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AN ELLIPTIC SYSTEM WITH DEGENERATE COERCIVITY

1. Introduction 1.1. Setting. In this paper we study the existence of solutions of the degererate elliptic system (1.1)

           -div a(x)∇u (b(x) + |z|) 2 + u = f (x), -div A(x)∇z (B(x) + |u|) 2 + z = F (x),
where Ω is a bounded, open subset of IR N , with N > 2, a(x) and A(x) are measurable matrices such that, for α, β ∈ IR + , (1.2) α|ξ| 2 ≤ a(x)ξξ, α|ξ| 2 (1.4) f (x), F (x) ∈ L 2 (Ω).

Theorem 1.1. Under the assumptions (1.2), (1.3), (1.4), there exist u ∈ W 1,1 0 (Ω) and z ∈ W 1,1 0 (Ω), distributional solutions of the system (1.1). 1.2. Comments. First of all, we note that existence of solutions belonging to the nonreflexive space W 1,1 0 (Ω) is not so usual in the study of elliptic problems. Recently the existence of solutions in W 1,1 0 (Ω) was proved in [START_REF] Boccardo | W 1,1 0 minima of non coercive functionals[END_REF], [START_REF] Boccardo | A semilinear problem with a W 1,1 0 solution[END_REF], [START_REF] Boccardo | Nonlinear degenerate elliptic problems with W 1,1 0 solutions[END_REF], for elliptic scalar problems with degenerate coercivity (so that this paper is an extension to the systems of some of those results) and in some borderline cases of the Calderon-Zygmund theory of nonlinear Dirichlet problems in [START_REF] Boccardo | W 1,1 0 solutions in some borderline cases of Calderon-Zygmund theory[END_REF].

The main difficulty of the problem is that even if the differential operator is well defined between W 1,2 0 (Ω) and its dual, it is not coercive on W 1,2 0 (Ω): degenerate coercivity means that when |v| is "large", 1 (b(x)+|v|) 2 goes to zero: for an explicit example see [START_REF] Porretta | Uniqueness and homogenization for a class of noncoercive operators in divergence form, dedicated to Prof. C. Vinti[END_REF].
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(see [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF], [START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF], [START_REF] Boccardo | A characterization of pseudo-monotone differential operators in divergence form[END_REF], [START_REF] Boccardo | Monotonicity of certain differential operators in divergence form[END_REF], [START_REF] Croce | On a generalized Wirtinger inequality[END_REF], [START_REF] Dacorogna | On the different convex hulls of sets involving singular values[END_REF], [START_REF] Dacorogna | Implicit partial differential equations and the constraints of nonlinear elasticity[END_REF],)

1
The study of problems involving degenerate equations begins with the paper [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity, dedicated to[END_REF] and it is developed in [START_REF] Boccardo | Some remarks on a class of elliptic equations[END_REF], [START_REF] Croce | The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity[END_REF], [START_REF] Croce | An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term[END_REF], [START_REF] Croce | An elliptic problem with two singularities[END_REF], [START_REF] Boccardo | W 1,1 0 minima of non coercive functionals[END_REF], [START_REF] Boccardo | A semilinear problem with a W 1,1 0 solution[END_REF], [START_REF] Boccardo | Nonlinear degenerate elliptic problems with W 1,1 0 solutions[END_REF] (see also [START_REF] Boccardo | Elliptic partial differential equations. Existence and regularity of distributional solutions[END_REF]) 2. Existence 2.1. A priori estimates. The first existence result is concerned with the case of a bounded data.

We recall the following definitions.

T k (s) = s, if |s| ≤ k; k s |s| , if |s| > k; G k (s) = s -T k (s).
Proposition 2.1. Let ρ > 0, σ > 0 and g, G ∈ L ∞ (Ω). Then there exist weak solutions w, W belonging to W 1,2 0 (Ω) of the system

           w ∈ W 1,2 0 (Ω) ∩ L ∞ (Ω) : -div a(x)∇w (b(x) + |T ρ (W )|) 2 + w = g(x), W ∈ W 1,2 0 (Ω) ∩ L ∞ (Ω) : -div A(x)∇W (B(x) + |T σ (w)|) 2 + W = G(x).
Proof. The existence is a consequence of the Leray-Lions theorem (or Schauder theorem) since the principal part is not degenerate, thanks to the presence of T ρ and T σ . Moreover, if we take G h (w) as test function in the first equation and G k (W ) as test function in the second equation, we have, dropping two positive terms,

         Ω [|w| -|g(x)|]|G h (w)| ≤ 0, Ω [|W | -|G(x)|]|G k (w)| ≤ 0. Then the choice h = g L ∞ (Ω) , k = G L ∞ (Ω) implies |w| ≤ g L ∞ (Ω) , |W | ≤ G L ∞ (Ω) . Thus, if we set ρ = g L ∞ (Ω) and σ = G L ∞ (Ω)
, we can say that w and W are bounded weak solutions of the system

           w ∈ W 1,2 0 (Ω) ∩ L ∞ (Ω) : -div a(x)∇w (b(x) + |W |) 2 + w = g(x), W ∈ W 1,2 0 (Ω) ∩ L ∞ (Ω) : -div A(x)∇W (B(x) + |w|) 2 + W = G(x).

Now we define

f n = f 1 + 1 n |f | , F n = F 1 + 1 n |F | , so that (2.1) f n -f L 2 (Ω) → 0, F n -F L 2 (Ω) → 0. Thanks to the Proposition 2.1, there exists a solution (u n , z n ) of the system (2.2)            u n ∈ W 1,2 0 (Ω) : -div a(x)∇u n (b(x) + |z n |) 2 + u n = f n (x), z n ∈ W 1,2 0 (Ω) : -div A(x)∇z n (B(x) + |u n |) 2 + z n = F n (x),
Now we prove our first estimates.

Lemma 2.2. The sequences {u n } and {z n } are bounded in L 2 (Ω).

Proof. We take G k (u n ) as a test function in the first equation and we have

(2.3) α Ω |∇G k (u n )| 2 (b(x) + |z n |) 2 + Ω |G k (u n )| 2 ≤ Ω |f | |G k (u n )|
If we drop the first positive term and we use the Hölder inequality, then we have (2.4)

Ω |G k (u n )| 2 1 2 ≤ {k≤|un|} |f | 2 1 2
.

Similar estimates hold true for z n . In particular, taking k = 0, we have the boundedness of the sequences {u n } and {z n } in L 2 (Ω). So we have that there exist u, z such that, up to subsequences, (2.5)

u n ⇀ u, z n ⇀ z weakly in L 2 (Ω).
Then if we drop the second term in (2.3), we have

(2.6) α Ω |∇G k (u n )| 2 (b(x) + |z n |) 2 ≤ {k≤|un|} |f | 2 .
A similar estimate for z n comes from the second equation.

Lemma 2.3. The sequences {u n } and {z n } are bounded in W 1,1 0 (Ω). Proof. A consequence of (2.6) and of the Hölder inequality is

Ω |∇G k (u n )| = Ω |∇G k (u n )| (b(x) + |z n |) (b(x) + |z n |) ≤ {k≤|un|} |f | 2 α 1 2 b L 2 (Ω) + f L 2 (Ω) .
Similar estimates hold true for z n . In particular, with k = 0, we have (2.7)

Ω |∇u n | ≤ f L 2 (Ω) b L 2 (Ω) + f L 2 (Ω) α 1 2
,

Ω |∇z n | ≤ F L 2 (Ω) b L 2 (Ω) + f L 2 (Ω) α 1 2
. Now we improve the convergence (2.5).

Lemma 2.4. The sequences {u n } and {z n } are compact in L 2 (Ω).

Proof. The estimates (2.7) imply, thanks to the Rellich embedding Theorem, the L 1 compactenss and then the a.e. convergences

(2.8)

u n (x) → u(x), z n (x) → z(x).
Now we use the Vitali Theorem: since we have the a.e. convergences (2.8), the compactness is achieved if we prove the equiintegrability.

Let E be a measurable subset of Ω. Since

u n = T k (u n ) + G k (u n ), we have (we use (2.4)) E |u n | 2 ≤ 2 E |T k (u n )| 2 + 2 E |G k (u n )| 2 ≤ 2 k 2 |E| + 2 Ω |G k (u n )| 2 ≤ 2 k 2 |E| + 2 {k≤|un|} |f | 2 ,
where |E| denotes the measure of E. Now we recall that a consequence of Lemma 2.3 is that the sequence {u n } is bounded in L 1 (Ω), so that if we fix ǫ > 0, there exists k ǫ such that (uniformly with respect to n)

{k≤|un|} |f | 2 ≤ ǫ, k ≥ k ǫ . Then E |u n | 2 ≤ 2 k 2 |E| + 2ǫ implies lim |E|→0 E |u n | 2 ≤ 2ǫ, uniformly with respect to n.
Similar inequality holds true for z n .

Lemma 2.5. The sequences {u n } and {z n } are weakly compact in W 1,1 0 (Ω).

Proof. Here we follow [START_REF] Boccardo | A semilinear problem with a W 1,1 0 solution[END_REF], [START_REF] Boccardo | Nonlinear degenerate elliptic problems with W 1,1 0 solutions[END_REF]. Let again E be a measurable subset of Ω, and let i be in {1, . . . , N}. Then

E |∂ i u n | ≤ E |∇u n | = E |∇u n | b(x) + |z n | (b(x) + |z n |) ≤ Ω |∇u n | 2 (b(x) + |z n |) 2 1 2 E (b(x) + |z n |) 2 1 2 ≤ 1 α Ω |f | 2 1 2 E b(x) 1 2 + E |z n | 2 1 2
, where we have used the inequality (2.6) in the last passage. Since the sequence {u n } is compact in L 2 (Ω), we have that the sequence {∂ i u n } is equiintegrable. Thus, by Dunford-Pettis theorem, and up to subsequences, there exists

Y i in L 1 (Ω) such that ∂ i u n weakly converges to Y i in L 1 (Ω). Since ∂ i u n is the distributional derivative of u n , we have, for every n in IN, Ω ∂ i u n φ = - Ω u n ∂ i φ , ∀ φ ∈ C ∞ 0 (Ω) .
We now pass to the limit in the above identities, using that ∂ i u n weakly converges to Y i in L 1 (Ω), and that u n strongly converges to u in L 2 (Ω); we obtain

Ω Y i φ = - Ω u ∂ i φ , ∀ φ ∈ C ∞ 0 (Ω) , which implies that Y i = ∂ i u,
and this result is true for every i. Since Y i belongs to L 1 (Ω) for every i, u belongs to W 1,1 0 (Ω). A similar result holds true for z n . Thus, thanks to Lemma 2.4 and Lemma 2.5, we can improve the convergence (2.5): (2.9)

u n converges weakly in W 1,1 0 (Ω) and strongly in L 2 (Ω) to u, z n converges weakly in W 1,1 0 (Ω) and strongly in L 2 (Ω) to z.

2.2.

Proof of Theorem 1.1 -. First of all, we use the equiintegrability proved in Lemma 2.5: fix ε > 0, there exists δ(ε) > 0 such that, for every measurable subset E with |E| ≤ δ(ε), we have

E |∇u n | ≤ ε.
Taking into account the absolute continuty of the Lebesgue integral, we have, for some δ(ε) > 0,

E |∇u n | ≤ ε, E |∇u| ≤ ε,
for every measurable subset E with |E| ≤ δ(ε).

On the other hand, since |Ω| is finite and the sequence

D n = a(x) (b(x) + |z n |) 2
converges almost everywhere (recall (2.9)), the Egorov theorem says that for every q > 0, there exists a measurable subset F of Ω such that |F | < q , and D n converges to D uniformly on Ω \ F . We choose q = δ so that we have, for every ϕ ∈ Lip(Ω),

Ω [D n ∇u n ∇ϕ -D∇u∇ϕ] ≤ Ω\F [D n ∇u n ∇ϕ -D∇u∇ϕ] + F [D n ∇u n ∇ϕ -D∇u∇ϕ] ≤ Ω\F [D n ∇u n ∇ϕ -D∇u∇ϕ] + β λ 2 |∇ϕ| L ∞ (Ω) F |∇u n | + F |∇u] ≤ Ω\F [D n ∇u n ∇ϕ -D∇u∇ϕ] + 2ε β λ 2 |∇ϕ| L ∞ (Ω) ,
which proves that (2.10)

Ω a(x) ∇u n ∇ϕ (b(x) + |z n |) 2 → Ω a(x) ∇u∇ϕ (b(x) + |z|) 2 .
Thus, thanks to the above limit, (2.1) and Lemma 2.4, it is possible to pass to the limit in the weak formulation of (2.2), for every ϕ, ψ ∈ Lip(Ω),

(2.11)

       Ω a(x)∇u n ∇ϕ (b(x) + |z n |) 2 + Ω u n ϕ = Ω f n (x) ϕ, Ω A(x)∇z n ∇ψ (B(x) + |u n |) 2 + Ω z n ψ = Ω F n (x);
and we prove that u and z are solutions of our system, in the following distributional sense (2.12)

       Ω a(x)∇u∇ϕ (b(x) + |z|) 2 + Ω u ϕ = Ω f (x) ϕ, ∀ ϕ ∈ Lip(Ω); Ω A(x)∇z∇ψ (B(x) + |u|) 2 + Ω z ψ = Ω F (x) ψ, ∀ ψ ∈ Lip(Ω).
Now we show that, in the above definition of solution, it is possible to use less regular test functions: it possible to use functions only belonging to W 1,2 0 (Ω).

Proposition 2.6. The above functions u and z are solutions of our system, in the following sense Proof. In order to avoid technicalities, here we also assume that (2.14) a(x) and A(x) are scalar functions.

(2.13)        Ω a(x)∇u∇v (b(x) + |z|) 2 + Ω u v = Ω f (x) v, ∀ v ∈ W 1,2 0 (Ω);
We start with the following inequalities (we use (2.6) with k = 0)

Ω a(x)∇u n (b(x) + |z n |) 2 2 ≤ α 2 λ 2 Ω |∇u n | 2 (b(x) + |z n |) 2 ≤ α 2 λ 2 Ω |f | 2 .
Thus, up to subsequences, we can say that, for some Ψ ∈ (L 2 (Ω)) N , (2.15)

Ω a(x)∇u n (b(x) + |z n |) 2 Φ → Ω Ψ Φ,
for every Φ ∈ (L 2 (Ω)) N . Now we compare the limit (2.10) with the limit (2.15), taking Φ = ∇ϕ, and we deduce that 

  ≤ A(x)ξξ; | a(x)| ≤ β, | A(x)| ≤ β.Moreover we assume(1.3) 0 < λ ≤ b(x), B(x) ≤ γ,for some λ, γ ∈ IR + and

F

  (x) w, ∀ w ∈ W 1,2 0 (Ω).

Ω

  a(x) ∇u (b(x) + |z|) 2 -Ψ Φ = 0. Thus we proved that a(x)∇u n (b(x) + |z n |) 2 weakly converges in (L 2 (Ω)) N to a(x)∇u (b(x) + |z|) 2 ,which allows us to pass to the limit in (2.11) only assuming ϕ, ψ ∈ W 1,2 0 (Ω).
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