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ERRATUM TO ”AN ISOPERIMETRIC INEQUALITY FOR A

NONLINEAR EIGENVALUE PROBLEM”

GISELLA CROCE, ANTOINE HENROT AND GIOVANNI PISANTE

Recently it came to our attention that our proof proposed in [1] about the minimizing set
of the eigenvalue

(1) λp,q(Ω) = inf







‖∇v‖Lp(Ω)

‖v‖Lq(Ω)

, v 6= 0, v ∈ W
1,p
0 (Ω),

∫

Ω

|v|q−2v dx = 0







among the bounded open sets Ω ⊂ R
N of given volume is not correct. Indeed the argument

that we used to write the Euler-Lagrange equation in Theorem 6 cannot be applied. More
precisely in the last paragraph of the proof we need to test the minimality with the function
u+ tn(ϕ+ ctn) which is not in W

1,p
0 but merely constant on the boundary.

The statement of Theorem 1 in [1] is not true for every p, q satisfying

(2) 1 < p < ∞ and

{

2 ≤ q < p∗ , if 1 < p < N

2 ≤ q < ∞ , if p ≥ N

as remarked also by Nazarov in [3]1. For a correct statement we should replace λp,q(Ω) in [1]
by

(3) λp,q
per(Ω) = inf







‖∇v‖Lp(Ω)

‖v‖Lq(Ω)

, v 6= 0, v ∈ W 1,p
per(Ω),

∫

Ω

|v|q−2v dx = 0







where W
1,p
per(Ω) stands for the set of W 1,p(Ω) functions with constant boundary value. As in

[2] for the case p = q = 2, λp,q
per(Ω) is minimized by the union of two equal balls for every p, q

satisfying (2).
The proof goes exactly as in [1], up to these modifications:

(1) In Theorem 5 one needs to use the Schwarz symmetrization on Ω+ = {x ∈ Ω : u(x) >
c} and Ω− = {x ∈ Ω : u(x) < c}, where c is the value of the eigenfunction u at ∂Ω.
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1Nazarov considers the following test functions on domains Ω given by union of balls B+, B− of radii R+, R−.

Let v be the restriction to one ball of the eigenfunction realizing λp,q(B+ ∪B+). For x 7→ c+v
(

R1/2x

R+

)

χB+
−

c−v
(

R1/2x

R
−

)

χB
−

(where c+, c− ≥ 0, cq−1
+ RN

+ = c
q−1
− RN

− and 2RN
1/2 = |Ω|

ωN
) one has

λ
p,q(B+ ∪B−) ≤

‖∇v‖Lp(B1/2)

‖v‖Lq(B1/2)

R
1−N

p
+N

q

1/2

[

c
p
+R

N−p
+ + c

p
−R

N−p
−

] 1
p

[

c
q
+R

N
+ + c

q
−R

N
−

] 1
q

.

Then he finds an explicit value q̂ such that, for q > q̂, a simple first order analysis shows that the last function
of (R+, R−) does not attain its minimum value in (R1/2, R1/2). This proves that the minimizing set is not

given by a pair of two equal balls.
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(2) Theorem 7 is no longer true in general for this eigenvalue, nevertheless we can prove
Theorem 8 in a similar way. There are two differences in the proof:
(a) we have to deal with the boundary condition which is not standard when per-

forming the domain derivative;
(b) even when the optimal domain has a multiple first eigenvalue, we can still de-

duce that the derivative of any eigenfunction has to vanish. For this we use the
existence of directional derivatives along with the minimality of the eigenvalue.

(3) The ordinary differential equation satisfied by the radial component w of u1, that is,

−

[

(p− 1)z′′(t) +
N − 1

t
z′(t)

]

|z′(t)|p−2 = [λp,q
per(Ω)]

p ‖u‖p−q

Lq(Ω) |z(t)|
q−2z(t),

implies that if ∂u1
∂ν1

= 0 then u1 = 0 on the boundary. Therefore the proof of Theorem
9 is valid.

We end this erratum with a remark about λp,q(Ω). For q small enough, it turns out that
the eigenfunction of λp,q

per(Ω) seems to be symmetric and satisfies u = 0 on the boundary (at
this time, we are only able to prove it for q = p).2 In this case, our result about λp,q(Ω) still
holds, since

λp,q(Ω) ≥ λp,q
per(Ω) ≥ λp,q

per(B ∪B) = λp,q(B ∪B)

where the last equality is due to the fact that if u is an eigenfunction of λp,q
per(Ω) satisfying

u = 0 on ∂Ω, then u is an eigenfunction of λp,q(Ω).
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2Indeed, let u = u1(|x− x1|)χB1
+ u2(|x− x2|)χB2

be an eigenfunction of λ = λp,q
per(B1 ∪B2) and w be the

solution to

−

[

(p− 1)w′′(t) +
N − 1

t
w

′(t)

]

|w′(t)|p−2 = |w(t)|q−2
w(t), w(0) = 1 , w

′(0) = 0.

Let αi = u(xi) and wαi(t) = αiw(c(αi)t), where c(α) =
λ‖u‖

1−q/p
Lq

|α|
1−

q
p

, for α 6= 0. Then it is not difficult to prove

that ui = wαi(|x−xi|). Since u is constant on the boundary, in the case q = p one has α1w (λR1) = α2w (λR2).
Assuming w.l.o.g. that u = c ≥ 0 on the boundary, we get w(λR1) = 0 = w(λR2) since α1 > 0 > α2.


