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ERRATUM TO "AN ISOPERIMETRIC INEQUALITY FOR A NONLINEAR EIGENVALUE PROBLEM"

GISELLA CROCE, ANTOINE HENROT AND GIOVANNI PISANTE

Recently it came to our attention that our proof proposed in [START_REF] Croce | An isoperimetric inequality for a nonlinear eigenvalue problem[END_REF] about the minimizing set of the eigenvalue [START_REF] Croce | An isoperimetric inequality for a nonlinear eigenvalue problem[END_REF] λ p,q (Ω) = inf

   ∇v L p (Ω) v L q (Ω) , v = 0, v ∈ W 1,p 0 (Ω), Ω |v| q-2 v dx = 0   
among the bounded open sets Ω ⊂ R N of given volume is not correct. Indeed the argument that we used to write the Euler-Lagrange equation in Theorem 6 cannot be applied. More precisely in the last paragraph of the proof we need to test the minimality with the function u + t n (ϕ + c tn ) which is not in W 1,p 0 but merely constant on the boundary. The statement of Theorem 1 in [START_REF] Croce | An isoperimetric inequality for a nonlinear eigenvalue problem[END_REF] is not true for every p, q satisfying (2)

1 < p < ∞ and 2 ≤ q < p * , if 1 < p < N 2 ≤ q < ∞ , if p ≥ N
as remarked also by Nazarov in [START_REF] Nazarov | On symmetry and asimmetry in a problem of shape optimization[END_REF] 1 . For a correct statement we should replace λ p,q (Ω) in [START_REF] Croce | An isoperimetric inequality for a nonlinear eigenvalue problem[END_REF] by

(3) λ p,q per (Ω) = inf    ∇v L p (Ω) v L q (Ω) , v = 0, v ∈ W 1,p per (Ω), Ω |v| q-2 v dx = 0   
where W 1,p per (Ω) stands for the set of W 1,p (Ω) functions with constant boundary value. As in [START_REF] Greco | Laplacian eigenvalues for mean zero functions with constant Dirichlet data[END_REF] for the case p = q = 2, λ p,q per (Ω) is minimized by the union of two equal balls for every p, q satisfying (2).

The proof goes exactly as in [START_REF] Croce | An isoperimetric inequality for a nonlinear eigenvalue problem[END_REF], up to these modifications:

(1) In Theorem 5 one needs to use the Schwarz symmetrization on Ω + = {x ∈ Ω : u(x) > c} and Ω -= {x ∈ Ω : u(x) < c}, where c is the value of the eigenfunction u at ∂Ω.

1991 Mathematics Subject Classification. 35J60, 35P30, 47A75, 49R50, 52A40. Key words and phrases. Shape optimization, eigenvalues, symmetrization, Euler equation, shape derivative. 1 Nazarov considers the following test functions on domains Ω given by union of balls B+, B-of radii R+, R-.

Let v be the restriction to one ball of the eigenfunction realizing λ p,q (B+ ∪ B+). For x → c+v

R 1/2 x R + χB + - c-v R 1/2 x R - χB -(where c+, c-≥ 0, c q-1 + R N + = c q-1 -R N -and 2R N 1/2 = |Ω| ω N ) one has λ p,q (B+ ∪ B-) ≤ ∇v L p (B 1/2 ) v L q (B 1/2 ) R 1-N p + N q 1/2 c p + R N-p + + c p -R N-p - 1 p c q + R N + + c q -R N - 1 q
.

Then he finds an explicit value q such that, for q > q, a simple first order analysis shows that the last function of (R+, R-) does not attain its minimum value in (R 1/2 , R 1/2 ). This proves that the minimizing set is not given by a pair of two equal balls.

(2) Theorem 7 is no longer true in general for this eigenvalue, nevertheless we can prove Theorem 8 in a similar way. There are two differences in the proof:

(a) we have to deal with the boundary condition which is not standard when performing the domain derivative; (b) even when the optimal domain has a multiple first eigenvalue, we can still deduce that the derivative of any eigenfunction has to vanish. For this we use the existence of directional derivatives along with the minimality of the eigenvalue. (3) The ordinary differential equation satisfied by the radial component w of u 1 , that is,

-(p -1)z ′′ (t) + N -1 t z ′ (t) |z ′ (t)| p-2 = [λ p,q per (Ω)] p u p-q L q (Ω) |z(t)| q-2 z(t),
implies that if ∂u 1 ∂ν 1 = 0 then u 1 = 0 on the boundary. Therefore the proof of Theorem 9 is valid. We end this erratum with a remark about λ p,q (Ω). For q small enough, it turns out that the eigenfunction of λ p,q per (Ω) seems to be symmetric and satisfies u = 0 on the boundary (at this time, we are only able to prove it for q = p). 2 In this case, our result about λ p,q (Ω) still holds, since λ p,q (Ω) ≥ λ p,q per (Ω) ≥ λ p,q per (B ∪ B) = λ p,q (B ∪ B) where the last equality is due to the fact that if u is an eigenfunction of λ p,q per (Ω) satisfying u = 0 on ∂Ω, then u is an eigenfunction of λ p,q (Ω).

-(p -1)w ′′ (t) + N -1 t w ′ (t) |w ′ (t)| p-2 = |w(t)| q-2 w(t), w(0) = 1 , w ′ (0) = 0.
Let αi = u(xi) and wα i (t) = αiw(c(αi)t), where c(α) = λ u 1-q/p L q |α| 1-q p

, for α = 0. Then it is not difficult to prove that ui = wα i (|x-xi|). Since u is constant on the boundary, in the case q = p one has α1w (λR1) = α2w (λR2). Assuming w.l.o.g. that u = c ≥ 0 on the boundary, we get w(λR1) = 0 = w(λR2) since α1 > 0 > α2.

Indeed, let u = u1(|x -x1|)χB 1 + u2(|x -x2|)χB 2 be an eigenfunction of λ = λ p,q per (B1 ∪ B2) and w be the solution to