, and moreover
(1,0s8) € oz ||y so os € y.

(i) = (i). Let ¢ be a maximal event of ¢ and assume it is not visible. It is
then of the form ¢ = ((0, s), (0, 05)). If s =5 s’ then ¢ <, ((0, '), (0, 0s")) which
is absurd so s must be maximal in x. By assumption s is positive and os € y.
Then we have (0,05) —c, (1,08) so ¢ <, ((1,08),(1,0s)) which contradicts
the maximality of c.

Finally, assume ¢ is courteous. We prove that maximal events of ox are
included in y. Take os € oz a maximal event. If s is negative then (0,0 s)
is positive in A+ || A. Therefore we have (1,0s) <q, (0,05). Since oz || y €
€ (C4), we are done. Otherwise, if s is positive it has to be maximal in 2: indeed
if we had sT —, s', by courtesy os —»,, os’ would follow contradicting the
maximality of os. Then we can conclude by assumption: os € y as desired. [

Summarizing step #1, we now know that configurations of ©4 ® S corre-
spond, in an order-preserving and order-reflecting way, to pairs of configurations
(z,y) € €(S) x €(A), such that oz || y € €(C4), and such that the maximal
events of x are positive and also appear in y.

Now, we study the requirement that oz || y € €(C4).
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3.2.2 Step #2: The Scott order

As observed before, for z,y € €(A), y || v € €(C4) whenever y has more
positive events and less negative events than x. More precisely:

Lemma 3.10 (Scott order). Let z,y € €(A). The following are equivalent:
(1) y |z eC(Ca)

(i) © O~ (xNy) CT y (where v C* y means that x C y and pol(y \ ) C {+}
and similarly for x O~ y)

(iii) there exists z € € (A) such that x 2~ z CT y.
In this case we write x T 4 y: this is an order called the Scott order of A.

Proof. (i) = (ii). We show x Ny C* y; the other inclusion is similar. Let
a~ € y, we must show it is in . Since (0,a) € A+ || A is positive, we have
(1,a) <g, (0,a). The down-closure of y || « implies that (1,a) €y ||z as a € y.
This exactly means that a € x as desired.

(ii) = (iii). clear.

(iii) = (i). Assume we have x O~ z Ct y. The set y || « is clearly consistent
so we need only prove it is down-closed. Since x and y are already down-closed
in A, we need only to check for the additional immediate causal links. Assume
we have (1,a™) € y || z (so a € x). By hypothesis we have a € z because it is
positive. Since z C y we deduce a € y that is (0,a) € y || = as desired. The case
(0,a7) € y || « is similar.

It is an order. Tt is clearly reflexive. If x O~ (zNy) CT y and y DO~
(xNy) CT =, it follows that = \ z Ny has to be empty thus z =z Ny =y.

For transitivity assume z 2~ (zNy) €ty O~ (yNz) CT 2. Thenifa € z\x,
there are two cases. If a € y, then since a € y N z, from y Nz C~ y we know
that a is negative. If a & y, then by x Ny C~ x it must be negative. Thus
x 27 (zNz) as desired — the other inclusion is similar. O

If x C4 y then intuitively y has more output for less input, hence the name

“Scott order”. In summary, configurations of € 4®.S correspond to pairs (z,y) €
€ (S) x €(A) with y C4 ox.

3.2.3 Step #3: Discrete fibrations

Since configurations of © 4 ® S can be elegantly expressed using the Scott order,
it will be key to our proof that strategies satisfy a discrete fibration property
with respect to it. We first recall:

Definition 3.11 (Discrete fibration). Let (X, <x) and (Y,<y) be orders and
f X — Y be a monotonic map. It is a discrete fibration when for all
z € X,y €Y such that y <y fx there exists a unique ¥’ <x x € X such that

fz'=y.

Now, we prove the following characterisation of courtesy and receptivity.
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Lemma 3.12. Let 0 : S — A be a pre-strategy. The following are equivalent:

(i) o is courteous and receptive,

(ii) o : (€(5),27) = (¥(A),27) and o : (£(S),CT) — (¢(A),CT) are
discrete fibrations,

(i11) o : (€(S),Cs) — (€(A),C4) is a discrete fibration.
Proof. e (iii) = (ii) is straightforward.

e (i) = (i): Courtesy. If s; — so in S, then by using the discrete fibra-
tion property for Ct we prove os; < osy (hence gs; — ose by Lemma
2I0). Indeed if it is not the case, then os; and sy are concurrent in A —
otherwise we would have osy < 051, S0 s < 81 by Lemma 2.10) absurd.

Hence o[s2] \ {os1} is a configuration of A that positively extends to
o[sz]. Thus [sz] should be the positive extension of a configuration x
whose image in the game is o[s2] \ {os1}. By local injectivity, o0s1 # osa,
therefore ose € o[sa] \ {os1}. By local injectivity again, this implies that
S92 € x, 80 $1 € x by down-closure, so 051 € o[s2] \ {os1}, absurd.

If s; — s, the only case not already covered by the above is that of
s] —> S5 . Assume os; and os2 are concurrent in A. Set x = [sg] \
{s1,82} € €(S). We have ox C~ oz U {os2}, so by existence of the
discrete fibration property there is © C z U {sh} € %(S) and os) =
osg. But likewise, o (z U {s5}) extends in A with o s1, so by existence
of the discrete fibration property there is s} such that os} = os; and
x U {s],s5} € €(S). but then by uniqueness of the dicrete fibration
property we have z U {s1, s2} = U {s], s5} so by local injectivity s; = s
and sg = sb, contradicting s1 — s2 since z U {s4} € F(5).

Receptivity. This is just an instance of the fibration property for O~ for
atomic extensions.

e (i) = (iii): Let z € ¥(S) and y € ¥(A) such that y C owx.

Uniqueness. We prove by induction on the cardinal of y € €(A), that for
all 1,29 € €(9), if x; C « and ox; = y, then x; = 5. Assume the result
for all y' € €(A) strictly smaller than a fixed y € €(A).

First, we prove that x; and zs have the same positive events. Indeed if
$1 € a7 is positive, then by o1 = y = oz there is a (unique) sy € x5 such
that o0s; = 0ss. Since x; C z, s1 and s, are in z, and by local injectivity
implies s1 = so.

If all maximal events of x1 and xzo are positive, we are done by down-
closure. Otherwise one of them has a negative maximal event, say wlog.
$1 € x1. Since ox1 = oxg there is a unique so € x5 such that os; = oss.

If there exists s € xo with sy — ), since oss is maximal in oz = oxy
(from Lemma 210, o reflects causality), by courtesy we must have s}
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positive, and hence s, € z1. It follows that s1,s2 are consistent (both in
x1) hence s = sg, and s1 — sh € x1, which is absurd. Therefore sz is
maximal in xs.

This entails that z1 \ {s1} and x2 \ {s2} are configurations of S to which
we can apply the induction hypothesis for the smaller ¢/ := y\ {os1}: the
configurations z1 \ {s1} and z3 \ {s2} must be equal. Since os; = 053 is
a negative extension of oz \ {os1}, by receptivity it follows that s1 = sa.

Ezistence. By induction on C (by splitting it into atomic extensions). If
+
a
y—C ox, write s for the preimage of a in z. If s is not maximal in z, it
means that there exists s — s’ in . By courtesy since s is positive, we

have o0s — os’ in oz hence a is not maximal in oz which is absurd. If

a
ox—C y, it is a consequence of receptivity. O

Note that for a pre-strategy o : S — A it is not equivalent to be receptive
and to be a discrete fibration (¢(S),27) — (€(A),27), as demonstrated by
the following pre-strategy on the game A = ©; O9:

O2

(S

O1 O2

This pre-strategy is receptive but not a discrete fibration for 2~. Indeed, for x =
0, y = {©1, 2} there are two possible matching extensions z C z’. This pre-
strategy fails courtesy — the equivalence only holds on courteous pre-strategies.

3.2.4 Step #4: Reconstructing minimal interactions

The ingredients above suffice to build the first part €(C4 © S) — €(5) of the
desired isomorphism. Reciprocally, from z € €(.S), we have seen that the pair
(z,0 x) represents a configuration in €4 ® S that gives us a configuration of
the composition through hiding. But it might not be the minimal witness, i.e.
it might not satisfy the conditions of Lemma

In order to prove the desired isomorphism, we need to extract from x a z*
such that (z*, 0 x) satisfies these conditions. It is obtained by stripping x from
its maximal negative events, as detailed now.

Lemma 3.13. Let x € €(S). There is a unique z* C x € €(S) such that
U—l(z* oz) € €(Ca®S) and all mazimal events of ¥~ (x*, ox) are visible.

Proof. Uniqueness. Assume we have two 2} and zf, in €'(S) satisfying the
hypotheses. The configurations ¥~1(z},0x) € €(C4 ® S) and ¥~ 1(z},0x) €
E(Ca®S) correspond to secured bijections:

zy || oz 2 o) || ox xh || ox £ ory || ox
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whose maximal events are visible, and cx C o}, 0z C ox,.

By Lemma B0 the maximal events of z} and 2 are positive. Moreover,
we have ox) C~ ox. Indeed, we already know that oz} DTC~ oz, and for
at € ox, we have (0,a) < (1,a) € ©4. So, there is ((0,s),(0,a)) € ¢1.
Therefore, a = os € ox}. With these two remarks, it is elementary to check
(using 7} C z and local injectivity) that =} = [z], where T denotes the set of
positive events of 2 — the same reasoning holds for ), hence ] = 5.

FExistence. Write x* = [z7]g. The set 2\ z* contains all the negative events
of x without any positive event above them, thus we have * C~ z. Thus
ox C oz*, therefore ¥~!(2*,02) € €(Ca ® S). Maximal events are visible
because z* and oz satisfy the condition (ii) of Lemma 3.9 O

This induces a monotonic and order-preserving map €(S) — €(C4 © S)
taking z € €(S) to the restriction of ¥~1(z*, o) to its visible events.

3.2.5 Step #b5: Characterising the Scott order on ¥(C4 © S)

Using the above, we can prove that indeed receptivity and courtesy are sufficient
to be preserved by composition with copycat (proof forthcoming in Theorem
[BI6). For necessity, we will prove that strategies obtained by composition with
copycat are automatically discrete fibrations. In order to do that, we first need
to study the Scott order on € (C4 © S) (we write V for the set of visible events
of €4 ® S, that is, €4 © 9).

As we have seen, configurations of @4 @ S correspond to certain pairs
U(z) = (x,y) € €(S) x €(A) where the maximal events of = are positive.
Progressing in C¢, o5 means removing some (maximal) negative events from y,
and adding some positives to it. The first part is easy, as these events had not
been propagated to x yet. However, adding some positives in y might require
to replay them first in z, along with their negative dependencies. For instance:

Example 3.14. Consider A =W, || Wy and o playing on A, with event struc-
ture Click] — Done] and concurrent Clicky . The two interactions below are
minimal witnesses of (respectively) x1,x9 € €(Ca © S), with x1 Co 08 T2:

Wi Il Wy Wi 1 Wy Wi I W Wi I Wy
Click; Click, Click;
C Click;
¥
Done;
Done;

We observe that although the visible part progresses w.r.t. the Scott order, the
invisible part only gains events, and potentially of both polarities: it progresses
w.r.t. plain inclusion.

Formally, we prove the following lemma.
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Lemma 3.15. Let (z,y) and (2/,y’) be representations via U of configurations
of €4 ® S whose mazximal events are visible. The following are equivalent:

1.V (¥ Hz,y) Eeaos VN (T2 y)
2. yCay and x C 2’
Proof. Write z = V. N (V"(z,y)) and 2/ = V N (¥~ 1(a’,y')). We prove the
following equivalences that imply our result:
+ ! - / + /
z—Cz2inCa08 & zCz2 &y—Cy
—CZinCa08 & =1 &y—Cy

+ +
e Assume z—C 2. Then (€4 ®0) 2—C (€4 © o) 2’ implying y—Cy’. More-
over, we have [z]¢ @5 C [¢/]ci@s implying z C o’

Conversely, we have y C 3’ C oz’ by hypothesis, hence (z/,y) € ¥ (C4 ®
S). Writing C° for extension by invisible events in €4 ® S, we have:

_ _ + _
[Z](CA@S =v 1($7y) gO v I(I/ay)_cqj 1($/7y/) = [Z/]((EA@S
+
hence z—cC 2’ as desired.

o If 2—C z, then we have y;C y' and  C 2’/ by the same argument as in
the previous equivalence.

Assume there were a s € ' \ z. Without loss of generality s can be
assumed maximal in z’. By Lemma [3.9] s is positive and os € y’. Since
s is positive and not in x, it cannot be in y as y C ox: hence s € ¥ \ y
which is reduced to a single negative event by assumption which is absurd.
Therefore x = 2’ as desired.

Conversely, if 2 = 2/ and y—cC y' then we have this extension in € 4 ® S:
[Z](QA@S = \Ilil(xa y)—C \Ilil(xa y/) = [Z/](CA@S
yielding —CZinSoC A, since the event we added is visible. O

3.2.6 Step #6: Wrapping up

Having introduced all the tools and lemmas needed for our proof, we now prove
the main theorem.

Theorem 3.16. Let o : S — A be a pre-strategy. The following are equivalent:
(i) o is a strategy
(i) o : (€(S),27) = (¢(A),27) and o : (€(S),C") — (€(A),C) are

discrete fibrations,
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(111) the map o : (€(S),Cs) = (€(A),C4) is a discrete fibration
(iv) o is courteous and receptive
Proof. The equivalence between (ii), (iii), (iv) is proved by Lemma B.121

o (i) = (ili): Let f : 0 = 0 ©® @4 be an isomorphism of strategies. Let
(x,y) € €(S) x €(A) with y C oz. Write ¥([f(2)]c es) = (w,0x) €
V(Cs®S) with w € €(5) and oz T ow.

Ezistence. Consider 2o = [{s € w | os € y}]* (Lemma[3.13). By definition
the maximal events of ¥~ (z¢,y) are all visible, hence (x¢,y) corresponds
to a configuration z € (S ® €4). Applying f~! we get a configuration
2’ € €(S) whose image by o is y. Since y C ox and z¢y C w, we have by
Lemma B.I5 2 C f(z) hence ' C z (f~! preserves the Scott order).

Uniqueness. Assume we have two ) and ), satisfying o} C x and o} = y.
We have f(z}) = VN (¥(zf,y)) and f(z5) = V N (¥(24,y)) for some
configurations x and 4. Applying Lemma B.I3 we get 2/ = a4 which
yields f(x}) = f(«}) and then )| = af, by injectivity of f.

e (ili) = (i): Write f = 2 — (S ® ©4) N (¥~ !(z*,0x)) for the order-
preserving and order-reflecting map arising from Lemma [3.13]
Injectivity. If (z*,0x) = (a'*,02’), we have by Lemma (2), that
ox* C7 ox and ox’* C~ oz’. By uniqueness of the discrete fibration
property it follows that = /. Thus f is injective.

Surjectivity. Let z be a configuration of SOC 4. Write (z,y) for ¥([z]sec.,)-
By Lemma [B9] (2), we know that oz C~ y. Thus we know by receptivity
that there exists 2’ € €(S) with  C 2’ and o2’ = y. Then by uniqueness
of BI3| we have that z = (2/)* and z = fa2'. O

4 The bicategory of concurrent games

We have developped a notion of concurrent strategies, and characterised those
which behave well in an asynchronous, distributed world. For these notions
to serve as a basis for the compositional semantics of concurrent processes or
programs, it is of paramount importance to study the categorical structure
satisfied by strategies, i.e. the algebraic laws satisfied by composition.

Usually — as described first by Joyal on Conway games [Joy77] — composition
of strategies yields a category having games as objects, strategies as morphisms
and copycat strategies as identities. Here however, we cannot use equality to
compare strategies. Indeed, take ¢ : S — A and ¢’ : S’ — A strategies on
A. As we have observed in Section [2, comparing them requires us first to
relate S and S’, which we do via a map f : S — S’ making the obvious
triangle commute. This map is in general not unique: for instance, consider for
a strategy the non-deterministic strategy ¢ = tt ~ tt playing on B. There
are two automorphisms on o: the identity, and the swap function.
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For most purposes, the exact identity of a map relating two strategies is
irrelevant, and in these cases we can (and we will) quotient to a category. But
it also seems essential to start by investigating exactly how these morphisms
between strategies fit in the categorical picture. This is the purpose of this
section, where we will establish that games, strategies and maps between them
form a bicategory. We will review all the components and laws of a bicategory
in the course of this section, while we establish them for our bicategory CG of
games, strategies and maps between them.

4.1 Basic data of the bicategory
A bicategory is given by:
e A set of objects, or O-cells: here, the games.

e For any two objects A, B, a set of morphisms or 1-cells: here, the strategies
o: S — At | B - we will sometimes write o : A—+B, keeping S
anonymous.

e For two 1-cells o, 7 : A—=B, a set of 2-cells f : 0 = 7: here the maps of
es making the following diagram commute.

;
S—— >T

N~

At || B

The 2-cells can be composed: for any two objects A, B, 1-cells from A to B
and 2-cells between them form a category — here we have a category CG(A4, B)
having strategies 0,7 : A—=B as objects, and maps f : 0 = 7 as 2-cells.

Functorial composition. Morphisms can be composed, in a way that pre-
serves 2-cells. In other words, we have a functor:

®: CG(B,C) x CG(A, B) — CG(A,C)

On 7 : B—+C and o : A—B, this is defined by setting 7 ® ¢ to be the
composition as defined in Section[2l This operation was defined on pre-strategies
rather than strategies, so we note in passing:

Proposition 4.1. Assume o :S — AL | B and 7: T — B* || C are strategies,
then so is T ® 0.

Proof. We use the second formulation of the definition of strategies, as in The-
orem
Negative opfibration. Take xz € € (T ® S) such that (7 @ o)(z) Catje

z'y || ¢ By definition, its down-closure in T'® S is a configuration y = [z] €
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€ (T®S), whose maximal elements are visible. By Lemma[2.9] this configuration
is represented by (the graph of) a secured bijection ¢ € %;ch Al We write:

©
ysllve = wyalyr

with oys = ya || yg and Tyr = yp || yo. By hypothesis we have y4 || yp S
Y |l ys, and yB || yo Chijc YB | v Since o and T are strategies, there are
unique ys C yg € ¢(5) and yr C yr € €(T') such that osy = y)y || yp and
Ty = yB || Y- The induced extension of ¢

’

%)
yslve =~ vallyr

is secured: the added events only map to A and C, so there is no interaction
(hence potential deadlock) between o and 7 going on. Moreover, ¢’ represents
a configuration y C y' € €(T' ® S), which maps to 24 || 5 || 2. By projection
we get the required extension of z. Uniqueness follows directly from uniqueness
for y4 and y/.

Positive fibration. Similar reasoning. O

So composition, despite being defined on prestrategies rather than strategies,
preserves courtesy and receptivity — it is well-defined on 1-cells of our bicategory.
We now need to prove that it is well-defined on 2-cells as well. In fact, we will
show that it is well-defined on morphisms between arbitrary prestrategies, not
only those that are receptive and courteous. Until Section (where we study
compositions with copycat), the development will use neither receptivity nor
courtesy.

Let 0 : S = At | B,o' : S8 - At || Band 7 : T — B* | C be
prestrategies, and f : S — S’ be a morphism from ¢ to ¢’. We proved in
Lemma [ZTT] that the interaction T ® S was the pullback of o | C and A || 7.
By the corresponding universal property, it follows that there is a unique map
f@®T:S®T — S’ ® T making the required diagrams commute. In particular,
this remark establishes that the interaction operation — ® — is functorial in
morphisms between prestrategies. In order for ® to inherit this, it is convenient
to use that ® and © are related by a universal property involving partial maps:

Definition 4.2. A partial map of es(p)s f : E — F is a partial function,
such that for all x € €(F) we have fx € €(F), and such that for all e1,e2 €
x € C(E), if fer = fea (with both defined), then e1 = es.

A key example of a partial map in our setting, is the hiding map: given an
es(p) E and V C E, there is a partial map:

h:E—~ElV

acting as the identity on V and undefined otherwise. So in particular, for
prestrategies 0 : S — AL || B and 7: T — Bt | C, there is a partial map:

h:T®S—-T06S.
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Projection and hiding provide a partial-total factorization system, which
obeys:

Lemma 4.3. Let f : E — F be a partial map of es(p)s, and V be the subset
of events of E on which f is defined. Then, f factors as (f | V) ob (where
fIV:E]V = F is total). Moreover, for any other factorisation f = g2 o g1
with g1 : E— X and g3 : X — F, there is a unique total h : £ [V — X such
that hoh = g1 and gooh = f [V, as pictured in the diagram below:

We say that h : E — E | 'V has the partial-total universal property.
Proof. Direct verification. O

From that, it is easy to construct the functorial action of ®. Take o,0’,7
and f as above. As explained, we obtain T® f : T®S — T ® S’ by the universal
property of the interaction pullback.

But by Lemmal[43] the two maps hor : T®S =~ TOS and hpr  : T® S —
T ® S’ have the partial-total universal property. Using it, we get a unique map
TOf:TOS — TS matching T® f up to hiding. It is straightforward from
the universal properties that this operation is functorial, that its symmetric
counterparts g ® S and g ® S are as well and that they satisfy the interchange
laws, yielding the required bifunctor.

In fact we note in passing that © preserves more general notions of mor-
phisms of prestrategies, that not leave the game invariant:

Lemma 4.4. Consider two commuting diagrams between prestrategies (using

the obvious functorial action of (=) and — || — in EP):
S ——~3, n—
R
R VI TR ey Pt

Then, the following diagram commutes.
Tios LT 08

T1®<71\L \L‘Q@Uz
hi ks

Af || O ——= 45 || Co
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Proof. For interactions first, the map g® f : 71 ® .S; — To ® S5 is defined from
the universal property of the pullback for 75 ® So, using the two commuting
diagrams in the hypothesis. It follows by definition that the diagram

®
T ® 51 e To ® S
T1®01 To®02

hillhz||h
Ay || By || Gt —"As || B2 || C>

commutes. The map g ® f : T1 ©® S1 — T3 ® Se and the required diagram
commutation follow from the partial-total universal property. O

4.2 Associators

Because in our setting two prestrategies ¢ : S — A and ¢’ : S’ — A can
only be compared by explicitely relating S and S’, we can only hope to prove
associativity of composition up to isomorphism rather than on the nose. This is
in contrast with traditional settings for game semantics, where of o and ¢’ we
only remember their projections on A, which can be compared for (in)-equality.

Bicategories formalize the idea of having a composition of 1-cells that is
associative only up to isomorphism. In a bicategory, we have for every three
l-cells 0 : A—+=B,7: B—+C,p: C—=D, an associator:

Uorp: (POT)OT=pO(TOO)

which, given also § : D—=F, satisfies MacLane’s pentagon (detailed in the
development below). We will start with the definition of the associator.

Associativity for interaction. For the rest of this subsection we only con-
sider polarity-agnostic operations, so we will ignore polarity from now on.

Consider 0 : S - A || B,7: T - B || C,and p: U — C || D. The
composition pOT : UGT — B || D is obtained by restriction from the mediating
map p®7:U®T — B || C || D of the interaction pullback. In turn, we can
form (p®@7)®c: (U@T)®S = A B C | D as (the mediating map of)
the pullback of o | C' || D and A || (p® 7). From that (using that pullbacks are
stable under parallel composition) it appears that (p ® 7) ® o is (the mediating
map of) a ternary pullback of o || C || D, A|| 7 || D and A || B || p. But a
similar reasoning holds for p® (7 ® o), so by the universal property of pullbacks,
there is a unique map a., r,,, necessarily an isomorphism, making the projections
too||C | DA 7| Dand A| B p commute:

Ao, 1,p

UeT)®S U® (T®S)

pPOT)®0

®(T®0)
AlB|C|D

35



Given another 6 : V. — D || E, all bracketings of the quaternary interaction
between o, T, p,§ can be obtained via pullbacks of o || C | D || E,A || 7| D ||
EA| B p|| Eand A | B || C | ¢ taken in different orders. It follows
from an easy diagram chase that MacLane’s pentagon commutes at the level of
interactions:

(VelU)eT)® S

ar p,5®S Ao,7,0@5

VeUeT)®s
Ao, p®T,6 (V ® U) ® (T ® S)

Ve(UeT)®S)

Ar®o,p,s
Ve Ue(T®Ss))

To conclude associativity, we need to show how to reproduce the same rea-
soning on composition, or more adequately deduce it from that on interactions.

Partial-total factorization and hiding witnesses. In order to deduce as-
sociators on composition and their coherence from those on interactions, we
generalize the partial-total universal property of Lemma 3] to n-ary interac-
tions and compositions. For instance, we need to prove that the hiding map (to
be defined precisely):

h:(Ue®T)®S —~(UOT)OS

has the partial-total universal property. It is a bit inconvenient to prove it
directly — instead, we prove an auxiliary property that is easier to combine.

Definition 4.5. Let f : E — F be a partial map. A hiding witness for f is
a monotonic function:

wity : €(F) = €(F)
such that for all x € € (E), wityo f(z) C x and for allx € €(F), fowits(z) = .

The hiding witness assigns, to any « € ¢ (F'), a canonical witness wit(z) €
€ (F), that projects back to « through f. The hiding witnesses give a configuration-
based version of projection — or of the partial-total factorization, as established
by the lemma below.

Proposition 4.6. Let f : E — F be a partial map. Then, the three following
propositions are equivalent:

(i) There exists an isomorphism ¢ : E |V 2 F such that pol = f (where V
is the domain of definition of f),

(i) f has the partial-total universal property,
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(i11) f has a hiding witness.

We call hiding maps any partial maps satisfying those properties. Note that
by (1) it follows that in any hiding map f is partial rigid, ie. for any e; < ea,
if fe1), fez) defined then f(e1) < f(e2).

Proof. (i) < (ii). From left to right, we transport through ¢ the partial-total
universal property of Lemma 3l From right to left, we use the fact that both
h: E— FE | Vand f:FE — F have the partial-total universal property, yielding
the desired isomorphism.

(i) = (iii). W.lo.g., we proveit for h: E =~ E | V. Forz € (£ | V),
define wit(z) = [z] € F(E). Clearly, h(wit(z)) = [] NV = z and wit(h(z)) =
[x N V] C x as required, and it preserves union by definition.

(i1i) = (i). We construct the isomorphism on configurations:

p : CELV) = EF)
z = f([z])

q : ¢ (F)

- EELV)
y = )

wit(y) NV

It is clear by definition that these maps are monotonic, we need to prove that
they are inverses of each other. For one direction, for all y € % (F), since
wit(y) € €(F) it is down-closed in E and thus can only differ from [wit(y)NV] €
% (E) with events not in V', so f([wit(y) N V]) = f(wit(y)) =y, ie. poq(y) =y.

For the other direction, we note first that if z € €' (E) has all its maximal
events in V, then wit(f(z)) = z. Indeed, we have wit(f(x)) C z by hypothe-
sis. But both sides map to f(x) via f, inducing by local injectivity bijections
wit(f(z)) NV ~ f(z) and NV ~ f(z). It follows that wit(f(z))NV =znNV.
But z = [z N V] since its maximal elements are visible. Putting everything
together:

x=[zNV]=[wit(f(z))NV] C wit(f(z)) Cx

So & = wit(f(x)). Turning back to our main proof, we need to show that
gop(x)=xa for x € €(E | V), ie. that wit(f([z])) "V = x. But by definition,
[] has its maximal events in V, so wit(f([z])) = [z]. So we are left to prove
that [x] NV = x, which is clear.

So we have constructed an order-isomorphism between the domains of config-
urations of £ | V and F', which yields an isomorphism by Lemma 2.T4l Finally,
the required equality is obvious by Lemma O

Associators for composition. The third formulation of hiding maps enables
us to combine them in several ways. Firstly, they are stable under composition:

Lemma 4.7. Let h: By — Ey and § : Es — E3 be hiding maps, then h' o § :
FE; — E3 is a hiding map as well.

Proof. Obvious, by composing the hiding witnesses. O
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We can also combine hiding maps “horizontally”, using the universal prop-
erty of the interaction. For that though, we need first to prove that this universal
property applies to partial maps.

Lemma 4.8. A pullback square in £ is also a pullback square in the category
&1 having event structures as objects, and partial maps as morphisms.

Proof. The proof is summarized in the following diagram:

7N
\

Take f1, fo partial maps such that the outer square commutes. Necessarily, fi
and fy are defined on the same subset of events of X; call it V. By Lemma [£.3]
h: X — X | V satisfies the partial-total universal property. By the universal
property of the pullback in &£, there exists a unique g : X | V — P making the
triangle commutes, yielding a factorization g o) : X — P. Uniqueness follows
directly from the uniqueness of the pullback and of the partial-total universal
property. O

< =

N/

J

Therefore, we can use the universal property of the interaction pullback to
manipulate and compose hiding maps. This allows us to state and prove the
lemma below, which plays a similar role to the zipping lemma used in proving
associativity of composition in sequential games — hence the name.

Lemma 4.9 (Zipping lemma). Take h : S — S’ be a hiding map making the
following diagram commute:

S L %
oy Vo'
Ao
A||B||C——=A|C

Then, for p: U — C || D, the morphism U @b : U® S — U ® S’ defined
using the universal property of U ® S’ via Lemma[{.8 is a hiding map.

Proof. A configuration of U & S’ corresponds to configurations zg/ || zp and
x4 || zv of the event structures as annotated, such that:

odrsr = zal 20

pru = wzc | @p
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and such that the induced bijection between zg: || zp and x4 || zy is secured.

From that, we consider wits(zs/) || zp and x4 || xp || zy, where xp is
obtained by o(wits(zs/)) = za || B || zc. By construction we have (o ||
D)(witf(zg) || zp) = (A || B || p)(za || zB || zv). The induced bijection is
secured: a causal loop in it could not stay in (events projected to) B, as the
causality on the corresponding pairs is entirely determined by S. So, using that
f is partial rigid by Proposition 4.6 it would induce a causal loop in the original
bijection, that was supposed secured. All the additional properties to check
follow by construction. o

At this point, we can define the associator. Recall that for o : S — A || B,
7:T —= B Candp:U — C || D we have the associator at the level of
interactions:

torp: URT)®S U (T®S)

By using the two lemmas above, we have two hiding maps:

bT, @S bn‘, T
botrpy=UST)®S = (UOT)®S 22 (WUOT)6S

U®bo,r broo,p
bomyp=U®(T®S) Ua(ToS) —=2Ue(ToS)

From the definitions, it is easy to check that the following outer diagram
commutes:

Ue(T®S) —" ~(T®T)®S
bo.(rp) | [LIERW

T, TP

Uo® (T ® S) ......... Feume .. - (U ® T) o8

‘</)®a

p@(% pOT

A| D

So by the partial-total universal properties of b, -y, and by (+ ), dorp

induces a unique isomorphism oy, : (UOT)® S — U © (T ® S) making the
two sub-diagrams commute.

Naturality and coherence. To conclude the associativity part of the bicat-
egory construction, we need to check that these isomorphisms are natural in
o, T, p and satisfy MacLane’s pentagon. In both cases, the proof consists in ver-
ifying it first for interactions (as we already did earlier from the pentagon), and
deducing it for composition by checking that the maps involved in the diagram
for composition are canonically related to those for interaction, as above. We
skip the details, that can be recovered easily.
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4.3 Unitors

The last ingredients of our bicategory are the two unitors. For any strategy
o:S — At || B, those are the two isomorphisms for cancellation of copycat:

Po = SOC,y =S
N = CpoS—=S

We start by defining A, (and p,): their definition is not strictly speaking
covered by the result of Theorem B. 16l which only dealt with closed compositions
of a strategy o : S — A with @4. However the construction is very similar and
will only be roughly sketched here.

Lemma 4.10. Let o : S — At || B. Then, there are order-isomorphisms:

U, :€(S®Cy) = {(:ClA,:vs) €C(A) xE(S)|oxs=2" ||z & ;ElA Jazh}
U, :6(Cp®S) ={(rs,2) € 6(S) xE(B) | oxs =4 | xﬁg & 2% Cp xlB}

where the right hand side sets are ordered by componentwise inclusion.
Proof. Straightforward adaptation of Lemma 3.8 O

At this point, it is also worth mentioning that it follows from courtesy of o
that in a situation like in the lemma above, we actually have 3359 C~ 2%. No
positive events can be added by going from z; to x5, as using courtesy one can
show that those could not be below a visible events. That fact is not used in
our development, so we skip the detailed proof.

We jump to the definition of the unitors:

Lemma 4.11. For any o : S — AL || B, there are isomorphisms of strategies:
Po:SOCH — S N :CpoS— S
which respectively,

o Toanyx € €(SOC ) with unique witness [z] = ¥ (2!, v5) € €(Ca®
S) withoxg = 2"y || B and xf4 CaL a7y, po associates the unique r's C xg
such that ox'y = 2Y || zp given by the discrete fibration property of o.

e Toanyz € €(Cp © S) with unique witness [x] = VY (zg,2%) € €(S ®
Cp) with oxg = xa || 2% and 2% Cp 2'5, N\, associates the unique
x'q C xg such that ox’y = x4 || 5.

Proof. Straightforward adaptation of (ii) = (i) in the proof of Theorem
(]

First, we show that the unitors A\,, p, are natural in o. In fact, it will be
helpful later on to prove here a slightly more general property: that the unitors
acts naturally with respect to generalized morphisms between strategies, that
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change the base game as well. In order to state it, first note that the construction
A — © 4 on esps can be easily extended into a functor:

C:EP—=EP

Indeed, for f : A — B a map of esps, we have f1 || f: A+ | A— B+ || B
(using the obvious functorial action of (—)* and || on £P). But AL || A and
Bt || B are respectively the sets of events of ©4 and Cp; and it is a simple
verification that we do have €y = f+ || f: ©4 — ©p. Functoriality of the
construction is clear. Using that, we state and prove the following:

Lemma 4.12. Let oy : S1 — At || By, 02 : S2 — Ay || Ba, and f : S — Sa,
h: Ay — As, b : By — Bs such that the following diagram commutes:

f

S ———— 5

hJ. ”h/

At || By —— Ay || B2

Then, the following two diagrams commute as well:

At | By AL || By
@B, Oo1 010,
o1 g1
Cp, © 51 JSES 3 ht||n! 510 Cy4, AN 3 ht R
T of f Ay || Be foc, f As || B2
©By OF2 020C4,
g2 g2
Cp, ©8; =5, Sy ® Ca, == S,

In particular (when h,h’ are identities), A\, and p, are natural in o.

Proof. Let us focus on the left hand side diagram, the other is symmetric. Of
all the faces of the diagram, the right hand side one is by hypothesis, the upper
and lower are by definition of unitors in Lemma [Tl and the left hand side one
is by Lemma 4l It remains to prove that the front face commutes.

Let z € €(Cp, ©®S1), with unique witness [r] = ¥,.(vs,, 2, ), with o125, =
za, || #l5, and 25 T 2’5 . The left unitor Ay, sends z to the unique 25, C zg,
such that oz'y, = x4, || %, whereas € © f by definition sends it to (Cp ©
f)(x) with unique witness W,.(f(zs,),h'(z3,)). But then, f(z% ) C f(xs,) is
such that oo (f(2)) = h(za,) || K (2%,), and the unique such (by uniqueness of
the discrete fibration property). Therefore, Ao, ((Crr © f)(z)) = f(x%,)- O

And finally, using the description of their action we verify the coherence law
for unitors.
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Lemma 4.13. Foro : S — At | B and 7 : T — B* | C, the following
diagram commutes.

(TOCE) O S frenr To(Cp6S)
m TON
ToS

Proof. Let © € €((T ®Cp)®S). Necessarily, it has a witness wit(z) € € (T ®
Cp)®S5). By characterisation of pullbacks, it correponds to three configurations
zs || 2% || 2o, za || 25 || 2% || @, and 24 || 2 || o7 such that oxg = x4 || 2%,
a% C zly (regarded as configurations of B), and 7zr = % || x¢. Moreover,
the induced order on triples is secured, and its maximal elements are visible.
But this implies that actually ;ClB = 2’5 — it is easy to show that if (non-visible)
b € 2! is not in 25, then it cannot be below a visible event. From that it follows
that both paths alongside the triangle above map x to (the configuration of T®.S
represented by) g || z¢c and x4 || z7. O

We have finished the proof that CG is a bicategory.

5 A compact-closed (bi)category

In this section, we show that similarly to Joyal’s category of Conway games,
our bicategory of concurrent games has a compact closed structure, a struc-
ture that is central in the applications of our framework to game semantics of
programming languages.

Recall that a compact closed category is a symmetric monoidal category,
where each object A has a dual A*, which is related to A via two morphisms:

na:l—+=A*"® A €x AR A —=1

where 1 is the unit of the tensor (in our concrete case it is the empty game).
These morphisms have to obey two laws that are best represented in the lan-
guage of string diagrams:

A A

Compact closed categories play an important role in the background in se-
mantics: the equations of compact closed categories are mirrored, e.g. in the
reduction rules of proof nets and in the adjunction laws (8 and n-conversion) of
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cartesian closed or symmetric monoidal closed categories. In fact, any compact
closed category is symmetric monoidal closed (more precisely, *-autonomous,
and a model of MLL [Gir87]): setting A — B = A* ® B, we have the adjunc-
tion A® — 4 A — —. In short, compact closed categories form the backbone of
an equational presentation of the dynamics of linear higher-order computation.

But unlike Conway games, CG is a bicategory. In fact, we believe that it
gives an example of a compact closed bicategory, as defined by Kelly [Kel72]
and detailed by Stay [Stal3]. However, the precise definition of a compact
closed bicategory is a bit intimidating. It might be possible to deduce the
bicategorical compact closed structure of CG from that of the bicategory of
profunctors [Stal3]. However, it turns out that for the development of game
semantics based on concurrent games, it is enough to consider strategies up to
isomorphism. So, we only check that the quotiented category is compact closed.

By abuse of notations, from now on we will use the same notation CG for
the quotiented category instead of the bicategory. Regarded as a category,
CG has esps as objects, and as morphisms strategies o : S — A || B up to
isomorphism. In the rest of this section, we check the components of a compact
closed category.

5.1 The bifunctor

First, we define a bifunctor ® : CG?> — CG. On objects, A® B is simply defined
as A | B. On morphisms, for oy : S; — Af || By and o9 : So — Af || Ba, we
define

o1lloz Af,B1,Ad

v B
o1®0y = Sy || So ——= (Af || B1) || (As || B2)—= (A1 || A2)* || (By || Bz)

where yapop : (Al B) || (C || D) = (A | C) | (B | D) is the obvious
isomorphism of esps. We show that this operation is a bifunctor. Firstly, it
preserves the identity.

Proposition 5.1. For any esp A, we have
CagB = €4 QB
Proof. We have the isomorphism
Yatpiap (AT BY) | (A B) = (A% || A) || (B || B)

which can also be typed as y41 g1 4 g : Cagp = C4 || ©p, which obviously
commutes with the projections to the game. O

Secondly, it preserves composition.
Proposition 5.2. Let:

o1 Sl — 141L || Bl T T1 — BlL H Ol
o Sy — Af || By n o T = By|Co

Then,
(1 ©01) @ (T2 ®02) 2 (11 ®72) O (01 ®02)
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Proof. We start by proving it for interactions. As the parallel composition of
pullback squares is a pullback square, we have two pullbacks related by isomor-
phisms:

(Th ® S1) || (Te ®S2)

e \

(Sl Cr) |l (52 | C2) (Ar [ Ty) || (A2 | T2)

2llC1)l(721C2)
EHES!

(A [ Bull €1 || (A2 || B2 [| O

\

- Y81,C1,82,C2 VA1,T,A2,Ty :

(Ty || T2) ® (S1 | 5'2)':_ s

(A, || 4) | (T1 || T)

|

a
(S]] S2) [| (C1 || C2) _
®a2)[[(C1]|C2)

27 A (malim)
(A1 || A2) || (By || B2) || (Cy || Co)

where ¢§ is the obvious map. By universal property of the pullback that gives
an isomorphism:

Y i(M®S) || (Ta® S2) = (Th || To) ® (S1 || S2)

which commutes (up to ya, c,.4,,c,) With the hiding maps b, 7 || boy,m and
Bo1@m,0007, SO using Proposition 6] and the easy fact that maps with hiding
witnesses are stable by parallel composition, it follows that 4" corresponds to a
unique isomorphism:

(TheS) || T 8) = (T || T2) © (51 ]| S2)

between strategies (11 © 01) @ (T2 © 02) and (171 @ T2) © (01 @ 02). O

5.2 Lifting and symmetric monoidal structure of CG

The strategies serving as structural morphisms for the symmetric monoidal
closed structure are very simple variants of copycat @4 : A—=A. In order
to construct the symmetric monoidal structure of CG, we describe a systematic
way of generating such morphisms from more elementary maps of esps.

Definition 5.3. Let f : A — B be a receptive, courteous map of esp. Then,
the map:
7 : Ca — At || B
a = (At f)oeala)

IThis means that, technically, f is a strategy on B — but we do not think of it that way.
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is a strateqy called the lifting of f. Likewise, if f : B- — AL is receptive and
courteous, we define its co-lifting:

7. ©y — A|B

¢ = (flB)oes(c)

The fact that they are strategies follows from the fact that courteous recep-
tive maps are stable under composition.

The following key lemma links composition of strategies with lifted maps
and composition of the corresponding maps in &£.

Lemma 5.4. Let f: B — C be a receptive courteous map of esps, and o : S —
AL || B be a strategy. Then, the unitor N\, : € ® S — S is an isomorphism

between _
foo : CgoS — At|C
(At ] floo S — At |C

Likewise, for f : Bt — AL receptive courteous and o : S — B* || C a
strategy, p, s an isomorphism between:

cof . SoCs — AL|C

(fIIC)oo S — At C

Proof. By definition, the following two diagrams commute:
S

At B AN B B+ || B—

@BL@B

R

7 BL|C

%

Therefore, by Lemma [£.4] it follows that the following diagram commutes:

CpoSsLl cpos
cpOo foo
AL B2 46

Combined with the isomorphism € ® ¢ = o, this concludes the proof. The
other case is symmetric. O

From the lemma above it immediately follows that lifting is functorial.

Lemma 5.5. Let f: A— B and g : B — C be receptive courteous maps, then
we have an isomorphism:

gof=gof



Proof. Immediate consequence of Lemma [5.41 O

Using that, we can lift the symmetric monoidal closed structure of £ to CG.
In particular, there are natural isomorphisms in £ which are componentwise
receptive and courteous, and so are their inverses.

pA Alll - A
Aa 1A — A
SAB A|lB — BJ|A

aapo - (AB)C = Al(B]C)

(the reuse of symbols from Section M for these structural morphisms should not
cause any confusion). These isomorphisms can then be lifted to strategies:

DA - Al —+ A
Aa 1A —= A
SAE A|lB —+ BJA

aape : (AIB)C —= A[(B]C)

which inherit from £ all the coherence laws of the symmetric monoidal structure
by Lemma It remains to prove that these families are natural.

Lemma 5.6. The families pa,Aa,54,B,a4,B,c are natural in all their compo-
nents.

Proof. A direct verification. For illustration, we detail the naturality of s4 p.
Let 0: S — Af || Az, and 7 : T — Bi || B2. We need to check:

SAz,B; © (U ® T) = (T ® 0) ©35a,,B;

— 1
But there is an obvious isomorphism 54, 5, = sAi BL - So by both parts
1~

of Lemma [5.4] this amounts to finding an isomorphism between the two maps:

(AB) 1543.82)07 4t ay 51,00 I7)

1
s\t ol MBI 4209750 gy 2t 4yo(Tl) (A [| Br)= || (B2 || A2)
TS (Ay | By || (B2 || Az)
and it is a simple verification to check that sgr does the trick. O

This concludes the symmetric monoidal structure of CG.

5.3 Compact closed structure

The dual of a game A is simply defined as A-. We have two strategies:

na : €4 — 1+ (4] A)
ea : €4 — (A AH*H 1

defined in the obvious way. We have:
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Proposition 5.7. The strategiesna : 1—=AL || A and eq : A | AL —=1 satisfy
the laws for a compact closed category.

Proof. We need to check the two equations of duals in compact closed categories:

€ = M0 (aea)Oay,, 0@ ®@na)0pa

>~

—1
CyL pAL@(CCAL ®€A>®O&AL7A7AL@(T]A@@AL)@)\AL

These two isomorphisms are symmetric; we only check the first. Let us write
o:S — AL || A for the resulting composition, and

U= A (AID A ATA)CATA)[FA) [ A]A) A

for the corresponding 5-ary composition. By Lemma [£9] there is a hiding
map b : U — S, commuting with the projection to the game. From the char-
acterisation of configurations of pullbacks, and after eliminating redundancies,
configurations of U correspond to the data of a configuration in each component
A above, satisfying the following constraints:

SN /N /N N
ATGAT 1) 1 (A1 (A 1A I (AT AT A T Q1A A

\/ NN \J

where, moreover, configurations whose maximal events are visible (and so corre-
spond to configurations of S) are those where the C! are replaced by D, the C2
are replaced by equalities and the T3 are replaced by C~. Such configurations
exactly correspond to those of © 4. O

which concludes the proof that CG is a compact closed category.

6 Conclusions

In this paper, we gave a detailed exposition of the results of [RW11], along with
some extensions. We presented a notion of concurrent games based on event
structures, which is a concurrent analogue of Joyal’s compact closed category
of Conway games [Joy77].

We first defined pre-strategies, as certain event structures describing the evo-
lution of concurrent processes on an interface presented as a game. We defined
strategies as those pre-strategies stable under the action of an asynchronous
forwarder, presented as the copycat strategy. Finally, we proved that composi-
tion of strategies obeys the laws of a bicategory, and that just as Joyal’s, the
corresponding quotient category is compact closed. As exposed in [Winl3b, it
relates to the compact closed bicategory of profunctor via a lax functor.
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Further work. The developpments presented in this paper are just the begin-
ning of the story. Since the appearance of [RW11], this framework has been used
as a basis for a number of extensions. In [CGW12], games were equipped with
winning conditions. It was proved that winning strategies also form a bicategory,
and that just as in the sequential case, well-founded games that satisfy a further
condition called race-freeness are determined. This was later extended to all
Borel winning conditions [GW14], provided concurrency is bounded. Winning
conditions were also generalized to a quantitative notion of payoff in [CW13],
and a value theorem was proved. As witnessed by these determinacy results,
and despite concurrency, our games remain total information games (unlike e.g.
[dAHKO07]). We investigated in [CGWI3| an extension to partial information
games, were determinacy is lost. Winskel also extended the setting to proba-
bilistic or quantum strategies [Win13a].

In our basic setting, games are affine: each event can occur at most once.
It is key for many applications (most notably to semantics) that one autho-
rizes to replicate events, in such a way that distinct copies are indistinguishable
from each other. To that effect, we equipped games with a notion of symme-
try expressing indistinguishability of events. Strategies then have to respect
this additional structure,by treating uniformly symmetric events. This can be
done in two ways: the first option is to saturate strategies by forcing them to
play non-deterministically all symmetric events. In [CCW14], we developped
a bicategory of saturated strategies on games with symmetry, using it to allow
replication and construct analogues of AJM [AJMO00] and HO [HO00] games. In
[CCW15] we developped a second option, and showed that with some minimal-
ity assumption on strategies one could obtain a bicategory of uniform strategies
while avoiding saturation and the addition of meaningless non-deterministic
choices. We showed that this gave a cartesian closed category, supporting an
intensionally fully abstract model of PCF where independent sub-computations
are performed in parallel.

Perspectives. There is a lot of ongoing work on the topic of concurrent games
on event structures. On the foundamental side, we are looking for a generaliza-
tion of the basic setting presented here that accommodates better events with
disjunctive causality, i.e. that can occur for several distinct reasons. On the
semantic side, we have multiple research directions. To cite a few, we want
to represent non-interference as determinism in concurrent languages, to enrich
strategies to keep information about possible local deadlocks or divergences,
and to mix symmetry with probabilities in order to build a denotational model
combining probabilities, non-determinism and concurrency.

But beyond semantics, our concurrent games give a powerful and precise
description of the evolution of concurrent processes. We wish to extend this
basic framework in order to set a standard for a concurrent notion of games
and strategies. We hope this framework will be then be a relevant and useful
tool for various purposes, from handling algorithmic issues in concurrency to
investigating its logical properties.
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