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Abstract 

 

Penicillium is a diverse fungal genus with hundreds of species occurring worldwide 

in various substrates, from soil to food, and with various lifestyles, from necrotrophic 

pathogenicity to endophytic mutualism. Several species are important for human affairs, 

being widely used in industry, such as the penicillin-producer P. rubens, the two cheese 

starters P. camemberti and P. roqueforti, and the mold used for fermenting sausages, P. 

nalgiovense. Other species are food spoilers that produce harmful mycotoxins or cause 

damages in fruit crops. Currently, 30 genomes of Penicillium belonging to 18 species are 

available. In this chapter, we reconstruct a phylogenetic tree based on available 

Penicillium genomes and outline the main features of the genomes, such as gene and 

transposable element content. We then review the recent advances that the available 

genomic and transcriptomic resources in the Penicillium genus have allowed regarding 

our understanding of the genomic processes of adaptation, including changes in gene 

content, expression and strikingly frequent and recent horizontal gene transfers. In 

addition, we summarize recent studies using genetic markers on the level of genetic 

diversity, mode of reproduction and population structure within Penicillium species. 

Overall, the Penicillium genus appears highly suitable models for studying the 

mechanisms of adaptation. 

 

 

 

  



2 

 

Introduction 

 

Penicillium is a diverse fungal genus with 354 accepted species today (Visagie et al., 2014b), 

occurring worldwide in various substrates, from soil to food. Their lifestyles also cover a broad 

range, from necrotrophic pathogenicity to endophytic mutualism, although most are 

saprotrophs. As a consequence of these ecological niches, many Penicillium species have 

important economic and social relevance for human populations. Several species are widely 

used in industry, such as the penicillin-producer P. rubens, the two cheese starters P. 

camemberti and P. roqueforti, and the mold used for fermenting sausages, P. nalgiovense 

(Bernáldez et al., 2013). Other species cause damages and yield loss in fruit crops, e.g., P. 

digitatum and P. italicum, while others are a concern for food safety because of their production 

of mycotoxins, such as patulin (Eckert and Eaks, 1989; McCallum et al., 2002). 

In addition to their economic significance, Penicillium molds also provide a tractable 

model for understanding the genetic and genomic processes underlying adaptation, due to the 

diversity of their ecological niches, their small genomes, their long haploid phase, their short 

generation time, and their easy manipulations in laboratory. Therefore, they can help addressing 

the current key challenges in evolutionary biology, including the identification of the genes 

involved in ecologically relevant traits as well as the understanding of the nature, time course, 

and architecture of the genomic changes involved in the origin and processes of population 

adaptation and divergence (Gladieux et al., 2014).  

The Penicillium species used in industry (e.g., for cheese maturation, sausage 

fermentation or for penicillin production) represent particularly well-suited organisms for 

studying domestication, a selection-based process studied since the dawn of evolutionary 

thinking as a model of rapid adaptation and diversification (Darwin, 1868). Yet, the process of 

domestication has been much less studied in eukaryote microorganisms than in plants or 

animals. Several traits are typically modified in domesticated fungi, such as color of colonies, 

growth rate, thallus density, length of conidiophores, rate and rapidity of spore germination 

(Eichler, 1968; Moreau, 1979). In the baker’s yeast Saccharomyces cerevisiae, the genomic 

processes associated with domestication include large-scale duplications leading to genome 

size expansions (Liti and Louis, 2005; Machida et al., 2005), the acquisition of new traits by 

horizontal gene transfers (HGT) (Hall et al., 2005; Khaldi and Wolfe, 2008; Khaldi et al., 2008; 

Novo et al., 2009) and hybridization (Liti et al., 2006). These mechanisms have been suggested 
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as ways for fungi to increase their biochemical repertoire and their ability to adapt to new 

ecological niches, but its generality remains to be assessed (Friesen et al., 2006; Khaldi and 

Wolfe, 2008; Khaldi et al., 2008; Rosewich and Kistler, 2000; Wisecaver et al., 2014).  

In this chapter, we aimed at summarizing the insights that the available genomic 

resources in the Penicillium genus have contributed to our understanding of the genomic 

processes of adaptation. In addition, we review recent studies using genetic markers on the level 

of genetic diversity, mode of reproduction and population structure within Penicillium species. 

We start with a section describing the Penicillium species for which genomes are available, 

with special emphasis on their ecological niches and life history traits. Second, we reconstruct 

a phylogenetic tree based on available Penicillium genomes and outline the main features of 

the genomes, such as gene and transposable element content. Third, we summarize recent 

findings on strikingly frequent and recent horizontal gene transfers. Fourth, we review some of 

the recent transcriptomic studies performed in Penicillium fungi. We finally review recent 

investigations on genetic diversity and population structure within Penicillium species.  

 

Ecological niches and life history traits 

Currently, 30 genomes of Penicillium belonging to 18 species are available in public databases 

(Table 1); these species are necrotrophic plant pathogens (P. digitatum, P. expansum, P. 

italicum), common food spoilers (P. biforme, P. fuscoglaucum, P. carneum, P. paneum), or key 

industrial species for food production (P. camemberti, P. roqueforti, P. nalgiovense), 

pharmaceutic industry (P. rubens) or biorefinery (P. decumbens). The genome described as P. 

aurantiogriseum in the databases (Yang et al., 2014) most likely belongs to P. expansum 

(Ballester et al., 2015). We detail below some of the specific traits and lifestyles of the 

Penicillium species with a sequenced genome. 

The two species used for cheese production, P. camemberti and P. roqueforti, though 

sharing the same nutrient-rich ecological niche, are not closely related and have different 

domestication histories, thus providing ideal models to study parallel adaptation (Elmer and 

Meyer, 2011). The fungus P. camemberti, used for the maturation of soft cheeses like Brie and 

Camembert, is the result of selection programs aiming at improving the texture of the colony, 

the color of the conidia and physiological characteristics of mycelia. This human-created white 

species is thought to be derived from a single clone of P. commune (Pitt et al., 1986), a species 

complex split into P. biforme and P. fuscoglaucum (Giraud et al., 2010). Penicillium 

camemberti has never been isolated from other substrates than dairy products, in contrast to P. 

fuscoglaucum and P. biforme, considered as contaminants by stakeholders because of their 
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blue-grey color (Frisvad and Samson, 2004). Penicillium roqueforti, used as a starter culture in 

the production of blue veined-cheeses, is in contrast widespread in food environments and has 

also been isolated from plant environments such as silage or wood (Frisvad and Samson, 2004).  

Penicillium carneum and P. paneum, two sister species of P. roqueforti, are common 

food spoilers responsible for the production of harmful mycotoxins (O’Brien et al., 2006; 

Petersson and Schnürer, 1999). Penicillium nalgiovense is used in the food industry as an 

inoculum on fermented dry sausages in Italy, Spain and France (Bernáldez et al., 2013). It 

contributes to the taste of sausages and it helps preventing desiccation and protecting them from 

undesirable microorganisms through antibacterial and antifungal activities (Lücke, 1997; Lücke 

and Hechelmann, 1987). 

The discovery by Alexander Fleming and subsequent mass production of β-lactam 

antibiotics (including penicillin) have revolutionized medicine and greatly contributed to 

reduce the mortality due to infectious bacterial diseases in the world (Fleming, 1929; Hersbach 

et al., 1984). The production of antibiotics in large amounts has been made possible through 

strain improvement in P. rubens. Industrial strains are all derived from a single strain, 

NRRL1951, isolated from a spoiled cantaloupe during World War II (Raper et al., 1944). Until 

recently, P. rubens was considered as a synonym of P. chrysogenum, but it is now accepted as 

a closely related but separated species (Houbraken et al., 2011). Penicillium solitum is a 

common food spoiler (in cheeses and dry meats such as sausages and salami), a pomaceous 

fruit pathogen (Frisvad, 1981; Pitt and Leistner, 1991; Sanderson and Spotts, 1995) and it has 

also been isolated from apple orchards’ soil and house dust (Frisvad and Samson, 2004; 

Papagianni et al., 2007; Visagie et al., 2014a). It is also used for production of compactin,a 

cholesterol-lowering agent with also an antifungal effect (Frisvad and Samson, 2004).  

Penicillium digitatum is a necrotrophic pathogen responsible for up to 90% post-harvest 

losses in citrus storage, particularly in arid and sub-tropical climates (Eckert and Eaks, 1989). 

In contrast to most other necrotrophic fungi, P. digitatum seems highly specialized as it has 

never been collected in any other substrate than citrus (Barkai-Golan, 2001). It is therefore a 

model for the study of specialization in the necrotrophic lifestyle. Penicillium italicum presents 

a very similar lifestyle on the same substrate (Palou, 2014). 

Penicillium expansum is famous for being the first described Penicillium species; it is 

an important post-harvest spoilage agent that can cause great losses in apple storage facilities 

(Jurick et al., 2011). In contrast to P. digitatum, P. expansum can be found in a wide array of 

other substrates and is a concern for health care as it can produce patulin, a highly toxic 
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mycotoxin (McCallum et al., 2002). The role of patulin in the capacity to colonize fruits and 

diverse ecological niches remains debated (Ballester et al., 2015).  

Penicillium capsulatum and P. decumbens both produce secondary metabolites useful 

for the industry, in particular highly efficient enzymes for degrading cellulose; P. decumbens 

is also used in biorefinery as a renewable source for oil production (Li et al., 2010). Penicillium 

verrucosum and P. nordicum are both known for producing ochratoxin A, one of the most 

common mycotoxins in spoiled food (Castella et al., 2002). Penicillium paxilli is the species 

which the potent tremor-inducing blocker of calcium-activated potassium channels paxillin was 

originally isolated from (Berry et al., 2015).  

 

 

Phylogenetic relationships, genome size and content, and changes in gene content  

Despite the economically and ecologically important role of Penicillium fungi, their 

phylogenetic relationships still remain unclear, with only a few phylogenetic trees published, 

based on single genes (Houbraken and Samson, 2011; Samson et al., 2004; Seifert et al., 2007). 

We therefore constructed a phylogenetic tree, including all Penicillium strains with an available 

sequenced genome and four Aspergillus species as outgroups, based on 3,986 shared single-

copy orthologs, corresponding to a concatenated alignment of 1,198,500 bp (Figure 1). In the 

Penicillium clade, some internal nodes remained poorly supported; this may reflect a rapid 

radiation in this clade, leading to incomplete lineage sorting, and/or hybridizations or recurrent 

horizontal gene transfers (Cheeseman et al., 2014; Ropars et al., 2015).  

 Genomes in the Penicillium genus appear highly dynamic, with estimated genome sizes 

ranging from 25 Mb to 36 Mb (Table 1). A relationship between host range and genome size 

has been proposed for fruit pathogens (Ballester et al., 2015; Marcet-Houben et al., 2012). For 

example, P. digitatum, which presents the smallest genome (25.7Mb in average), is only able 

to infect citrus fruits, whereas the generalist P. expansum (pathogen of pome and stone fruits) 

has the largest genome among fruit pathogens (ca 31 Mb); P. italicum presents intermediate 

host range (mainly citrus fruits) and genome size (ca 29 Mb) (Table 1). 

 We analysed the repeat content of all available genome using RepeatMasker (Smit et 

al., 2013). Overall, Penicillium genomes have a low proportion of interspersed repeats, ranging 

from 0.32 to 1.71% of total genome assembly lengths, and yet all classes of transposable 

elements (TEs) are represented (Figure 2). The 10 most abundant types of TEs include four 

non-LTR i retroelements (I-1_AO, I-4_AO, I-5_AO and I-6_AO), three mariner DNA 

transposons (Mariner-6_AN, MarinerL-1_AO and Mariner-1_AF), one hAT DNA transposon 
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(hAT-1_AN), one gypsy LTR retrotransposon (Gypsy1-I_AO) and one R1 non-LTR 

retroelement (RTAg4). Gypsy elements are by far the most abundant TE class found in 

Penicillium genomes as they account for 20% of all TEs; mariner elements constitute the 

second most abundant class (13%).  

  Penicillium biforme, P. camemberti and P. fuscoglaucum, three closely related species 

occurring in cheese, show the largest genome sizes among available Penicillium genomes (ca. 

35-36 Mb, Table 1), which is not associated with a particularly high TE content (Figure 2). 

Interestingly, a large expansion of the proteome seems to have occurred in the ancestor of this 

clade, indicating that the increase in genome size might be correlated with the acquisition of 

new genes (Rodríguez de la Vega et al., 2015). In contrast, P. digitatum is characterized by a 

much lower number of genes than other Penicillium lineages (Marcet-Houben et al., 2012; 

Ropars et al., 2015), which probably relates to its highly specialized necrotrophic lifestyle.  

Comparative genomic studies have revealed interesting patterns of gains or losses in 

genes involved in the production of secondary metabolites, such as penicillin, patulin or small 

secreted proteins acting as effectors in pathogens. Penicillium rubens for instance has acquired 

its capacity to produce high quantities of penicillin through the duplication of its penicillin 

biosynthetic gene cluster (Fierro et al., 1995) A comparison of two industrial P. rubens 

genomes, one of a high-penicillin producing strain and one of a low-penicillin producing strain, 

revealed in the high-penicillin producing strain an even higher number of copies of the 

penicillin biosynthetic gene cluster, as well as many genomic structural variations, such as 

translocations and gene gains/losses, likely related to an enhanced nitrogen and energy 

metabolism (Wang et al., 2014). In the necrotrophic species P. expansum, a large number of 

secondary metabolism gene clusters were identified that were absent in other sequenced 

Penicillium genomes and may be involved in pathogenicity (Ballester et al., 2015). Actually, 

despite a major genome contraction compared with other Penicillium species, P. expansum had 

the largest repertoire of secondary metabolites genes, indicating high numbers of gene gains 

and losses in this species. The patulin gene cluster was inferred to be present in the ancestor of 

P. expansum and P. roqueforti, its absence in other lineages of this clade implying gene losses 

(Ballester et al., 2015). Overall, Penicillium genomes thus appear highly dynamic, with changes 

in gene content relating to genomic adaptations. 
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Horizontal gene transfers 

The multiple available Penicillium genomes have further allowed detecting dozens of 

horizontal gene transfers (HGTs) that are transmissions of genetic material between species by 

other means than sexual reproduction. HGT events are most often detected by the existence of 

incongruences between gene genealogies and the species tree. Indeed, the finding of orthologs 

from distantly related species placed close together in a gene tree most likely indicates that this 

gene has recently been horizontally transferred between the two species instead of having 

followed vertical inheritance and divergence along the species tree. Despite long thought to be 

rare in eukaryotes, recent studies have shown that HGTs may play a major role in adaptation in 

this lineage, in particular in fungi (Gladieux et al., 2014; Keeling, 2009; Keeling and Palmer, 

2008; Wisecaver et al., 2014).  

Fungi are the eukaryotic group for which the largest number of HGT events has been 

described so far. Most of described HGTs have a prokaryotic origin, likely reflecting the 

abundance of prokaryotes in all environments and the relative ease of detecting such HGT 

events compared to those from a eukaryotic origin (Gladieux et al., 2014). However, many 

HGTs between fungi have also been described, such as transfers of genes involved in secondary 

metabolite pathways in Aspergillus and Penicillium clades (Wisecaver et al., 2014). 

Among Penicillium species, the penicillin-producer P. rubens may have acquired 

several important genes from bacteria by horizontal gene transfers, including some of the 

penicillin biosynthetic genes, pcbAB and pcbC, and the arsenate-resistance cluster (van den 

Berg et al., 2008). Genome analysis of the necrotrophic fungus P. digitatum revealed four 

putative genes that have been horizontally acquired from prokaryotes, including DEC1, likely 

playing a role in pathogenicity (Marcet-Houben et al., 2012); indeed, it belongs to a gene family 

associated with virulence in maize infections, with homologs in plant pathogenic fungi and in 

bacteria, but without any homolog in non-pathogenic Penicillium species.  

Several other horizontal gene transfers in Penicillium have occurred in the cheese 

environment, being striking by 1) the size of the transferred regions (i.e., several kilobases), 2) 

the eukaryotic origin of these transfers (likely among cheese-associated Penicillium species), 

3) the number of species in which the same regions have been horizontally transferred, and 4) 

the very recent date of the transfers, likely associated with the human history of cheese 

production (Cheeseman et al., 2014; Ropars et al., 2015). These horizontally transferred regions 

(HTRs) indeed occurred between Penicillium species from the cheese environment, and were 

completely identical at the nucleotide level between distant species (otherwise having a 

pairwise sequence identity of 85-90%) while lacking in other closely related species. One of 
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these HTRs, Wallaby, is a 575 kb region that accounts for 2% of the P. roqueforti genome, and 

it can be in a single block or in a few fragments depending on the species (Cheeseman et al., 

2014). Another HTR, CheesyTer, is 80 kb long, and is always found in a single block (Ropars 

et al., 2015).  

These two HTRs are flanked by copies of transposable elements (TEs) belonging to a 

specific family, the i non-LTR retrotransposons, that are rare elsewhere in the genomes (Ropars 

et al., 2015). This suggests that these TEs may be involved in the horizontal gene transfers. In 

fungi, the transfer of genetic material is thought to occur through conjugation, natural and 

agrobacterial transformation, viral transduction, or anastomosis (Coelho et al., 2013; Wisecaver 

and Rokas, 2015). In Fusarium, for example, the transfer of an entire chromosome can occur 

by simple co-incubation of mycelial of two strains (Ma et al., 2010).  

The gene content in Wallaby and CheesyTer suggests that these transfers may play an 

important role in the adaptation of these fungi to the cheese environment. Among the 248 genes 

that Wallaby was predicted to contain, two genes, paf and Hce2, encoded proteins that may be 

involved in antagonistic interactions with other microorganisms (Cheeseman et al., 2014). 

CheesyTer carries 37 putative genes, including genes coding for lactose permease and beta-

galactosidase, which likely provide advantages in terms of use of the cheese substrate (Ropars 

et al., 2015). Actually, these two genes were found to be overexpressed in the first days of 

cheese maturation (Lessard et al., 2014; Ropars et al., 2015). 

In P. roqueforti, all strains were found to carry either both or none of these two HTRs. 

The two HTRs were only present in strains found in the dairy environment, while lacking in 

some strains from cheese and in all the strains isolated from other environments, such as silage 

or wood (Cheeseman et al., 2014; Ropars et al., 2015). This further indicates an advantage 

conferred by these two HTRs in cheese.  

Experiments of growth and competition on different media have further supported a role 

of the two HTRs in adaptation to cheese. Indeed, P. roqueforti strains carrying the two HTRs 

showed a significantly higher growth rate on cheese medium and a significantly lower growth 

rate on minimal medium (Ropars et al., 2015). Furthermore, P. roqueforti strains carrying the 

two HTRs showed a significant competitive advantage, both against P. roqueforti strains 

lacking the HTRs and against other Penicillium species also lacking the HTRs. Interestingly, 

this effect was only significant when strains were grown on cheese medium and not on minimal 

medium (Ropars et al., 2015). 
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Transcriptomics  

The availability of Penicillium genomes have also facilitated transcriptomic studies, i.e., 

investigations of mRNA expression in different conditions, which allows studying the 

regulation of genes and therefore detecting important genes involved in the adaptation to 

particular environments. Transcriptomics in Penicillium has focused so far on penicillin 

production in P. chrysogenum, on secondary metabolites production in plant pathogens, such 

as P. expansum, P. digitatum and P. italicum, and on cheese-making fungi.  

The transcriptome analyses of the pathogenic P. expansum on apple revealed the 

induction of several metabolic pathways during infection and thus identified putative 

pathogenicity factors, such as proteases, cell-wall degrading enzymes and oxidoreductases 

(Ballester et al., 2015). Putative effectors that are able to modulate host physiology were also 

identified (Ballester et al., 2015).  

A metatranscriptome analysis of P. camemberti and Geotrichum candidum was 

performed in a camembert-type cheese matrix (Lessard et al., 2014). The functional annotation 

allowed the identification of the biological processes involved in cheese ripening. Globally, 

similar functions appeared involved in the use of the cheese substrate in both the yeast G. 

candidum and the mold P. camemberti (Lessard et al., 2014). 

A system biology approach, including transcriptomic but also metabolome and 

metabolic flux analyses, was used to understand the loss of penicillin production capacity by 

the high-producing P. chrysogenum strain during long-term ethanol-limited cultivation, a 

phenomenon called degeneration. The findings indicated that degeneration was due to the 

production of a lower quantity of the first two enzymes acting during penicillin biosynthesis, 

which may be due to a decrease of translation efficiency (Douma et al., 2011). 

 

 

Population genetic diversity within Penicillium species and mode of reproduction 

The genetic diversity has also been investigated within Penicillium species in some cases, 

although only with neutrally-evolving markers so far. The population genetic variability has 

been found to differ drastically among Penicillium species. In P. camemberti, no genetic 

polymorphism could be detected using either DNA fragments or microsatellites. This is 

consistent with this species being a clonal lineage originating from a white mutant in the cheese-

making mold formerly used for making Brie, P. commune (Giraud et al., 2010). In contrast, the 

genetic diversity in P. roqueforti was revealed to be substantial using microsatellites (Ropars 

et al., 2014) and DNA fragment sequences (Gillot et al., 2015). A strong population structure 
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was found, with one population containing only cheese strains, most of which carried the HTRs 

described above, Wallaby and CheesyTer, and a second population containing cheese and non-

cheese strains, all lacking the HTRs. These two populations showed further, although weaker, 

subdivisions that corresponded to different morphologies and different cheese types (Gillot et 

al., 2015). 

To date, genetic diversity has not been investigated within other Penicillium species, 

with the exception of P. chrysogenum, which has actually led to the identification of cryptic 

species and in the subsequent renaming of the penicillin-producing strain in P. rubens 

(Houbraken et al., 2011). 

Although sexual stages have been described in many Penicillium species (Visagie et al 

2014b), others has been historically considered to be exclusively asexual. This actually holds 

true for one fifth of fungal species (Taylor et al., 1999), but was mainly due to the difficulty of 

observing sex in this phylum in nature. Indeed, direct or indirect evidence of sex have been 

observed in most cases when thoroughly investigated. Indirect evidence include 1) the presence 

of the complete meiotic toolbox (i.e., all the genes known to be necessary for meiosis and for 

mating-type determinism, with sequences apparently functional, i.e., under purifying selection), 

2) footprints of recombination in populations, and 3) footprints of RIP (repeat-induced point-

mutation), a defense mechanism of fungal genome inducing C/T transition mutations in 

repeated sequences during sexual reproduction in ascomycetes (Galagan and Selker, 2004). 

Recent studies have improved our knowledge of the reproduction mode and breeding system in 

Penicillium. All species studied so far were shown to be heterothallic, as haploid genomes 

carried a single mating-type allele, either MAT1-1 or MAT1-2 (Hoff et al., 2008; Ropars et al., 

2012).  

After discoveries of indirect evidence of sex in populations of the penicillin-producer 

P. rubens, with occurrence of both mating-type alleles (Hoff et al., 2008) and of RIP footprints 

(Braumann et al., 2008), a sexual cycle could be induced in this species (Böhm et al., 2013). 

Similarly, in the cheese species P. roqueforti, mating types were shown to occur in balanced 

ratios in populations, RIP footprints were observed and purifying selection was inferred on 

genes involved in mating (Ropars et al., 2012). Later, population analyses showed no linkage 

disequilibria among markers, suggesting recurrent recombination events and fruiting bodies 

and recombinant sexual ascospores could be successfully produced in vitro (Ropars et al., 

2014).  
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Conclusions and future prospects  

 

Genomic and transcriptomic analyses have revealed several interesting genes and mechanisms 

likely involved in the adaptation of Penicillium species to various environments. In particular, 

the domesticated penicillin-producing and cheese-making Penicillium appear ideal model 

eukaryotes for studying the genomic processes of adaptation, given the recent and strong 

selection by humans. These genomic inferences now need to be validated using functional 

genetics, which will be allowed by the recent development of transformation and gene silencing 

methods (Durand et al., 1991; Gil-Durán et al., 2015; Goarin et al., 2014; Kosalková et al., 

2015; Ullán et al., 2008). It will also be very interesting to explore the population genomics of 

adaptation within species, in particular in the Penicillium fungi with high genetic diversity and 

a variety of ecological niches, such as P. roqueforti. Footprints of selective sweeps for instance 

may reveal selection having acting recently on other genes that the horizontally-transferred 

regions. 
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Figure Legends 

 

Figure 1: Maximum likelihood tree of genome sequenced Penicillium based on concatenated 

alignment of 3,986 single copy orthologs using RaxML (Stamatakis, 2014). Node labels 

correspond to the proportion of gene trees supporting the node. 

 

Figure 2: (A) Number and classification of transposable elements found in Penicillium 

genomes; (B) Percentage of the Penicillium genomes composed of interspersed repeats. 
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