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ABSTRACT 
 
The dominant frequency (DF) of the atrial activity signal 
is arguably one of the most relevant features characteriz-
ing atrial fibrillation (AF), the most common cardiac ar-
rhythmia. Its accurate estimation from noninvasive acqui-
sition modalities such as the electrocardiogram (ECG) can 
avoid risks of potential complications to patients in a cost-
effective manner. However, the approximation of the 
underlying intracardiac atrial activity by noninvasive 
techniques such as average beat subtraction or blind 
source separation has not always been satisfactory. In the 
present work, a new approach based on the ensemble 
empirical mode decomposition (EEMD) is proposed for 
AF DF estimation. Our results suggest that EEMD pro-
vides more accurate estimates of intracardiac AF DF than 
alternative noninvasive methods. In addition, the empiri-
cal nature of EEMD overcomes important drawbacks of 
other techniques, simplifying its implementation in auto-
matic tools for diagnosis aid.  
 

Index Terms— Atrial fibrillation, dominant frequen-
cy,  electrocardiogram, empirical mode decomposition 

 
 

1. INTRODUCTION 
 
Atrial fibrillation (AF) is the most common sustained 
arrhythmia encountered in clinical practice, particularly in 
elderly people [9]. This cardiac disease consists in disor-
ganized electrical wavefronts propagating across the atria, 
triggered by ectopic foci around the pulmonary veins, 
preventing a good synchronization between atrial pump-
ing and ventricular activity. This dysfunction is reflected 
in the surface electrocardiogram (ECG) in the form of 
quasi-periodic sawtooth-like fibrillatory waves (f-waves), 
usually in the range of 3 to 9 Hz, instead of the P-wave 
preceding the QRST complex in normal sinus rhythm [9]. 

The estimation of the AF dominant frequency (DF) 
from the standard surface ECG remains a challenging 
problem, and it requires a preprocessing step typically 
based on average beat subtraction (ABS) [1] or blind 
source separation (BSS) [14] to cancel out the QRST 
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complex of ventricular activity. Several approaches aim at 
computing the AF DF from different standpoints to check 
the correlation between the surface manifestation of AF 
and intracardiac measurements [4, 7], but correlation 
results are perfectible. While modern computer aided 
diagnosis systems require efficient and simple tools to 
tackle the intrinsic variability of biomedical signals, few 
research works have actually managed to cope with the 
unavoidable difficulties of automatic AF DF computation.  

The present study applies the ensemble empirical 
mode decomposition (EEMD) [13] to noninvasively ex-
tract atrial spectral information in patients suffering from 
AF. This technique is a noise-assisted variant of the em-
pirical mode decomposition (EMD) [8], which uses em-
pirical knowledge of oscillations intrinsic to a time series 
in order to represent them as a superposition of compo-
nents with well-defined instantaneous frequencies. These 
approaches hint at promising signal processing techniques 
to deal with problems of a multi-scale nature as in cardio-
vascular electrophysiology based applications. Unlike 
other traditional decompositions such as the Fourier trans-
form, the EMD is a data-driven technique that reflects in a 
natural way the characteristics of the signals under study 
without requiring a predetermined basis system, letting 
frequency as well as amplitude vary over time [8, 13]. 

EMD has been applied to analyze ECG signals for dif-
ferent purposes. Some applications of this technique main-
ly concern the artifact rejection stage of ECG prepro-
cessing, either to eliminate high frequency noise artifacts 
or to reduce the low frequency contribution due to respira-
tion [3]. EMD has also been employed as a feature extrac-
tion method to detect ventricular fibrillation [2]. A similar 
approach is carried out in [12] directly for QRS complex 
detection. Furthermore, an EMD block to extract spectral 
features from ECG has been included in a predictive mod-
el for determining paroxysmal AF termination [10]. How-
ever, the obtained surface DF estimates are not linked to 
intracardiac values in that study. On the other hand, the 
ensemble version currently begins to arouse interest for 
ECG analysis. For instance, EEMD is applied on ECG 
identification in [15]. 

This work analyzes the ability of EEMD to estimate 
the intracardiac AF DF from the surface ECG. The tech-
nique is compared to alternative methodologies for atrial 
activity analysis, such as ABS for QRST complex cancel-
lation [1] and BSS based on independent component anal-
ysis (ICA) [14]. 



2. DATABASE 
 
2.1. Study population 
 
Sixty-one consecutive patients (51 male, 61.5±10.6 years) 
having persistent and long-lasting persistent AF [9] (AF 
history=62.3±56.3 months, current AF episode=7.14±11.1 
months) were included in the study. All patients were 
treated at the Cardiology Department of Princess Grace 
Hospital, Monaco. The study was approved by the Institu-
tional Committee on Human Research. According to insti-
tutional guidelines, all patients gave written informed 
consent. 
 
2.2. Signal acquisition 
 
One minute standard 12-lead ECG was acquired at a sam-
pling rate of 977 Hz (Prucka Engineering, Inc., Houston, 
TX, USA). ECG signals were filtered by a 4th-order zero-
phase bandpass type-II Chebyshev filter with a lower 
cutoff frequency of 0.5 Hz and an upper cutoff frequency 
of 40 Hz to remove baseline wander, power line and myo-
electric interference as well as high frequency artifacts.  

Simultaneously to the ECG, an atrial electrogram 
(EGM) was also acquired for each patient by placing a 
bipolar catheter within the left atrial appendage (left atrial 
diameter=47.4±6.92 mm).  
 

3. SIGNAL PROCESSING 
 
3.1. Ensemble empirical mode decomposition                                
 
The basic EMD is a heuristic unsupervised data decompo-
sition technique, with no need for a priori defined basis 
system. This technique adaptively and locally decomposes 
any nonstationary time series as a sum of intrinsic mode 
functions (IMF), representing zero-mean amplitude and 
frequency modulated components [8]. Perfect reconstruc-
tion is assured by superimposing all extracted IMFs to-
gether with the residual trend. The empirical nature of 
EMD offers the advantage over other signal decomposi-
tion techniques of not being constrained by conditions that 
often can only be roughly assumed, especially in biologi-
cal signals.  

According to EMD, the original signal 𝑥 𝑡  can be ex-
pressed as 
 

𝑥 𝑡 = 𝑐(!)(𝑡)
!

!!!

+ 𝑟 𝑡  (1) 

 
where 𝑐(!) 𝑡  represents the 𝑗th IMF and 𝑟 𝑡  the remain-
ing residual trend.  

During sifting, mode mixing as well as boundary arti-
facts can be avoided by a variant called ensemble EMD 
(EEMD) [13]. This is a noise-assisted data analysis meth-
od consisting in adding white noise of finite amplitude to 
the raw data, and then applying the EMD algorithm. This 
procedure is repeated several times, and each IMF is final-
ly calculated as an ensemble average of the corresponding 

IMFs obtained over the noise realizations. With a growing 
ensemble number, the resultant IMF is expected to con-
verge to the most accurate IMF. However, the ensemble 
factor will depend on the application goal and the most 
relevant frequency range under study. The added noise is 
treated as random noise that appears in the measurement. 
In this way, the EMD of the nth noisy observation will be 

 

𝑥! 𝑡 = 𝑥 𝑡 + 𝜖! 𝑡 = 𝑐!
(!) 𝑡

!

!!!

+ 𝑟! 𝑡  (2) 

 
where 𝑥 𝑡  is the original signal (in our case, the ECG 
signal),  𝜖! 𝑡  is the nth random noise realization and 𝑐!

(!) 
represents the jth IMF obtained for the nth noisy observa-
tion. Thus, the resultant IMF 𝑐(!) is computed by averag-
ing the ensemble 𝑐!

(!), 𝑛 = 1, 2,… ,𝐸.  
Therefore, EEMD requires setting two parameters, be-

sides 𝐽, namely the ensemble size E and a proper standard 
deviation 𝜎!"#$%   = 𝛾𝜎!"#$%& of additive Gaussian noise, 
where 𝜎!"#!"# denotes the standard deviation of the origi-
nal signal amplitude distribution. Usually, both parameters 
are chosen empirically [13].  

In this study, E = {5, 10, 15} and 𝛾 = {0.05, 0.1, 0.2} 
were tested. These are usual values found in the          
literature [15]. All 10 s signal segments recorded in lead 
V1 were decomposed into 𝐽 = 8 IMFs, a number high 
enough to cover the spectral range of interest. 
 
3.2. Adaptive singular value cancellation  
 
Adaptive singular value cancellation (ASVC) belongs to 
the family of ABS-based methods for cancelling ventricu-
lar activity from ECG signals to keep only the atrial ac-
tivity [1]. The use of this particular technique is justified 
by the high degree of temporal redundancy present in the 
ECG.  

Firstly, the algorithm detects the R-peaks and both the 
starting and ending points of every QRST complex. Then, 
all the QRST complexes are aligned on their R-peak loca-
tions and their eigenvector sequence is computed by 
means of singular value decomposition (SVD). In this 
way, the most representative ventricular activity can be 
obtained by the highest variance according to the eigen-
values and used as the cancelling template. Next, this 
template is adapted to the width and amplitude of every 
QRST occurrence, and temporally re-aligned with the R-
peaks. Finally, each customized template is subtracted 
from its corresponding QRST complex. Thus, the atrial 
activity is preserved in these segments, where it was 
masked by the ventricular activity contribution.  

This SVD–based algorithm provides a more accurate 
ventricular activity representation, better adapted to each 
individual QRST complex, than traditional ABS ap-
proaches, and a more reliable atrial activity extraction is 
consequently expected. This methodology has been wide-
ly used in the AF framework for f-wave analysis [1].  

In this work, the ASVC-based analysis was applied on 
20 s segments from lead V1, so that the number of beats 



was sufficiently high to guarantee an accurate algorithm 
performance [1]. 
 
3.3. RobustICA-f 
 
Another approach to noninvasive atrial activity extraction 
exploits the spatial diversity of the multi-lead ECG by 
means of BSS based on ICA. In this study, we employ the 
RobustICA-f algorithm proposed in [14], since it has been 
shown to compare favorably to other atrial signal extrac-
tion techniques [6]. RobustICA-f searches for directions 
of maximum independence within the space of data by 
relying on higher order statistics (kurtosis). By working in 
the frequency domain, this method simultaneously ex-
ploits the statistical independence between atrial and ven-
tricular components and the narrowband character of the 
atrial activity signal. 

In this study we applied RobustICA-f to 20 s segments 
of the 12-lead ECG. Out of the independent sources esti-
mated by the algorithm, the one with the highest spectral 
concentration and DF in the range of 3 to 9 Hz was select-
ed as the atrial source [14]. However, an accurate source 
selection required visual confirmation, since the above 
automatic criteria sometimes led to residual ventricular 
activity (T-wave components) overlapping in the frequen-
cy range of interest. 
 
3.4. AF DF estimation 
 
The surface AF DF was determined as the maximal peak 
frequency of Welch’s power spectral density after apply-
ing one of the different noninvasive methods for atrial 
signal extraction described in the previous section. 

Concerning invasive recordings, 20 s segments were 
preprocessed following the method proposed by Botteron 
and Smith [5] to overcome the drawbacks brought by the 

sharp biphasic morphology of the atrial depolarization 
waves in bipolar EGMs, which makes Fourier analysis 
unsuitable for representing the depolarization rate of the 
atrial tissue. After this preprocessing step, the intracardiac 
AF DF was also determined as the maximal peak frequen-
cy of Welch’s power spectral density. 
 

4. RESULTS 
 
4.1. Intrinsic mode function DF 
 
To determine which IMFs present DF values belonging to 
the typical AF frequency range (between 3 and 9 Hz) [9], 
EEMDs were performed in lead V1 of every patient for 
different values of the noise factor 𝛾.   For a given value 
of  𝛾, the DF of each IMF was averaged over the AF 
patient database. Results are depicted in Fig. 1. IMFs 1 
and 2 are omitted from this plot as they correspond to 
noisy artifacts, whose frequency content has most 
probably no biological meaning. Results by EMD are also 
discarded due to its sensitivity to spurious artifacts. 

According to the range of interest, IMFs number 5 and 
6 are the modes that may represent the fibrillatory activity 
for any of the noise factors tested. However, 𝛾 = 0.1 was 
the selected value for subsequent analysis, since it yields 
the closest estimate of the mean intracardiac frequency in 
the case of IMF 5. Interestingly this noise factor value is 
also typically used in research works dealing with EEMD 
[15].  

Table 1 shows the DF values as a function of the 
ensemble factor E. There are no relevant differences in the 
measurements for different ensemble factors. Hence, to 
reduce computational cost and simplify the interpretation, 
only the case with E = 5 and 𝛾 = 0.1 is considered in the 
sequel. 
 
E IMF 4 (Hz) IMF 5 (Hz) IMF 6 (Hz) 
5 11.89 6.30 3.76 
10 11.57 6.52 3.86 
15 12.05 6.40 3.78 

Table 1. Average DF values in lead V1 obtained for different 
values of the ensemble size E over the AF patient database, with 

noise factor γ = 0.1. 

 
4.2. Accuracy of ECG AF DF estimates 
 
Table 2 compiles the basic statistics of DF values comput-
ed by the different methods considered in this work, in-
cluding the benchmark values from intracardiac EGM. To 
evaluate the accuracy of the approximation, the difference 
between surface ECG and intracardiac EGM AF DF esti-
mations was computed. Table 3 shows the mean differ-
ence between DF value obtained by the three noninvasive 
approaches explained in Sec. 2 and the intracardiac DF 
value. Note that there is not statistically significant differ-
ence between the intracardiac DF values and the DF from 
IMF 5 after decomposition by means of EEMD.  IMF 5 
also presents the most favorable CI in the sense that zero 
is included within its range, whereas the rest of techniques 

 
Fig. 1. Mean DF values for several IMFs computed in lead 

V1 over the AF patient database for different noise      
factors γ, with ensemble size E = 5. The horizontal solid 

lines mark the typical AF DF interval (3 to 9 Hz). 
 



have a tendency to underestimate the EGM measures 
(negative mean difference and CI). Hence, IMF 5 approx-
imates most accurately the intracardiac DF values among 
the noninvasive approaches considered.  
 
 
AF DF measurement Mean (Hz) Std. Deviation 
Intracardiac 6.12 0.92 
RobustICA-f 5.41 1.34 
ASVC 5.65 0.93 
EEMD (IMF 5) 6.30 1.30 
EEMD (IMF 6) 3.76 0.97 

Table 2. DF mean and standard deviation values by different 
computation methods over the AF patient database. Ensemble 

size E = 5 and noise factor γ = 0.1 were used in the EEMD. 

 

Method 
Difference 

(Hz)  
Difference 
CI (95%) Sig. 

RobustICA-f  –0.72 [–1.04, –0.40] <0.001 
ASVC –0.47 [–0.74, –0.21] 0.001 
EEMD (IMF 5) 0.19 [–0.17, 0.55] 0.291 
EEMD (IMF 6) –2.36 [–2.70, –2.01] <0.001 

Table 3. Mean differences and confidence intervals (CI) when 
comparing the intracardiac DF with the surface DF estimated by 
the methods of Table 2. Sig.: significance value after applying 

paired t-tests over the AF patient database to contrast          
intracardiac and noninvasively estimated DF values. 

 
To check if there exist relevant spatial variations 

across the different lead locations for the EEMD method, 
Table 4 shows the accuracy values in terms of mean dif-
ference and CI for every lead. Of note that lead V1 pre-
sents the lowest difference that is not statistically different 
from zero.  

Figure 2 shows an example of a raw ECG signal from 
an AF patient from our database and Fig. 3 shows the 
resultant IMF 5 from the same patient, whose DF estima-
tion by means of EEMD was exact in comparison to the 
intracardiac DF value (5.10 Hz).  
 
 
ECG 
lead 

Difference 
(Hz)  

Difference CI 
(95%) Sig. 

I 1.17 [0.70, 1.65] <0.001 
II 0.42 [0.01, 0.83] 0.044 
III 0.66 [0.17, 1.16] 0.009 
aVR 0.83 [0.37, 1.29] 0.001 
aVL 0.68 [0.21, 1.14] 0.005 
aVF 0.82 [0.38, 1.27] <0.001 
V1 0.19 [–0.17, 0.55] 0.291 
V2 0.82 [0.36, 1.28] <0.001 
V3 1.25 [0.84, 1.66] <0.001 
V4 1.69 [1.26, 2.12] <0.001 
V5 1.63 [1.15, 2.11] <0.001 
V6 1.24 [0.79, 1.69] <0.001 

Table 4. Mean differences and confidence intervals (CI) when 
comparing the intracardiac DF with the estimated surface DF by 

means of EEMD (IMF 5) for every lead in the standard ECG. 

 
5. DISCUSSION 

 
In any clinical context, protocols to obtain physiological 
information about internal organs, such as the heart, from 
noninvasive measurements are highly desirable. In addi-
tion, reliable, powerful and easy to handle automatic sig-
nal processing techniques are also encouraged. Following 
this line, EEMD shows interesting advantages over other 
mathematical approaches to estimate noninvasively spec-
tral features of intracardiac signals. 

A preliminary analysis concluded that IMF 5 with en-
semble factor E = 5 approximates well the AF DF (Fig. 1, 
Table 1) needing a small number of iterations of the EMD 
algorithm. Then, we focused on the mean difference and 
its associated CI between the true DF (considering the 
intracardiac recordings as benchmark) and the IMF DF. 
According to the results detailed in Tables 2 and 3, EEMD 
is the method that best approximates the intracardiac AF 
DF. This fact is reflected in the mean difference < 0.2 Hz 
and a short CI around zero, pointing to a narrow error 

 
Fig. 2. A lead V1 signal from our AF ECG database. 

 
Fig. 3. IMF 5 obtained by EEMD with ensemble size E = 5 

and noise factor γ = 0.1 on the ECG signal of Fig. 2. 



margin with a 95% of significance level, robust against 
outliers.  

Even more relevant, the measurements obtained by 
means of EEMD show no statistically significant differ-
ence between groups, meaning that this technique neither 
overestimates nor underestimates the DF. Variability 
around the average DF values in the study population is 
relatively small (Table 2), but is in agreement with other 
studies on persistent forms of AF. 

Techniques based on BSS for noninvasive atrial activi-
ty extraction need several ECG leads (sufficient spatial 
diversity) [6, 14], whereas EEMD can be applied on sin-
gle leads. In addition, selecting the proper source linked to 
the atrial activity is not trivial. Although some criteria 
exist for choosing atrial sources (see Sec. 3.3), visual 
inspection was required in our analysis to check the selec-
tion of the most suitable source from RobustICA-f. In-
deed, the method failed in 11 out of the 61 cases, due to 
the presence of several possible atrial sources, thus ham-
pering the automatic processing. By contrast, EEMD does 
not suffer from the scaling and permutation indetermina-
cies typical of BSS techniques.  

Furthermore, EEMD works properly without requiring 
QRST cancellation. Therefore, the mathematical complex-
ity of the implementation is reduced and shorter time 
intervals can yield satisfactory performance, as shown in 
our experiments. Research works dealing with EMD and 
ECG are concerned with QRST amplitude distortion as a 
consequence of the decomposition [3, 15]. This is not a 
crucial issue for AF analysis, since we are just interested 
in atrial activity while ventricular activity is considered as 
an artifact. A residual T-wave contribution can be ob-
served in Fig. 3, but these waves are modulated by a high-
er frequency component that cannot be derived from ven-
tricular activity and seems to be linked to atrial activity. It 
should be remarked, however, that our goal is AF DF 
estimation and not atrial waveform recovery. 

Showing the highest accuracy in Table 4, V1 is the 
lead that best represents the atrial activity and the conse-
quent AF DF, in line with previous works pointing to this 
lead as the most suitable for AF analysis [11].  
 
 

6. CONCLUSIONS 
 
This work has applied the EMD approach to estimate the 
intracardiac DF from AF ECGs. The results have been 
compared to other noninvasive techniques such as BSS 
(RobustICA-f) and QRST complex cancellation (ASVC). 
In our AF patient database, EEMD outperforms the other 
techniques in terms of mean difference between the intra-
cardiac AF DF, considered as ground truth, and its nonin-
vasive computation from the surface ECG, and thus arises 
as the most accurate option to implement an automatic 
and efficient algorithm to extract spectral information for 
AF analysis. Future works should deepen the study of 
IMF properties to evaluate other atrial signal features 
characterizing AF, such as amplitude or spatiotemporal 
variability. The sample size robustness of EMD should 
also be assessed. 
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