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SUMS OF KLOOSTERMAN SUMS IN ARITHMETIC
PROGRESSIONS, AND THE ERROR TERM
IN THE DISPERSION METHOD

SARY DRAPPEAU

ABSTRACT. We prove a bound for quintilinear sums of Kloosterman sums, with con-
gruence conditions on the “smooth” summation variables. This generalizes classical
work of Deshouillers and Iwaniec, and is key to obtaining power-saving error terms
in applications, notably the dispersion method.

As a consequence, assuming the Riemann hypothesis for Dirichlet L-functions,
we prove power-saving error term in the Titchmarsh divisor problem of estimat-
ing Zp<z 7(p — 1). Unconditionally, we isolate the possible contribution of Siegel
zeroes, showing it is always negative. Extending work of Fouvry and Tenenbaum, we
obtain power-saving in the asymptotic formula for )" _ 7(n)7(n + 1), reproving a
result announced by Bykovskii and Vinogradov by a different method. The gain in
the exponent is shown to be independent of k if a generalized Lindel6f hypothesis is
assumed.

1. INTRODUCTION

Understanding the joint multiplicative structure of pairs of neighboring integers such
as (n,n+1) is an outstanding problem in multiplicative number theory. A quantitative
way to look at this question is to try to estimate sums of the type

(1.1) > f(n)g(n+1)

n<x
when f,g: N — C are two functions that are of multiplicative nature — multiplicative
functions for instance, or the characteristic function of primes. In this paper we are
motivated by two instances of the question (ILT]): the Titchmarsh divisor problem, and
correlation of divisor functions.

In what follows, 7(n) denotes the number of divisors of the integer n, and more
generally, 7;(n) denotes the number of ways one can write n as a product of k positive
integers. Studying the function 7, gives some insight into the factorisation of numberﬂ,
which is deeper but more difficult to obtain as k grows.

1.1. The Titchmarsh divisor problem. One would like to be able to evaluate,
for k > 2, the sum

(1.2) > nlp—1)

p<w
where p denotes primes. A priori, this would require understanding primes up to x in
arithmetic progressions of moduli up to 2171k The case k > 3 seems far from reach
of current methods, so we consider k = 2.
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IThere are a number of formulas relating the characteristic function of primes to linear combination
of divisor-like functions, for instance Heath-Brown’s identity [HB82].
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In place of (L2]), one may consider

T(z):= > Am)r(n—1)
1<n<lz
where A is the von Mangoldt function [IK04, formula (1.39)]. In 1930, Titchmarsh [Tit30]
first considered the problem, and proved T'(z) ~ Cyzlogx for some constant C; > 1
under the assumption that the Riemann hypothesis holds for all Dirichlet L-functions.
This asymptotics was proved unconditionally by Linnik [Lin63] using his so-called
dispersion method. Simpler proofs were later given by Rodriquez [Rod65] and Hal-
berstam [Hal67] using the theorems of Bombieri-Vinogradov and Brun-Titchmarsh.
Finally the most precise known estimate was proved independently by Bombieri—
Friedlander—Iwaniec [BFI86] and Fouvry [Fou85]. To state their result, let us denote

o 1 o log p
@ '_1;1 (Hp(p—l))’ “ '_§ L+pp—1)

Theorem A (Fouvry [Fou85], Bombieri-Friedlander-Iwaniec [BFIS6]). For all A > 0
and all © > 3,

T(x)= C’lx{ logw +2y—1— 202} + OA(x/(logx)A).

In this statement, v denotes Euler’s contant. See also [Fell2] [Fiol2a] for generaliza-
tions in arithmetic progressions; and [ABSR15] for an analog in function fields.

The error term in Theorem [A] is due to an application of the Siegel-Walfisz theo-
rem [[K04, Corollary 5.29]. One could wonder whether assuming the Riemann Hy-
pothesis generalized to Dirichlet L-functions (GRH) allows for power-saving error term
to be obtained (as is the case for the prime number theorem in arithmetic progres-
sions [MV07, Corollary 13.8]). The purpose of this paper is to prove that such is indeed
the case.

Theorem 1.1. Assume GRH. Then for some 6 > 0 and all x > 2,
T(r) = Clx{ logx + 2y —1— 202} +O(z"9).

Unconditionally, we quantify the influence of hypothetical Siegel zeroes. Define,
for ¢ > 1,
1 1 log p
G =1 =), G@=3

w(a) g N plp—1 e L+pp—1)
where ¢ is Euler’s totient function. Note that C; = C(1) and Cy = Cy(1).
Theorem 1.2. There exist b > 0 and 0 > 0 such that

T(x)= C’lx{ loge +2y—1— 202}
P
8

The second term is only to be taken into account if there is a primitive charac-
ter x (mod q) with ¢ < eV°8® whose Dirichlet L-function has a real zero B with 3 >

1—-0b/vlIogz.

By partial summation, one deduces

— C41(q) {log (%) + 2y — % — 202(61)} + O(xe_é\/@).
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Corollary 1.3. In the same notation as Theorem [1.2,

P
> 7(p=1) = Ci{z+2 li()(7=C2)} =Cr(@){ 75 +2 li(2”)(v—log g—Cs(q)) }+O(ze~*V1E™).

p<z

The method readily allows for more general shifts 7(p—a), 0 < |a| < 2° (¢f. [Fiol2b)
Corollary 3.4] for results on the uniformity in @). In the case a = 1, or more generally
when a is a perfect square, we have an unconditional inequality.

Corollary 1.4. With an effective implicit constant, we have
S r(p—1) < Cofa + 21i(x) (7 — Co)} + O(ze=VIoET),

p<z

We conclude our discussion of the Titchmarsh divisor problem by mentioning the
important work of Pitt [Pit13], who proves ¥, a(p—1) < z'~° for the sequence (a(n))
of Fourier coefficients of an integral weight holomorphic cusp form (which is a special
case of (LI)) when the (a(n)) are Hecke eigenvalues). It is a striking feature that
power-saving can be proved unconditionally in this situation.

1.2. Correlation of divisor functions. Another instance of the problem (L)) is the
estimation, for integers k, ¢ > 2, of the quantity

Tee(x) = Z Tr(n)Te(n + 1).

The conjectured estimate is of the shape
Tro(z) ~ Cypz(log x) 2

for some constants C, > 0. The case k = / is of particular interest when one looks at
the 2k-th moment of the Riemann ¢ function [Tit86] §7.21] (see also [CGO1]): in that
context, the size of the error term is a non-trivial issue, as well as the uniformity with
which one can replace n 4+ 1 above by n + a, a # 0. Current methods are ineffective
when k., ¢ > 3, so we focus on the case ¢ = 2. Let us denote

Tr(z) = Z: T(n)T(n + 1).

There has been several works on the estimation of 7i(x). There are nice exposi-
tions of the history of the problem in the papers of Heath-Brown [HB86] and Fouvry-
Tenenbaum [FT85]. The latest published results may be summarized as follows.

Theorem B. There holds:

To(z) = zPy(logz) + O-(22/3+9), ([DI82al),

Ts(z) = zPs(logz) + O(x79), ([Des82], [Top1H]),
(1.3)  Ti(z) = 2P(logx) + Ok(xe V187 for fizred k >4,  ([FT85H]).
Here € > 0 is arbitrary, 6 > 0 is some constant depending on k, and Py is an explicit

degree k polynomial.

The error term of (L3]) resembles that in the distribution of primes in arithmetic
progressions, where it is linked to the outstanding problem of zero-free regions of L-
functions. However there is no such process at work in (L3]), leaving one to wonder if
power-saving can be achieved. In [BV8T7], Bykovskii and Vinogradov announce results

implying
(1.4) Ti(z) = wPp(logx) 4 Op(2z'~%/%) (k>4,2>2)
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for some absolute § > 0, and sketch ideas of a proof. The proposed argument, in a
way, is dual to the method adopted in [FT85]E (which is related to earlier work of
Motohashi [Mot76]). Here we take up the method of [FT85] and prove an error term
of the same shape.

Theorem 1.5. For some absolute § > 0, the estimate (L)) holds.

In view of [BV8&7], Theorem is not new. However the method is somewhat
different. In the course of our arguments, the analytic obstacle to obtaining an error
term O (2'7°) (§ independent of k) in the estimate (IT4) will appear clearly: it lies
in the estimation of sums of the shape >, -, 7x(n)x(n) for Dirichlet characters x of
small conductors. This issue is know to be closely related to the growth of Dirichlet L-
functions inside the critical strip [F105].

Theorem 1.6. Assume that Dirichlet L-functions satisfy the Lindeldf hypothesis,
meaning L( + it,x) <. (q(|t| + 1)) for t € R and x (mod q). Then for some
absolute 0 > 0,

(1.5) Ti(x) = Pi(logz) + Op(2' %) (k>4, > 2)

The standard conjecture for the error term in the previous formula is Oy, . (x/2+¢).
We have not sought optimal values for § in Theorems [[5 and [[L6. In the case of (L4,
the method of [BV&T7] seems to yield much better numerical results.

Our method readily allows to replace the shift n + 1 in Theorem by n + a,
0 < la| < 2° with an exponent independent of k. We give some explanations in
Section [7.3] below regarding this point.

Acknowledgements. This work was done while the author was a CRM-ISM Post-
doctoral Fellow at Université de Montréal. The author is indebted to R. de la Breteche,
E. Fouvry, V. Blomer, D. Mili¢evi¢, S. Bettin and B. Topacogullari for valuable dis-
cussions on the topics in this paper, and to G. Tenenbaum for helpful comments on
an earlier version of the manuscript. The author is particularly grateful to V. Blomer
for making a preprint of [BM15a] available, and for making him aware of the refer-
ence [BV8T]; and finally to B. Topacogullari for correcting a significant oversight in
the statement of the trace formula and large sieve inequalities in a previous version.

2. OVERVIEW

The method at work in Theorems [L.T], and is the dispersion method, which
was pioneered by Linnik [Lin63] and studied intensively in groundbreaking work of
Bombieri, Fouvry, Friedlander and Iwaniec [Fou82, [FI83, [BFI8G] on primes in arith-
metic progressions. It has received a large publicity recently with the breakthrough of
Zhang [Zhald] (see also [PCF™14]), giving the first proof of the existence of infinitely
many bounded gaps between primes (which was shown later by Maynard [May15] and
Tao (unpublished) not to require such strong results).

In our case, by writing 7(n) as a convolution of the constant function 1 with itself,
the problem is reduced to estimating the mean value of A(n) or 74(n) when n < x
runs over arithmetic progressions (mod ¢), with an average over ¢. It is crucial that
the uniformity be good enough to average over ¢ < y/z. In the case of A(n), that is
beyond what can currently be done for individual moduli ¢, even assuming the GRH.
The celebrated theorem of Bombieri-Vinogradov [IK04, Theorem 17.1] allows to exploit

2In [Mof76}, [FT85], the authors study the distribution of 74 (n) in progressions of moduli up to z'/2,
while in [BVS87] the authors address the distribution of 7(n) in progressions of moduli up to z'=/%.
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the averaging over ¢, but if one wants error terms at least as good as O(x/(log x)?) for
instance, it barely fails to be useful.

Linnik’s dispersion method [Lin63], which corresponds at a technical level to an
acute use of the Cauchy—Schwarz inequality, offers the possibility for such results, on
the condition that one has good bounds on some types of exponential sums related to
Kloosterman sums. One then appeals to Weil’s bound [Weid8], or to the more specific
but stronger bounds of Deshouillers-Iwaniec [DI82b] which originate from the theory
of modular forms through Kuznetsov’s formula.

The Deshouillers-Iwaniec bounds apply to exponential sums of the following kind:

Z bn.r.s9(c, d)e(n@)

c,d,n,r,s 8C
(rd,sc)=1

where ¢, d, n, r, s are integers in specific intervals, (b, . s) is a generic sequence, and g(c, d)
depends in a smooth way on ¢ and d. Here and in what follows, e(z) stand for e*™®,
and rd denotes the multiplicative inverse of rd (mod sc) (since e(z) is of period 1,
the above is well-defined). It is crucial that the variables ¢ and d are attached to a
smooth weight g(c, d): for the variable d, in order to reduce to complete Kloosterman
sums (mod sc); and for the variable ¢, because the object that arises naturally in
the context of modular forms is the average of Kloosterman sums over moduli (with
smooth weight).

In the dispersion method, dealing with largest common divisors (appearing through
the Cauchy—Schwarz inequality) causes some issues. The most important of these is
that the phase function that arises in the course of the argument takes a form similar
to

(2.1) e(nr—d + C—d)
sc q
rather than the above. Here ¢ can be considered small and fixed, but even then, the
second term oscillates chaotically.
Previous works avoided the issue altogether by using a sieve beforehand in order to
reduce to the favourable case ¢ = 1. Two error terms are then produced, which take

the form
efzS(log:v)/logz + 271

where z < x is a parameter. Roughly speaking, the first term corresponds to sieving
out prime factors smaller than z, with the consequence that the “bad” variable ¢ above
is either 1 or larger than z. The second term corresponds to a trivial bound on the
contribution of ¢ > z. The best error term one can achieve in this way is e 0vIog®,
whence the estimate (L3).

By contrast, in the present paper, we transpose the work of Deshouillers-Iwaniec in
a slightly more general context, which allows to encode phases of the kind (2I]). More
specifically, whereas Deshouillers and Iwaniec worked with modular forms with trivial
multiplier system, we find that working with multiplier systems defined by Dirichlet
characters allows one to encode congruence conditions (mod ¢) on the “smooth” vari-
ables ¢ and d. This is partly inspired by recent work of Blomer and Mili¢evi¢ [BM15a].
The main result, which extends [DI82b], Theorem 12] and has potential for applications
beyond the scope of the present paper, is the following.

Theorem 2.1. Let C,D,N,R,S > 1, and q,cy,dy € N be given with (cody,q) = 1.
Let (by,.s) be a sequence supported inside (R,2R]x (S,25]x (0, NJNN?. Let g : R} —
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C be a smooth function compactly supported in |C,2C|x|D,2C] x (R%)?, satisfying
the bound

oL +V2+V3+V4+V5g
Oc”19dv2 Onvs Orva 0svs
for some small g > 0 and all fized v; > 0. Then

(2.2) (c,d,n, 1, 8) Koy vp v vvs {c_”ld_”Qn_”3r_”4s_”5}1_50

rd

SO DY barsgledin, s)e(n—)
cd w5

SC

(23) c=co and d=do (mod q)
(grd,sc)=1

<<€,€0 (CDNRS)EJFO(&O)QK(C’ D7 N7 R7 S) HbN,R,SH27

2) V2 and

where ||by rsl|l2 = (Zn,r,s |bn,r,s]

K(C,D,N,R,S)*=CS(RS + N)(C + RD) + C*DSy/(RS + N)R + D*NRS ™.

We have made no attempt to optimize the dependence in ¢. In all of the ap-
plications considered here, we only apply the estimate (Z3) for small values of g,
say ¢ = O((CDNRS)®") for some small e; > 0. Such being the case, the reader might
still wonder why the bound tends to grow with ¢. The main reason is that upon com-
pleting the sum over d, we obtain a Kloosterman sum to modulus scq, which grows
with q.

In the footsteps of previous work [Drald], for the proof of our equidistribution
results, we separate from the outset of the argument the contribution of characters of
small conductors (which is typically well-handled by complex-analytic methods). We
only apply the dispersion method to the contribution of characters of large conductors.
There is considerable simplification coming from the fact that no “Siegel-Walfisz”-type
hypothesis is involved in the latter, which allows us to focus on the combinatorial aspect
of the method.

In Section [B] we state a few useful lemmas. In Section [, we adapt the arguments
of [DI&2b] to prove Theorem 2.l In Section [B, we employ a variant of the dispersion
method to obtain equidistribution for binary convolutions in arithmetic progressions.
In Sections [6] and [7l we derive Theorems [L1], [.2], and [L.6

Notations. We use the convention that the letter ¢ denotes a positive number that
can be chosen arbitrarily small and whose value may change at each occurence. The
letter 6 > 0 will denote a positive number whose value may change from line to line,
and whose dependence on various parameters will be made clear by the context.

The Fourier transform f of a function f is by definition

f(¢) = /R f(t)e(&t)dt.

If f is smooth and compactly supported, the above is well-defined and there holds

£) = [ fl@e(-ende.

31t is more straightforward to study the mean value of 7, (n) in arithmetic progressions of small
moduli, than a k-fold convolution of slowly oscillating sequences, each supported on a dyadic interval.
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If moreover f is supported inside [—M, M] for some M > 1 and ||f9], < M™J
for j € {0,2}, then we have

~ M
flé) < T4 (Me)?
3. LEMMAS

In this section we group a few useful lemmas. The first is the Poisson summation
formula, which is very effective at estimating the mean value of a smooth function
along arithmetic progressions.

Lemma 3.1 ([BFI86, Lemma 2]). Let M > 1 and f : R — C be a smooth function
supported on an interval [—M, M) satisfying || f9||e <; M~ for all j > 0. For
all ¢ > 1 and (a,q) = 1, with H := ¢**¢ /M, we have

s et s () o)

m=a (mod q) q |h|<H q

The next lemma is a very useful theorem of Shiu [Shi8(0, Theorem 2] and gives
an upper bound of the right order of magnitude for sums of 7(n) in short intervals
and arithmetic progressions of large moduli. It is an analog of the celebrated Brun-
Titchmarsh inequality [TK04, Theorem 6.6]. We quote a special case.

Lemma 3.2 ([Shi80, Theorem 2]). For k > 2, v > 2, 22 < y < z, (¢,a) € N
with (a,q) = 1 and q¢ < 2%/4,

Z Tr(n) <5 %(SOE]Q) logx)k_l.

r—y<n<z
n=a (mod q)

The next lemma is the classical form of the multiplicative large sieve inequal-
ity [IK04, Theoreme 7.13].

Lemma 3.3. Let (a,) be a sequence of numbers, and N, M,Q > 1. Then

4q
2oy X > ax(m)] <(@+N-1) > el
4<Q (9) x (mod q) | M<n<M+N N<n<N+M
X primitive
We quote from [Harll, Number Theory Result 1] the following version of the Pélya-
Vinogradov inequality with an explicit dependence on the conductor.

Lemma 3.4. Let x (mod q) be a character of conductor 1 # r|q, and M, N > 1. Then

Y. x(n) < 7(g/r)V/rlogr.

M<n<M+N
4. SuMS OF KLOOSTERMAN SUMS IN ARITHMETIC PROGRESSIONS

Theorem 2.1] is proved by a systematic use of the Kuznetsov formula, which estab-
lishes a link between sums of Kloosterman sums and Fourier coefficients of holomorphic
and Maaf} cusp forms. There is numerous bibliography about this theory; we refer the
reader to the books [Iwa02, Twa95|] and to chapters 14-16 of [IK04] for references.

Most of the arguments in [DIS2b] generalizes without the need for substantial new
ideas. We will introduce the main notations, and of course provide the required new
arguments; but we will refer to [DI82b] for the parts of the proofs that can be trans-
posed verbatim.



8 SARY DRAPPEAU

4.1. Setting.

4.1.1. Kloosterman sums. Let ¢ > 1. The setting is the congruence subgroup

I'=Ty(q) = { (Z Z) € SLy(Z),c =0 (mod q)}

Let x be a character modulo ¢o|q, and x € {0, 1} such that x(—1) = (—1)*. We warn
the reader that the variable ¢ has a different meaning in Sections [4.1] and 4.2 than in
the statement of Theorem [2Z1] (where it corresponds to grs). The character y induces
a multiplier (i.e. here, a multiplicative function) on I' by

x( (Z Z) ) = x(d).

The cusps of I' are I'-equivalence classes of elements R U {oo} that are parabolic, i.e.
each of them is the unique fixed point of some element of I'. They correspond to cusps
on a fundamental domain. A set of representatives is given by rational numbers u/w
where 1 < w, w|q, (u,w) =1 and u is determined (mod (w, g/w)).

For each cusp a, let I'y denote the stabilizer of a for the action of I'. A scaling matriz
is an element o, € SLy(R) such that 0,00 = a and

1 b\ -
{aa<0 1)% ,bGZ}—Fa.

Whenever a = u/w with u # 0, (u,w) = 1 and w|q, one can choose

(4.1) 00 = (a 9. ") 0 )
’ lg,w?]  (ay/[g,w?])™

A cusp a is said to be singular if x(y) = 1 for any v € I',. When a = u/w with u
and w as above, then this merely means that y has conductor dividing ¢/(w, q/w).
The point at infinity is always a singular cusp, with stabilizer

{5 1))

For any pair of singular cusps a, b and any associated scaling matrices o4, oy, define
the set of moduli

C(a,b) = {c e R : Ja,b,d € R, (CCL Z) € aalfab}.

This set actually only depends on a and b. For all ¢ € C(a, b), let Dyy(c) be the set of
real numbers d with 0 < d < ¢, such that

<CCL Z) Ea;lfab

for some a,b € R. For each such d, a is uniquely determined (mod c).
For any integers m,n > 0, and any ¢ € C(a, b), the Kloosterman sum is defined as

Soeoy(mymic) = > Y(%(gz)"bl)e(M)

deDab (C) ¢

where (‘CL 2) denotes any matrix v having lower row (c, d) such that o,yo, * € I'. This

is well-defined by our hypotheses that a and b are singular. This definition allows
for a great deal of generality. We quote from [DI82D, section 2.1] the remark that



ERROR TERM IN THE DISPERSION METHOD 9

the Kloosterman sums essentially depend only on the cusps a, b, and only mildly
on the scaling matrices o, and oy, in the following sense. If a and b are two cusps
respectively I'-equivalent to a and b, with respective scaling matrices o, and oy, then
there exist real numbers t; and t,, independent of m or n, such that

So

Moreover, the converse fact holds, that for any reals t;,ts, any cusps a and b, and
any scaling matrices o, and oy, there exist scaling matrices o, and o} associated to a
and b such that the equality above holds. This rather simple fact is of tremendous help
because all of the results obtained through the Kuznetsov formula are uniform with
respect to the scaling matrices, so that one can encode oscillating factors depending
of m and n at no cost (it is crucial for separation of variables). Whenever the context
is clear enough, we write

w00 (M, 15 ¢) = e(mty + nta) S 5 (m, n; c).

Sap(m, n; )
without reference to the scaling matrices.

The first example is a = b = oo and 0, = 0, = 1. Then C(00, 00) = ¢IN and

dm + dn
(4.2) Secoc(m,n;c) = > X(d)e<7> (c € ¢N)
c
d (mod c¢)*
is the usual (twisted) Kloosterman sum. Here and in the rest of the paper, we
write (mod ¢)* to mean a primitive residue class (mod c).
The next example that we need is the case a = b. The following is an extension

of [DI82bl Lemma 2.5]. It is proven in an identical way, so we omit the details.

Lemma 4.1. Assume a = u/w is a cusp with (u,w) = 1, w|qg and u # 0. Assume
that a is singular. Choose the scaling matriz as in (£1)). Then C(a,a) = mN, and
if ¢ =q/(w, q/w) for some~ €N,

(4.3) Saa(m,n;c) = e((w, q/w)m — n) Z* y(a + um;; l)e(ma + né)’

uq d (mod c¢) ¢

where, in the sum Y.*, 0 runs over the solutions (mod c) of

(4.4) (0,vq/w) =1, (y+ud,w)=1, 0(y+ud)=u (mod (w,q/w)),
and « is determined (mod c) by the equations

(4.5) ad =1 (mod yq/w), a=+"u+u'(y +u/d) (mod wy')
where v = v/(y,u) and u' = u/(y,u).

The sums Sya(m, n;c) are expressed by means of the Chinese remainder theorem
(twisted multiplicativity) as a product of similar sums for moduli ¢ that are prime
powers. When ¢ = p¥ and v > 2, a bound is obtained by means of elementary
methods as in [[K04, Section 12.3]. When c is prime, the Weil bound (cf. [KL13
Theorem 9.3]) from algebraic geometry can be used. In the general case, one obtains

Lemma 4.2. For all ¢ € C(a,a), m,n € Z, we have
Saa(m, n; ¢) < (m,n,¢)'?7(c)%W (cqo)'/?
where qqo is the modulus of x.

Finally, we consider as in [DI82Db] the following family of Kloosterman sums, which
will be of particular interest to us.
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Lemma 4.3. Assume that the level q is of the shape rs, with qo|r, where qq is the
modulus of x, and (r,s) = 1. The two cusps oo and 1/s are singular. Choose the

scaling matrices
_ _(vr 0
Os = Id, Jl/s_(s EYNIE
Then C(oo,1/s) = {cs\/r,c € N, (¢,r) = 1}, and for (¢,r) = 1, we have

ns

Soo,1/s(m, n; cs\/r) = X(c)e(—) S(m7, n; sc)
r
where S(...) in the right-hand side is the usual (untwisted) Kloosterman sum.

The main feature here is the presence of the character outside the Kloosterman
sums, as opposed to ([A2]). It is proven in a way identical to [DIS2b, page 240], keeping
track of an additional factor x(D) in the summand.

4.1.2. Normalization. In order to state the Kuznetsov formula, we first fix the nor-
malization. We largely borrow from [BHM(7a]. We also refer to [DFI02, Section 4]
for useful explanations on Maafl forms, and to [Pro03|] for a discussion in the case of
general multiplier systems.

For each integer k£ > 0 with & = x (mod 2), we fix a basis By(q, x) of holomorphic
cusp forms. It is taken orthonormal with respect to the weight k£ Petersson inner

product:

(f, 9= /F\H ykf(z)@dz(jy (z =z +iy).

We let B(q, x) denote a basis of the space of Maaf} cusp forms. In particular they are
functions on H, are automorphic of weight £ € {0,1} (meaning they satisfy [Pro03,
formula (5)]), are square-integrable on a fundamental domain and vanish at the cusps
(note that when x = 1, they do not induce a function on I'\H). They are eigenfunctions
of the L?-extension of the Laplace-Beltrami operator

0? 0? 0
A= 2(— —) iy
Y\ 022 + Oy? Y

This operator has pure point spectrum on the L2-space of cusp forms. For f € B(q, x),
we write (A+s(1—s))f =0 with s = $+it; and t; € RU[—i/2,4/2]. The (t7)eB(q.y)
form a countable sequence with no limit point in C (in particular, there are only
finitely many ¢; € iR). We choose the basis B(g, x) orthonormal with respect to the
weight zero Petersson inner product. Let

(4.6) 0:= sup |Jmtyl,
feB(gx)

then Selberg’s eigenvalue conjecture is that 6 = 0 i.e. ty € R for all f € B(q, x).
Selberg proved that < 1/4 (see [DI82bl Theorem 4]), and the current best known
result is § < 7/64, due to Kim and Sarnak [Kim03] (see [Sar95] for useful explanations
on this topic).

The decomposition of the space of square-integrable, weight x automorphic forms
on H with respect to eigenspaces of the Laplacian contains the Eisenstein spec-
trum £(q, x) which turns out to be the orthogonal complement to the space of Maafl
forms. It can be described explicitely by means of the Fisenstein series Fy(z; % + 1t)
where a runs through singular cusps, and ¢ € R. Care must be taken because these
are not square-integrable; see [IK04l, Section 15.4] for more explanations.
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Let j(g,2) := cz+d where g = (1 ]) € SLy(R). We write the Fourier expansion
of f € Bi(q, x) around a singular cusp a with associated scaling matrix o, as

(4.7) f(0a2)j(00,2) ™" = pra(n)(4mn )*2e(nz).

n>1

We write the Fourier expansion of f € B(q, x) around the cusp a as

f(craz)e irarg j(oa,z) Z pfa W\"\ f(47T|TL|y)€(TLZL')
n#0

where the Whittaker function is defined as in [Iwa(02, formula (1.26)]. Finally, for every
singular cusp ¢, we write the Fourier expansion around the cusp a of the Eisenstein
series associated with the cusp ¢ as

E(0qz, it)e " asi0e) = o) ($)y"* qcy (DY >+ pea(n t)W\n\ 5 a4mnly)e(n).
n#0

4.1.3. The Kuznetsov formula. Let ¢ : R, — C be of class C*> and satisfy
(4.8) $(0)=¢'(0)=0,  ¢V(x) < (1+a)" (0<j<3)

for some n > 0. In practice, the function ¢ will be C* with compact support in R} .
We define the integral transforms

(4.9) ) = 4d* / i1 ( d$

41 o 2mitt e J 5T dx
(4.10) o) = D /0 (@) = (—1)" i) (2) =
(4.11) $(t) == 8i " cosh(mt) /OOO KQit(a:)¢(:c)d§

where we refer to [Iwa02l, Appendix B.4] for the definitions and estimates on the Bessel
functions. The sizes of these transforms is controlled by the following Lemma (we need
only consider |t| < 1/4 in the second estimate, by Selberg’s theorem that 6 < 1/4).

Lemma 4.4 (|[DI82b, Lemma 7.1], [BHMO07b, Lemma 2.1]). If ¢ is supported on x < X
with ||V < X for 0 < j < 4, then

@2y o+ 2200 L s < Mmin{l, (ﬂ)g} (teR),

L+ |t|x 1+ X 1+t
~ y 1+ X 20
B0+ 19(0)] < (t € [~i/4,i/4]).

Proof. Taking into account the factor ¢ in front of ¢(t), the arguments of [DIS2D)
Lemma 7.1] and [BHMO7bl, Lemma 2.1] are easily adapted. The only non-trivial fact to
check is that the decaying factor in (ZI2)) only requires the hypotheses ||¢U)||o < X7
for j < 4. This is seen by reproducing the proof of [BHMO7h, Lemma 2.1] with the
choices j =1 and 7 = 2. O

Recall that « is defined by y(—1) = (=1)". We are ready to state the Kuznetsov
formula for Dirichlet multiplier system and general cusps.
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Lemma 4.5. Let a and b be two singular cusps with associated scaling matrices o,

and oy, and ¢ : Ry — C as in ([AF)). Let m,n € N. Then

(4.13) Z 1Sab(m,n;c)¢<4ﬁ\£ﬂ%> =H+E+M,

c€C(a,b)

(4.14) v Lsuim, —n;c)¢(4”\fm) — &M,

ceC(a,b)
where H, £, M (“holomorphic”, “Fisenstein”, “Maaf”) are defined by

(4.15) He= > > (KT (k)Vmnpsa(m)pse(n),

k>k feBi(a,x)

k=k (mod 2)
_ VR s
(4.16) £ = Zg = / 1) oty e Db, D,
(a1 Mi= 3ty oo,
fEB(qx) f
r._ W o A 1) _
(4.18) £ = Zg = / ) ot (o e D= )
o vmn 3
(4.19) M’ = fEBz(;X)¢ cosh(rt; )pfa<m)/)fb< n).

Proof. For a = b = oo, the formula (£I3]) and the case k = 0 of (£I4) can be found
in Section 2.1.4 of [BHMO07a]. The extension to general cusps a, b is straightforward.

The case k = 1 of (A.I4]) was obtained by B. Topacogullari (private communications).
The details are due to appear in forthcoming work, so we restrict here to mentionning
that it can be proved by reproducing the computations of page 251 of [DI82b] and
Section 5 of [DFT02[. O

The right-hand side of the Kuznetsov formula (the so-called spectral side) natu-
rally splits into two contributions. The reqular spectrum consists in H, £ and the
contribution to M of those f € B(q,x) with t; € R ; the conjecturally inexistant
exceptional spectrum is the contribution to M of those f with ¢ty € iR* (similarly
with & and M’). The technical reason for this distinction is the growth properties
of the integral transforms. Indeed, when X is small (i.e. when the average over the
moduli of the Kloosterman sums is long, since X =< y/mn/c), we see from Lemma 4]
that while ¢(t), (t) and ¢(t) are essentially bounded for ¢ € R, ¢(it) is roughly of
size X 21 when t € [-1/2,1/2].

We remark that in contrast with other works (e.g. [BM15b]), we do not make use
of Atkin-Lehner’s newform theory, nor of Hecke theory. In fact, we do not use any
information about the Fourier coefficients psq(n) and pe(n,t) other than the fact that
Kuznetsov’s formula holds, so the reader unfamiliar with the subject can go through the
following sections without knowing what they are. The main feature of the Kuznetsov
formula which is used is the decay properties of the integral transforms (£.9])-(Z.11),
and the fact that it separates the variables m and n in a way that combines very nicely
with the Cauchy—Schwarz inequality.

“Note that in the expression for hy,(t) given on page 518 of [DFI02], the term I'(1 — £ —ir) should
read I'(1 — & +ir).
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4.2. Large sieve inequalities.
4.2.1. Quadratic forms with Sa. Given N € N, 9 € R%, A > 0, a sequence (b,) of

complex numbers, a singular cusp a and ¢ € C(a, a), let

B\ %, N) = > mee”\mSaa(m, n, c)e(2 mnﬁ) )
c

N<m,n<2N

We also define

1/2
ol = (X 1)

N<n<2N
The following extends [DI82h, Proposition 3.

Lemma 4.6 ([DI82h, Proposition 3]). We have

(4.20) [Ba(A 050, N)| < 7(e)?W (goc) 2N [bw 1%,
|Ba(\,9;¢, N)| < (¢c+ N 4+ VOcN)||by|%,
(4.21) |Ba(\, 956, N)| <. 072 2NV by |2

where the last bounds holds for 9 < 2 and ¢ < N.

Proof. Suppose A = 0. The first bound is an immediate consequence of Lemma
For the second bound, the proof given in [DI82b, page 256] transposes without any
change: after expanding out the sum Sg,(. .. ), one uses the triangle inequality with the
effect that the factors involving x are trivially bounded. For the last bound, the proof
is adapted with the following modification: the Cauchy—Schwarz inequality yields
(4.22)

1Ba(0,9;¢, N)P < [l D bunibmax(r1)x(r2)e
N<mi,mo<2N
01,02

myd; — Moo,
( 11C QQ)Zf(n)
where f(n) is defined as in [DI82b, page 256], §; and Jy run over residue classes
modulo ¢ satisfying ([@4), and r; := &; ' + u(e;6; — 1)/ for j € {1,2}, where o;
is determined by (Z3]). The only difference is the presence of the y factors. Upon
using Poisson summation on the sum Y, f(n), the argument is split in two cases
according to whether a; = ay (mod ¢) or not. If oy # ay (mod ¢), then one uses
the triangle inequality on (422) so that the x factors do not intervene. If on the
contrary a; = ap (mod ¢), then we deduce from (5] that also §; = d2 (mod ¢).
The x factors cancel out and the rest of the argument carries through without change.

The case of arbitrary A > 0 reduces to the case A = 0 by Mellin inversion

» 1 fltico Clalud . 1 [—14ico Celr—sd
= i e T s =1 [ Ty
at y = A\y/mn, using the first expression when AN > 1 and the second otherwise. []

4.2.2. Large sieve inequalities for the regular spectrum. We proceed to state the fol-
lowing large sieve-type inequalities, which extend [DI82b Proposition 4].

Proposition 4.7 ([DI82bl Proposition 4]). Let (a,) be a sequence of complex num-
bers, and a a singular cusp for the group T'g(q) and Dirichlet multiplier x (mod qp).
Suppose T > 1 and N > 1/2. Then each of the three quantities

2

(4.23) X OTh Y | Y awmpn)

K<k<T fe€Bk(g:x)  N<n<2N
k=k (mod 2)
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(1 + [t )™ 2
4.24 R n + ,
( ) feBz(q:,x) cosh(mt 7) N<nZ§2Na \/ﬁpfa( ")
[t|<T
(4.25 > [T s (| at,
<sing. )T cosh(mt) Nn<aN

is majorized by
O-((T° + g (@) N %) | [3).
Here, if a is equivalent to u/w with w|q and (u,w) =1, then p(a) := (w,q/w)/q.

Proof. Theses formulas are deduced from two summation formulas, namely the Pe-
tersson formula [Iwa97, Theorem 3.6]

( _1)\/— Z pfa( )pfa()

feB(a,x)

1
= 1m:n -+ 27Ti_k Z _Saa(ma n; C)Jk1<

ceC(a,a)

(4.26)

47r\/mn)
C b

valid for £ > 1, k = k (mod 2), and a “pre-Kuznetsov” formula [DFI02, Proposi-
tion 5.2] which, for general cusps, is

(4.27)

INCIEEES ir)|2{

472

1 Ar\/mm
Lycn+ 3 —Saa(im,in;c)[i( T mn)}
C C
ceC(a,a)
AL )

o0 COSh(ﬂ't)

vmn
= Y. ———H(t;,r)psa(Em)psa(n) T Z/
feB(q,x)COSh(ﬂ-tf) 47 < Sme.

for all real r and positive integers m, n. Here,

Ii(z) = —2:5/ (—iv) = Ky (va)dv (x > 0).

where v varies on the half-circle |[v| = 1, Re(v) > 0 counter-clockwise. Note that by
the complement formula
2 T 1 e=1
4.28 -5+ =——x</ ’
( ) ‘ ( 5 T Z'r)‘ cosh(mr) {i 12 e=—1.

Given the formulas (£26) and (£27), the arguments in [DI82b] pages 258-261] are
adapted as follows. When x = 0, the details are strictly identical. Consider the
case k = 1 of (@23). We multiply both sides of ([£26) by (k — 1)e=*~Y/Tga,, and
sum over k, m and n. The analog of the function Fx(x) defined in [DIS2b] page 258]
is (up to a constant factor) the function

Br(e) = (=120 dufe) = —sinh () [

as can be seen by reproducing the computations in [Iwa82l page 316]@. We then write

92 /2
Ji(y) = ;/0 cos 7 sin(y cos 7)dT,

SThere is a slight convergence issue in the Fourier integral for y.J;(y), which is resolved by chang-
ing b = cosh(1/T') to b+ ic, € > 0 and letting ¢ — 0.

(t, 1) pea(£M)pea(En)
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split the integral at A € (0,7/2] and deduce the bound (423)) by following the steps
in [DI82h page 259].

Consider next the case k = 1 and positive sign of (£24)) and (£25). We multiply
both sides of ({27 by r? cosh(nr)@,a,, integrate over r € R and sum over m and n.
The analog of the function ®(z) of [DI82b] page 260] is the function

(I>+(x):/ e (r/T) Ko (zv)dudr.

We use the expression Ko, (y) = [5° e 7?0 cos(2r€)dE (y > 0). For x > 0, we obtain
by integrations by parts

O (z) = —iv/al? /OO e_(fT)thanhf{ cos(z cosh ) — %/11 cos(zd cosh f)dﬁ}d{

_ —(€N?(1 _ dg
= zf / (1 2(§T))smh(xcosh§)c Se

and from there, the bounds (£24)) and (4£.25)) are obtained by reproducing the compu-
tations of [DI82Dh, page 261].

Consider finally the case of negative sign in (£24) and (£26). We multiply both
sides of (Z2T) by r2 cosh(rr) /(1 +r?)@y,a,. The analog of the function ®(z) of [DIS2h)
page 260] is now

o0 d
o (x) :/ r2e=(r/T)? KQM-(.T'U> vdr,
—0o0 U

—1

and we have by integration by parts

¢ _(z)= i\/7_TT3/O —(&7) {tanh{{ cos(& cosh &) — 2%/2 e_w;%hgdv}dé“
i a—xzvcosh§
= — z\/_ / —(€7)? (1—2(£T) ){ sinh(x cosh €) + % /7Z © 3 dv}coiflf'

From there, it is straightforward to reproduce the computations of [DI82b] page 261]
using the bounds of Lemma
O

4.2.3. Weighted large sieve inequalities for the exceptional spectrum. The objects we
would like to bound now are of the shape

E, (Y, (a,)) := Z y 2l

feB(g,x)
ty ciR

2

> anpga(n)

N<n<2N

where Y > 1 is to be taken as large as possible while still keeping this quantity
comparable to the bounds (1 + u(a)N)3Y, |a,|* coming from Proposition 7. The
following is the analog of [DI82b, Theorem 5].

Lemma 4.8. Assume that the situation is as in Proposition[{.7]. Then for anyY > 1,
Ega(Y, (an)) < (14 (u(@)NY)2) (1 + (qop(a) N)/**€) |an 3.

The important aspect in this bound is that it is as good as those coming from
the regular spectrum (i.e. the upper bound in Proposition 7)) in the situation
when p(a) = 1/q (which will typically be the case), N < ¢ and Y < ¢/N. Note
also that the previous bound holds for any individual g.
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Proof. The arguments in [DI82h] section 8.1, pages 270-271] transpose identicallyﬁ. O

The next step is to produce an analog of [DI82bl, Theorem 6], which is concerned with
the situation when an average over ¢ is done. Deshouillers and Iwaniec make use of the
very nice idea that with the choice a = oo for each ¢, the roles of ¢ and ¢ can be swapped
in the Kuznetsov formula. Through an induction process, this enhances significantly
the bounds obtained. This switching technique is specific to the choice a = oo for
all ¢, with scaling matrices independent of q.

Lemma 4.9. Assume the situation is as previously. Recall that x has modulus gy > 1.
Then for allY > 1 and Q) > qo,

> Bl (an)) <2 (QN)*(Qqo ' + N + NY'2) a3,

9<Q
qolq

where the scaling matrices are chosen independently of q.

Note that now, in the situation when N < (), the parameter Y is allowed to be as
large as (Q/N)? while still yielding a bound of same quality as the regular spectrum.
The final situation is the special case when (a,) is the characteristic sequence of an
interval of integers. Then Deshouillers and Iwaniec are able to provide an even stronger
bound [DI82D, Theorem 7], by enhancing the initial step in the induction.

Lemma 4.10. Assume that the situation is as in Lemma [{.9 Assume moreover
that (an) N<n<on 1S the characteristic sequence of an interval of integers. Then

Y EpsolY, (a0)) <c (QN)*(Qqy ' + N + (NY)'/*)N.

q<Q
qolq

In the situation when N < @, the parameter Y can then be taken as large as Q*/N
while still yielding an acceptable bound.

We now proceed to justify Lemmas and [A.I0. For the rest of this section, we
rename ¢ into qpq, so that now ¢ runs over intervals. The object of interest is

S(Q,Y,N,s):= Y Syl 2

§ : anns+1/2pfoo<n)
Q<q<16Q feB(gog,x) N<n<2N
treiR

Lemma 4.11. Let N,Y,Q > 1 and a sequence (a,) be given. Then

S(Q,Y,N,0) <. L S(ﬂ,x Nm;)i

qOQ t4 +1
_ N NY
do %" Q

[e.e]

(4.29)

Moreover, if (a,) is the characteristic sequence of an interval, then
(4:30) S(Q,Y,N,0) <. (NY)(Q+ N + V)N

Proof of (29). The arguments in [DI82h, pages 272-273] are adapted with minimal
effort; however we take the opportunity to justify more precisely one of the claims
made there. Fix a smooth function ® : R — [0, 1] supported inside [1/2,5/2] and
majorizing 11 9. Letting g(¢q) = ®(¢/Q) and ¢(x) = ®(Y'z) (these kind of homotheties
of ® we refer to as test functions) we have

S(Q,Y,N,0) < |8,

5Note that in the last display of the proof [DIS2B, page 271], L(Y') should read L(Y ~1).



ERROR TERM IN THE DISPERSION METHOD 17

Si=>gla) X > ann'ppoc

q>1 feB(qoq,x) n
ty ciR

cosh 7Tt f

This is seen by approximating the Bessel function in the definition of o by its first
order term, as in [DI82b] formula (8.1)]. Opening the squares in S; and applying the
Kuznetsov formula and the large sieve estimates (Lemma and Proposition A7),
one gets

81 = S i )+ 0.((@VV) (@ + ql—]ﬁ) 3 Jaal?).
_y g(q (4WW

q,c>1 qoqc qogc

Letting h(z) = hmac(z) = gb(:p)g(m), one applies the Kuznetsov formula for

qocx

the group I'g(goc) (which requires that the scaling matrices be independent of ¢) and
obtains

)Soooo (m,n; qc),

Sy < |Ss| + Oe((QNY)E(Q + % + qjol\j—QYQ) > |an‘2)’

n

so= Yo ¥ ¥ M G

C<c<16C feB(goe,x) COSh(“ )
tyeiR

Note that h(ts) = hpnc(ty) = 0 unless C' < ¢ < 16C, where C' = 7NY/(qoQ). Let
2rith i

m(c]%t(ﬂf) — (=1 sz’t@))a

and §(s) := [3° g(x)z*~'dz be the Mellin transform of g. Then

h(t) = % | ) (4 &C_) / " Koo (2)2™ () dadr.

Inserting into the definition of S5 and using the triangle inequality, we obtain

S, <</ g Y ) Zamm(1+n)/2pfoo(m) Zann(l_iT)/proo<m) y

C<cZ16C feBlgen) ™
treiR

Kpi(z) =

Iit ZT(b )
From there, the arguments in [DIS2D, page 273] apply and yield

/ Ky o(2)2" () da
from which the claimed bound follows in the same way as [DI82b] page 273]. U

<. Y2\tf| +Ye®

Proof of (A30). Assume that (a,)nv<n<on is the characteristic sequence of the integers
inside (N, Ny| for some N; < 2N. We proceed as in [DIS2b] page 276]. By applying
the Kuznetsov formula and the large sieve inequalities, one obtains
1 dm\/mn
> o

S(Q,N,Y,0) <. > Y —
0<q<16Q c>1909C 1 N<py n<vy qogc
N1+6

+(Q+ —m )N

qo

)Soooo(m, n; qc)
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for a test function ¢ supported inside [1/(2Y),5/(2Y)]. Here one may restrict sum-
mation to C/4 < ¢ < 8C for C:=71NY/(qo@). Let k := gogc. The first term above is
majorized by

Amt\/m
—@QO) T X | X 9T S (mmi )
kxqo‘gC N<m,n<Ni
q0

Let ¢(z) = 5= [°% @(it)a~"dt, where the Mellin transform ¢(s) = [3° ¢(z)z* 'dw
satisfies ¢(it) < (1+ )71, so that (after reinterpreting ¢ by 2t)

T< @O [T S| S ) e((n — m)d) Sy, )|
kxq%(igC N<m,n<Np

for some ¥ € [0, 1) (depending on the scaling matrix). By m~% = Ny "4t [N 4~ 1du,
we obtain
T < (oQC)™ " sup > Uik, M',N'),
N<N'M'<SN: jaro
qolk

Uy (M, N') ’ T e
m<M’
n<N’

)5y (m,n; l{;)’

Opening the summation in S, we have

Ur(k, M'.N') < Uy(k, M',N") = ¥
§ (mod k)*

5 ol

n<N’

(o w)
m<M’ k

It is crucial to note that the quantity on the RHS also exists for £ not multiple of qq,
so trivially

T < (gQC)™ ' sup > Us(k,M',N"),

NEM',N'SN1 <0000

From there on, the calculations in [DI82bl page 276] apply and yield, in the notation
of [DI82bl Lemma 8.2],

Us(k, M',N') < > Far(m)e(m®) f: (n)e(—nd)S(m, n; k).

mneZ

The proof of Theorem 14 of [DI82b] follows through, and yields for all K > 1,

3" Us(k, M, N') <. (KMN) K (K + MN).

k<K
Taking K =< qoQC, we conclude that
T < (0QC) (00QC + N?).
The rest of the arguments in [DIS2b page 277] applies and yields
S(Q,N,Y,0) <. (NY)*(Q+ N+Y)N

as claimed. ]
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Proof of Lemmas [{.9 and[{.10 In addition to the recurrence relation (£29), we have
the properties

S(Q,Y,N,0) < (Y/Z)Y?5(Q,Z,N,0) (1<Z<Y),
S(Q.1,N,0) <. (QN)F(Q+ ql—ﬂ)uamré-
0

The second one follows from Proposition L7 Having these at hand, the induction
arguments in [DIS2b, page 274] and [DI82bl page 277] are easily reproduced. It is
useful to notice that ¢g appears only with negative powers in the error terms, and
that its presence in the denominator of TNY/(qQ) in (£29) is beneficial for the
induction. O

Remark. The previous three lemmas used only Selberg’s theorem that 6 < 1/4 (recall
the definition (Z.6])). One could make the bounds explicit in terms of 6 and thus benefit
from recent progress towards the Ramanujan-Selberg conjecture. It is straightforward
to check that Lemmas [1.8], and [210 hold with the right-hand sides replaced by

(1+ (u(@) NY)*) (1 + g ((@) N)' =) a3,
(@N)(Qgy " + N+ Y*NYQ) lan]3,

(QN)*(Qqy" + N+ Y*N*QUY)N

respectively (compare with [IK04, Proposition 16.10]). We refrain from doing so be-
cause it would not impact the applications considered here.

4.3. Proof of Theorem 2.1l

4.3.1. Estimates for sums of generalized Kloosterman sums. We begin by the following
statement regarding the generalized Kloosterman sums Sy p(m, n;c¢). For the sake of
simplifying the presentation of the bound obtained, we discard powers of the modu-
lus ¢q. This does not have consequences on our applications.

Proposition 4.12. Let the real numbers M, N, R, S > 1, X > 0 and the integer ¢ > 1
be given, let x be a character modulo q, let ¢ be a smooth function supported on the
interval [X,2X] such that |9 < X7 for 0 < j < 4, and let (a,,) and (b,,.,) be
sequences of complex numbers supported on M < m <2M, N <n<2N, R<r <2R
and S < s < 25. Assume that (a,,) is the characteristic sequence of an interval of
integers. Then

Z ambn,r,s Z 1¢(4ﬂ- mn) 50071/5(771, :I:n, C)
C

(4.31) (o c€C(00,1/s) ¢

Lo (q(X + X YRSMN){ Lueg + Lexe |

L= (14X 20) (13 2 VB

N\ [1+X1 /1 VRS
= (1| 2 AN )RS sl

where the Kloosterman sum is defined with respect to the congruence group I'(qrs) with
multiplier induced by x, with scaling matrices oo and o1/, that are both independent
of m and n, with o independent of r and s as well.
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Remark. If (a,,) is not the characteristic sequence of an interval, then the bound (Z.31)
still holds with Ley. is replaced by MY* L. (see [DIS2H, Theorems 10 and 11]).

Proof. This estimate is deduced from Proposition [4.7] and Lemmas [4.8 and .10 by
following the computations of Section 9.1 of [DI82h]. It is useful to notice that the
bounds of Lemmas .8 .10l and Proposition .7 (for a € {oo, 1/s}) decrease with gq.

O

4.3.2. Estimates for the complete Kloosterman sums twisted by a character. We now
justify the transition from Proposition [£.12] to an estimate for twisted sums of usual
Kloosterman sums S(m,n;c).

Proposition 4.13. Let the real numbers M, N, R, S,C > 1, and the integer ¢ > 1 be
given, let x be a character modulo q, let g be a smooth function supported on [C,2C] X
[M,2M] x (R%)? such that

ovo +vi1+rvatvs +V4g
Oc?o OmYrOnv2 drvs Jsv4

for 0 <wv; <12. Let (bys) be a sequence of complex numbers supported on N < n <
2N, R<r <2R and S < s <2S. Then uniformly int € [0, 1),

Z burs X(€)g(c,m,n,r, s)e(mt)S(nF, £mg; sc)

(433) (se,rq)=1

(4.32) (c,m,n,r,s) K CTM M N2R™3S™

<o (CRSMNY ¢**{ Koy + Koo}V M by s

Ko p S(CZSQJ% + MN + C2SN)(C2S2R + MN + C2SM)
reg * C252R+ MN ’

KZ.:=CS*/R(N + RS).

Proof. As before, we present the proof in the case where there is a + sign in the
Kloosterman sums. The complementary case is similar. The main issue is separation
of variables, as explained in [DI82b| page 269]. The nuisance is mainly notational. We
write

4
g(C, m,n,r, S) = /1:{4 50\1/@0(4;\/\/1:?:7 517 527 537 f4)e<_m£1 - n§2 - T£3 - S£4> H d§]7
j=1

by Fourier inversion, where for all (z,&,...,&) € RY x R,

G(o, 61, &) = /(R* 4

0

4
G, 1,50 xa)e(@16y + -+ 146a) H dzj,
j=1

471'\/371.1’2 471'\/371.1’2
) = g( . ,a:4).

9T, 21, ..., 24) : T
( ) ) ) x xx4\/x—3q7 )

By integration by parts, for any non-negative integers (¢, ¢y, ..., ¢,) with ¢ < 4and ¢; <
2

Y
aZG 8€+€1+---+24

_ e\
W('xuglu"'7€4) _H<27TZ£J) / (axfﬁx? -~-6xi4g*<x’x1’.“’x4))x

4
j R

X e(w1&1+ -+ 148s) dej
J
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assuming &; # 0 if £; > 0. The derivatives are estimated using (£32). Choose ¢; = 0
or {1 = 2 according to whether |{;|M < 1 or not, and similarly for ¢y, {3, 4. Then

VG o e« MNRS'CVGR/IN/(CSVaR)
Oxt ANV (T (G M)?) (1 + (N1 + (&R)?)(1+ (64S)?)
We abbreviate further

(14+ (GM)*) (1 + (&N)*)(1+ (&R)*)(1 + (£45))
MNRS2C\/R

(b(I) = ¢§1 ~~~~~ §4<SL’) =

G(l’,él, e ,§4).

This function satisfies the hypotheses of Proposition EEI2, withl] X = MN /(CSV/qR),
uniformly in ;. Define

Enms = bprse(n(ée +5/(rq)) —rés — 854)-

Finally, by Lemma .3 with an appropriate choice of scaling matrix (depending on &;
and t), we have

x(c)S(n7, mq; sc)e(m(t — &1)) = Soc,1/5(m, 15 5¢4/Tq).

Proposition [£.12] can therefore be applied and yields

7 1 4m\/mn ‘
m;“s bn s (c%):1 cs\/Tq <Z5( sc/rq )Sw,l/s(m, n; sc\/Tq)

(s,rq)=1
e C N W+ Wose)V W ol
with
w2 RS(CQSQR + MN + C?SN)(C?*S*R + MN + C?*SM)
ree C?S?R+ MN ’
W2, = C*S*/R(N + RS).
From the definitions of ¢ and G, we deduce the claimed bound. O

4.3.3. Bounds for incomplete Kloosterman sums. In this section, we prove Theorem 2.1
As a first reduction, we remark that it suffices to prove the result when the se-
quence b, , s is supported on N < n < 2N, by summing dyadically over N and by
concavity of v/~ (losing a factor (log N)'/? in the process). Secondly, we let sy (mod ¢)*
be fixed and assume without loss of generality that

(4.34) bnrs = 0 unless s = sy (mod q).

We will recover the full bound (Z3)) by summing over s, (mod ¢)* (losing a factor ¢/
in the process by concavity). Let

(4.35) gle,myn,r, s) = /fo g(c, & m,r,s)e(Em)dé.

"Note that in [DIS2DH, page 278], some occurences of X should read X ~*.
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By Poisson summation, we write the left-hand side of (Z3)) as

Z s Z e(TLE) Z g(c,d,m,r,s)

GN,T,S8 é (mod sc) d=6 (mod sc)

(qr,sc)=1 (8,s¢)=1 d=dp (mod q)
c=co (mod q)

=y B s () e m e, sge — MR O0)

s SCY (5 sc q sc
(gr,sc)=1 ’
c=co (mod q)
bnrs .. —mdySoCo _ _
(4.36) = Z ——=g(c,m/scq,n,r, 8)8<7)S(7’LT, —mg; sc)
c,m,n,r,s scq q
(gr,sc)=1

c=co (mod q)

where S(...) is the usual Kloosterman. Let M > 0 be a parameter. We write (4.30))
as Ay + As + B, where A, is the contribution of m = 0, AL is the contribution of
indices m such that |m| > M, and B is the contribution of indices m with 0 < |m| < M.
By the bound for Ramanujan sums [IK04, formula (3.5)],

1 bnrs . -
Ay < 5 Z %W(C,O,n, r,8)|(n, sc) < q 2(log S)QD{NR/S}UQ||vaR75||2.
(arac)—1

c=co (mod q)

By repeated integration by parts in the integral (£3H), for fixed £ > 1 and m # 0
we have

k
g(e,m/(scq),n,r,s) < Dl-k(1—c0) (%) .
m

Taking k =< 1/gq, we have that there is a choice of M < (SCqD)*+t9E)SCq/D such
that the bound

gle,m/(scq),n,rs) <o 1/m*  (jm| > M)
holds. Bounding trivially the Kloosterman sum in (£36]) by sc, we obtain

(4.37) Ao <. (SCqD)HOE) g2 DINR/SY2 by rs |l

which is also acceptable (if ¢ is small enough, the factor ¢~2+s+9¢0) is bounded).
There remains to bound B; we may assume that M > 1 for otherwise B is void. By
dyadic decomposition,

B <logM sup |B(M)],

1/2<My <M
where
bn 7,8 . _meSOCO _ —
B(M) := > —=g(c,m/scq,n,r, 3)e<7)5(n7’, —mg; sc).
c,m,n,r,s scq q
(arsc)=1
M1<|m|§2M1

c¢=cp (mod q)
We insert the definition of § after having changed variables £ — £scq/m, to obtain

DM,
IB(My)| < —~=  sup  |B' (M, &),
SCGq =DMy /(5Qq)
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where
(4.38)
bnrs - d —_ —_
B/(Mlag) = Z — g(c, {scq/m,n,r, 8)8<M)S(TLT, —mg,; SC)'
c,m,n,r,s m q
(gqr,sc)=1

M <|m|<2M;
c=co (mod q)

By orthogonality of multiplicative characters, we have

1
S(M
Ml@(g) y (r%);j ) X(C()) ( 17£7X)7

BI(Mlug) =

where

8<M17£7X) = Z Z bn,r,s

(s,qr)=1|m|=<M;

—mdosoco

)S<n77 _mqv SC),
q

xanlem . s)e(
(c,rq)=1
g1 (Ca m,n,r, 8) = Mlm_lg(ca SSCQ/mv n,T, 8)'

Proposition T3] can be applied to the sums S(Mi, &, x), at the cost of enlarging the
bound by a factor O((C'DN RS)®%) in order for the derivative conditions (Z£32)) to be
satisfied. We obtain

S(M, €, x) <= ¢**(CDNRS) O Loy + Loe jy/ Milbn s 55,

2 . RS(CQSQR + MyN + C?SN)(C?S?R + M| N + C*SM,)
res C2S2R + M;N ’

L. :=C*S*\/R(N + RS).

From there, computations identical to [DI82bl page 282] allow to bound

C?MN

Lyeg < RS(C?S*R + MyN + +C?S(My + N)).

We deduce successively

o 0PDVAL
SC

[B(M))| < (CDNRS) (M) [1bx, .52,

L*(M,)? := RS(C%*S*R + M, N + C*M;N/R + C*S(M, + N)) + C*S*\/R(N + RS),
and finally

(4.39) B <. (CDNRS)=+OE) 112K,

K*:= CS(N + RS)(C + RD) + C?DS,/(N + RS)R.

Grouping our two bounds (4.37) and (£39]), and summing over sy (mod ¢)*, we obtain
the claimed result.
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5. CONVOLUTIONS IN ARITHMETIC PROGRESSIONS

In this section, we proceed with an instance of the dispersion method, for convolu-
tions of two sequences one of which is supported in [27, 2'/37"] for some 1 > 0. This
extends [BFI86, Section 13] and [Fou85l, Section VI.

Given a parameter R > 1, an integer ¢ > 1 and a residue class n (mod ¢), we let

Xy(R) == {x (mod g), cond(x) < R},

and
1
uR(n; Q) = 1n51 (mod q) — ~_/ Z X(n)
#(9) \exrimy
(5.1) 1
=— > xmn.
(p(q) X (mod q)
cond(x)>R

Note that this vanishes when ¢ < R. We have the trivial bound

R1(q)
5.2 up(n;q)| < 1n£ mod + —
( ) | ( )| 1( q) 90((])
It will also be sometimes useful to write
Linq)=1 1
5.3 ug(n;q) = (1n mo — 4 ) — x(n).
( ) R( ) 1 (mod q) go(q) <,0<Q) § (mZOd ) ( )

1<cond(x)<R

Theorem 5.1. Let M, N, Q, R > 1 and 1 be given, with x := MN and z'/* < Q.
Then there exists § depending at most on 1 such that the following holds. Let two
sequences (), (Bn) supported in n € (N,2N| and m € (M,2M] be given, which
satisfy for some A > 1,

(5.4) | < 7(m)?,[Bal < ()™
Let ay,ay € Z ~ {0}, and assume that

z? <N <@,
(5.5) Q < '/,

R,|a1|, |as| < 2°.

Then for small enough n, we have

(5.6) > S amBaur(mnaras; q) < z(logz)° VR

Q<q<2Q | ™M
(g,a1a2)=1 (n,a2)=1

The tmplicit constants depend on n and A at most.
Introducing ug(n; q) is technically much more convenient than the usual

1(n,q)=1 .
©(q)

Indeed, there are no equidistribution assumptions on our sequences in Theorem [5.11

(57) ul(n; Q) =1, (mod ¢q) —
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5.1. Bombieri-Vinogradov range. Before we embark on the dispersion method we
need an estimate which is relevant to values of the moduli less than the threshold z!/2¢.

Lemma 5.2. Let M\N,R > 1. Let xt = MN, and suppose we are given two se-
quences (a,,) and (B,) supported on the integers of (M,2M] and (N, 2N] respectively,
satisfying the bounds (5.4). Suppose that Q < z'/?/R and R < Q. Then

max Z&mﬁnug(mnd; q) < ;(;(logx>o(1)(R*1 +M71/2 +N71/2)_
Q<QS2Q(a7q):1 m,n

Proof. See [IK04, Theorem 17.4]. Only the case r > R appears in our case. O

5.2. First reductions. First we apply two reductions, following Section V.2 of [Fou85]
and Section 3 of [FI83]. We replace the sharp cutoff for the sum over ¢ by a smooth
function 7(q) ; and we transfer the squareful part of n into the number ay, allowing
us to assume that n is squarefree. Note also that the statement of Theorem B.1] is
monotonically weaker as § — 0, so that whenever needed, we will take the liberty of
reducing the value of § in a way that depends at most on 7.

Proposition 5.3. Let x, M, N, Q, R,n and the sequences (a.,) and (5,) be as in The-
orem [51l. Assume that (B,) is supported on squarefree integers. There exists 6 > 0
such that for any smooth function v : Ry — [0, 1] with

(5.8) Lie@20) < 7(0) < Loe(@r230/2

and |79 <; Q7ITPY for some B > 0 and all fired j > 0, under the condi-
tions (B.H), we have

(5.9) S e YD amBuur(mnaias; q) < x(logz)°D R
(qvalg2):1 (nzgzl

The implicit constants depend onn, A (in (54)), B and the function v at most.

Proof that Proposition implies Theorem [5.1. We replace the sharp cutoff Q) < ¢ <
2@ by a smooth weight v(q) such that

Lie@2q) < (@) < 1yeu—q-199) 201 +Q-109))-

We can pick v such that |77 <; Q77+ for all fixed j > 0. The error term
in this procedure comes from the contribution of those integers ¢ at the transition
range 2Q < q¢ < 2Q(1 + Q™) and Q(1 — Q') < ¢ < Q. It is bounded by
the triangle inequality, using our trivial bound (52)) and following the reasonning
of [BFI8E, page 219 and 240], choosing Qo = z'% there. We obtain

(5.10) > (Lo<gx2o — (@) D amBaur(mnaras; q) < zR(log )0 Q=108

q n,m
(g,a102)=1 (n,a2)=1

Given our hypotheses R < 2° and Q > z'/*, this is an acceptable error term.

Let K denote the set of squareful numbers:
K={keN: pk=p’lk}.

Factor each integer n as n = n'k with u(n’)> =1, (n/,k) =1 and k € K, so that k <
23 and (k, ay) = 1. Here p is the Mobius function. There are only O(K'/?) squareful
numbers up to K [ES34], therefore

1
SN -o< KT (K>
E>K k

kel
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Proceeding as in [Fou85|, Section V.2] and using the trivial bound (5.2]), we deduce for
any K > 1,

Yo e Y. amBuur(mnaias; q)

(g,a1a2)=1 (n,az)=1
(5.11) = kg{ Z 7(q) ;n ()2 Bt (mnkarasz; q)
(kfcail)czl (a, amz) 1 (n,kaz)=1
+ O(Rz(log z)°W K~1/2),

We are left to analyze, for k € K, k < K, (k,az) = 1, the sum
Yo @) Y awBran(n)*ur(mnarkas; q).

q n,m
(g,a1a2)=1 (n,kaz)=1

Assume K < z%. For each fixed k, the sequences (), and (E7°u(n)? By )n are sup-
ported in m € (M,2M] and n € (N/k,2N/k], respectively. We apply Proposition
with 7 replaced by 1/2, N replaced by N/k and ay replaced by kay (the factor k—°
ensures that the condition (5.4) holds for (k=°u(n)?Bin)n). If & is small enough in
terms of n, we obtain, uniformly for k < K,

S o) Y amBuwp(n) ur(mnarkas; q) < k' Px(log )W R

q n7m
(g,a1a2)=1 (n,kaz)=1

Note that the sum " k7' converges. Inserting in (5.11]), we obtain
Z v(q) Z U Butig(mnaras; q) < z(logz)°W(R™! + RK~Y/?)

q n7m
(g,a1a2)=1 (n,a2)=1

and so we conclude by the choice K = R*. U

5.3. Applying the dispersion method. Let us prove Proposition Recall that
the sequence ([3,) is assumed to be supported on squarefree integers. Let D denote
the left-hand side of (5.9]). By the triangle inequality
D= ¥ 9@ X anfarimimie)| <3 ( ).
(g,a1a2)=1 m,n m
(n,a2)=1
Let the function a(m) be C>* with a(m) > 1 for M < m < 2M, supported in-
side [M/2,2M] and such that |[a")||,, <; M. Then by the Cauchy-Schwarz in-
equality and the hypothesis (5.4]),

(5.12) D] < (loga)COMY2(S, —2%e S, + &)

where

Si= > Aa)e) D, BubBu > a(m)

(q192;,a1a2)=1 n1,n2 _ mni=ai1az (mod q1)
(nin2,a2)= mna=aiaz (mod g¢2)

and Sy and S5 are defined similarly, replacing the sum over m by

> X(mn@iay) > alm)xa(m),

QO(qz) x2€Xq, (R) ni=a1az (mod qi1)
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1 -
> Y. xa(ma@as)xa(negias) Y a(m)xixa(m)
e(q)e(g2) X1€Xq; (R) X2EXgy (R) (mna,q1)=1

(mn2,q2)=1

respectively. We will prove
(5.13) S; —2MRe S, + S5 = O((logz)°VMN2R™?).

5.3.1. Fvaluation of S3. The term Ss is defined by
(5.14)

S3 = Z M Z Z Brr By Z a(m)x1(mmaias) x2(mnaaias).

(q142,a1a2)=1 @(91)‘»0(@2) X1E€X, (R)  m1n2 (myq1q2)=1
R

X2E Xy (R) (M3:0792)=1
Let W :=[q1, q2) and H := W' /M. By Poisson summation (Lemma B.1]),
a(0 _
Sotmpurm =TS e
m b (mod W)X
1 h —bh 1
+— > 64(—) > e(—)xlﬁ(b) + O, (—)
W 0<|h|<H w b (mod W)* W w
The conductor of x;¥z is at most R, so that [IK04, Lemma 3.2]@ yields
—bh
Y oGy Jumt) < B2 3 d
b (mod W)X d|(h,W)
We deduce
— . 6[(0) J— epl/2
Yoamxixa(m) = <= > xixa(b) + O-(W°R"?).
m W b (mod W)*

The error term is O(2%) while the trivial bound is M > x%°. We deduce
S; = a(0) X5 + O(MN?z~Y/?),

where, having changed b to bajaz,

v(q1)7(q2) _
X3 1= 6”1/3”2 bn X bno ).
3 qlz,q:z 41, ¢2)p(q1)e(q2) megqjl(R) nlzm:g , (mgw)x X1(bn1) x2(bnz)

(9192,a1a2)=1 X2EXy, (R) (M9:392)=1

By orthogonality,
Z X1Xz(b) = o(W)1y oy
b (mod W)X
where by x1 ~ X2 we mean that y; and x5 are induced by the same primitive character
— which necessarily has conductor dividing (g1, ¢2). Therefore,

Z X1(n1)x2(n2) Ly, = Z Xo(n173).

X1€Xq, (R) XOEX(ql,qg)(R)
X2 E‘qu (R)

Since ¢([g1, 2]) = ¢(a1)#(42)/9((a1, 42)), we deduce
(5.15) X; = Z Y(q1)v(g2) Z Z By BraXo(naTs).

(q1q2,a1a2)=1 [qla QQ]QP((Ql, QQ)) X0EX(q, 40y (R) | 172
(nj,q;a2)=1

8Note that in Lemma 3.2 of [IK04], 7(x) should read 7(x*) and an additional factor x*(m/(dm*))
should appear in the summand.
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5.3.2. Fvaluation of S;. The term S, is defined by
(5.16)

S= Y w S B Y Y a(m)xe(mnaaias).

(@1g2.araz)=1 ¥ 2) (n.nql'g)—l X2€Xgy (R) m=a1@zmz (mod q1)
VREY) -

As before, let W = [q1, q2] and H = W'*¢/M. By Poisson summation,

(0 1
(5.17) S atmem =20y w0 (Ret o),
m=aiazni (mod q1) b (mod W)X*
b=aiazni (mod q1)

where

M —bh
(5.18) Ry = o 3 Xg(b)e(—)‘.

W 0<|h|<H b (mod W)X* 4

b=aiazni (mod q1)

We wish to express the sum over b as a complete sum over residues. We write W =

(01, @2] = 41q5, where (g5, ¢1) = 1 and ¢;|q7° (meaning that p|g; = plq1). Then (¢;, ¢5) =
1. Let

U (Z)G2) x (Z)gyZ) — (Z/WZ)
denote the canonical ring isomorphism (so ¢! is the projection map). Note that

by = X2(¢ (1, 2))

defines a character (mod ¢;) of conductor at most R. Finally, we have

The sum over b in (5.I8) is in absolute values at most

—bohg!
(5.19) > > ><2<w<1,b2>>e( - ql)’
b1 (mod qll)x by (mod qé)x ©
bi=aijazni (mod qi)

since ¥ (b1, by) = by (mod ¢ ), and by factoring

X2((b1,b2)) = x2(4 (b1, 1))x(¥(1, b2)).
The sum over by in (5.19) is a Gauss sum; by [IK04, Lemma 3.2],

—bohq,
(5.20) > w2 <r2 Y
bz (mod ¢4)* & d|(h,q5)
Note that
/
(5.21) > AU (g2, 45°)
by (mod )% e(q)

bi=aijazni (mod qi)

which is a shorthand for [T,v( 4, e 27~ Multiplying (5.20) with (52I) and summing
over h, we obtain

Ro < Wr(g2) (g2, i) B2,
Inserting this estimate into (5.17)) then (5.I6]), the error term contributes

< menzwe Yy Tl a)

q1,92<Q 92

< [E6/2+6N2Q.
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In the last inequality we used standard facts about the kernel function k(n) = [1,,, p,
for which we refer to [dB62]. The error term above is acceptable, since

220 < g2 < 4232 < N R-?
if  is small enough. We therefore have
S, = a(0) X, + O(MN*R™?)

with (having changed b into bajazng)

PP i C i ICO R < sl S S B )

(q192,a1a2)=1 [ql’ QQ]QP(QQ) ni,nz X2€Xg; b (mod W)X
(nj,q5a2)=1 b=nin2 (mod ¢1)
Fix x2 € X, and let Xy (mod ¢») be the primitive character inducing x». Using
orthogonality of characters (mod (qi,¢2)), the sum over b is

¢(g2) o
X2(0) = =515 (g0, X2(M11
b (mgw)x 2( ) (p((qh(h)) q21(q0,q1) 2( 1 2)

b=min2 (mod q1)

where we used the fact that (nins, (¢1,¢2)) = 1. Summing over x» € X,,, we obtain

q _
S OY k-2 S ),
X2€Xq; b (mod W)X <P<<Q1, Q2)) X0E€EX gy ,q9)

b=ninz (mod q1)

and so Xy = Xj.

5.4. Second reduction. We now wish to evaluate

Sii= Y v > B B > a(m).

(q192,a102)=1 ni,n2 _ m=ajazni (mod g¢1)
(nj,q192a2)=1 m=ajazng (mod g¢2)
ni=n2 (mod (q1,92))

The expected main term is a(0)X;, where

Y(q1)v(q2)
o n el s
(‘11‘12%2)1 [¢1, g2] n;Q 177n2
(nj,q;)=1

ni=nz (mod (qi1,92))

For all integers qg, ng with (ng, o) = 1, let Si(qo, no) denote the contribution to &;
of those integers satisfying (g1, ¢2) = qo and (ny,n2) = ng. Then we have

|Si(g0,m0)| <2 Y] >, 3 a(m)

q1,2<Q/q0  mn1,m2<N/ng aznongm=a; (mod qoq2)

(gog2,a2n0)=1n1=n2 (mod qo) q1|maznoni—a1
(n2,90g2)=1
c Q
STAED VDS > am{ L
q2XQ/no n1,m2<N/ng maznon2=a; (mod gogz) do
(q0g2,a2m0)=1 n1=n2 (mod qo)
(n2,q90q2)=1

+ 1ma2non1¢a17(|ma2n0n1 - a1|)}

MN? MN QN
FREA }

<e xe{ 2 2
no40 n0q0 noqo
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Therefore, for some § > 0 and all 1 < K < 2%, we have
> [Si(go,mo)| < 2T MN?K

(qo,m0)=1
max{qo,no}>K

By choosing K appropriately, it will therefore suffice to show that
S1(q0,m0) = @(0)X1(qo, no) + O(MN?27°)  (go,n0 < 2°)
where X;(qo,no) is the contribution to X; of indices with (¢1,¢2) = qo and (ny,ns) =

ng.

5.5. Evaluation of S;(qy,n). Let the integers qo, ng be coprime, at most z°, such
that (o, a1a2) = (ng, az) = 1. Let us rename ¢ into goq; and ¢, into gogo, and similarly
for ny and ny. We wish to evaluate

51(%,710) = Z 7(%611)7(6]0%) Z Broni Brons Z Oé(m)-
(qlq%alaq;)gz(qh%):l (nonj,qlo,q;az)zl m=ai1aznon; (mod qoq;)
(n1,m2)=1

ni=nz (mod qo)

Using Poisson summation, we have
S1(g0, 10) = a(0)X1(qo, no) + Ry + Oc(°Ry)
where, having put W = qoq1¢q and H := Wte 1,
1 _/h —hu
Z Z Y(qoq1)y qoq?)ﬁnomﬂnom Z WQ(W) ( W ),

41,92 n1,n2 0<|h|<H

= Z—<<q0

q1,92 n17n2
the summation conditions on ¢; and n; are the same as in the definition of S;(go, 7o),
and the residue class p (mod W) satisfies

p = ayaznon; (mod gog;) (7 €41,2}).
We seek an error term O(M N2x7%). The contribution of R, is acceptable.

We now focus on Ry. Recall that (3, is non-zero only when n is squarefree (so
that (ng,n1) = 1). We have the equality modulo 1

1% ai N1 — Ng g1a2MoN2 a goq192m1 (

= + a; 1
q04q1492 Gog1G2a2M0N qo n1G2 a2Myg

Taking the exponential, we may approximate

mod 1).

ai | 1|
e(— ) =14+0(———).
(QOChQQaQnonl) (610611QQ(12”0”1)
Inserting in Ry, the error term contributes a quantity

‘@1‘(]0 2N2
_— N
< ‘az\noQQN q PP |a1|

which is clearly acceptable. We therefore evaluate

N1 — Mg qrazNon n
= 3 ’Y(QOCZl)’Y(QO%)ﬂmmﬁmm ( )e<—a1h 1 — N2 q1a2Ng 2+a1hQOQ1Q2 1).
q1,92,n1,n2 909192 o n1q2 azng

qoq192

Now we insert the definition of & as

h
a(%(h(h) - qoqng/Ra(qo%fbf)e(hf)df,




ERROR TERM IN THE DISPERSION METHOD 31

we detect the condition (aj,q1g2) = 1 by Moébius inversion, and we split the sums
over qp, g2 into congruence classes modulo ngas. We obtain
M
(5.23) IR, | < (nolaz|)*7(|ai])? ZO sup sup sup RY
Q £xMqo/Q? (gl,gﬂ)al A1,A2 (mod npag)*
1,02)=1

(6102,n0a2)=1

where
Ri = >, Y@wha1)¥(G00202) D BroniProns X
(5111({1572(1(122):1 (nonqulo75j2q1)=1
¢j=X;0; (mod ngaz) mz(z;,r(zrgn)o:dl o
qo)\l)\in ny — N9 a2n0n251q1
X Z 0‘(5@05152611612)9(§h + alhi)e —ar1h 5 .
0<|h‘§H asMng q0 10242
We write RY in the form (2.3]), with
(5.24)
ny — N9
C @, d<+ q, n<+ —ah , T4 asngngdy, S <4 Nidy, q 4 Ngas,
q0

taking the complex conjugate or not depending on the sign of a;h(n; — nsy), and with
the term

’7<QO51(]1)’V(QO52Q2)&(5(]05152611612)

playing the role of the function g. The derivative conditions (2.2]) are satisfied with ey =
BJ, by virtue of our hypothesis on . At this point, we are in a situation analo-
gous to [BFI86, formula (13.2)]. Applying Theorem 2.1} and evaluating the terms as
in [BFI8G, page 241], we obtain

Rlll <<$O(6)A1/281/2,
where A < HN? is the contribution coming from ||by r s||3 in (Z3), and
B< Q*N*N(H+N)+@Q*N*VH +N+Q°HN < (QN)*{N(H+N)+QVH+ N}

We have H < 1% N, so that B < Q*N?2°9(N? + Q+/N) (compare with [BFIS6),
formula (13.4)]). Inserting in (5.23), we obtain

Rll < xO(zS)MNQ (Q71N3/2 + Q71/2N3/4) < xfn/2+0(5)MN2
by the hypothesis N < Q%3~". Taking § sufficiently small in terms of 7, we have the
required bound O(M N2279).

5.6. The main terms. The main terms X; and X3 defined in (5.22) and (515) are

real numbers. They combine to form

Xi—-X3= > 210172 > B Brsur(namiz; (a1, ¢2))-

(q192,a1a2)=1 a1, 4] n1,m2
(nj,q5a2)=1
Notice the summands are zero unless (¢, ¢2) > R. We use Mébius inversion

L q)=1 = Z 1(d;)

d;l(g;,nj)



32 SARY DRAPPEAU

to detect the conditions (n;,¢;) = 1, in order to separate the sums over n;, ny from
those over q;, ¢;. We insert the definition of ug in the form

1
@((qh QQ)> X primitive

cond(x)>R
cond(x)|(q1,42)

up(n1M2; qo) = x(m1)x(n2).

We can assume (d;, cond()) = 1 because of the factors x(n;). Quoting from [Ten95,
Theorem 1.5.4] the bound ¢(q) > ¢/ loglog ¢, we obtain

1

X; — X3 < (loglog z) Z Z <Z—) Z ﬁ

> 5@-&((”)‘-

R<r<Q didy N an,az 41927 y primitive j=1 (n,az)=1
dj<<Q/r q;=Q X (mod 7)
rd;lq;

The sum over q;, ¢o is O(1/(r?dyd,)). By Cauchy—Schwarz, and the symmetry be-
tween n; and ne, we obtain

X, — X3 < (logz)? Z Z Z ’ Z ﬁan(n)Q

d< N R<T<Q X primitive ' (n,a2)=1
x (mod r

For all ¢t > R, the multiplicative large sieve inequality (Lemma B.3]) and our hypothe-

sis (B.4]) yields
< (log )W r(d)*A(t? + N)N

X X | X bt

R<r<tx primitive ' (n,as)=1
x (mod )

after ignoring denominators d. We obtain by partial summation
1/G QG(t
Xi— X3 < (logz)® > —(@ +/ (t )dt> < (logz)°W(N + N*R7?).
ien A\ Q R

By hypothesis R < 2°, so we have the desired bound X; — X3 < N?2R~2(logz)°W).
Given a(0) < M, our claimed estimate (5.13)) is proved, and therefore Proposition
as well.

6. APPLICATION TO THE TITCHMARSH DIVISOR PROBLEM

The aim of this section is to justify Theorems [T and [[L2 Recall the definition

> A(n)T(n—1).

1<n<lz
We let
b(aiga) = Y Aln), (@)= Y Aln),  Y(ax) =D An)x(n)
nzan(rgnf)d q) (nyfqg)il nse

Let us recall the following classical theorem of Page [IK04, Theorems 5.26, 5.28].

Lemma 6.1. There is an absolute constant b such that for all Q,T > 2, the following
holds. The function s+ [1j<q Iy (moa q) L(s,X) has at most one zero s = 3 satisfy-
ing Re(s) > 1 —b/log(QT) and | Im(s)| < T. If it exists, the zero [ is real and it is
the zero of a unique function L(s,X) for some primitive real character X.

Given a large x, we shall say that X is z-exceptional if the above conditions are
met with Q = T = eV'¢”, For all ¢ > 1 for which glq, we let ¥, denote the charac-
ter (mod ¢) induced by ¥X.



ERROR TERM IN THE DISPERSION METHOD 33

6.1. Primes in arithmetic progressions. We deduce from the previous sections
the following result about equidistribution of primes in arithmetic progressions.

Theorem 6.2. Assume the GRH. For some 6 > 0, all z > 1, Q < z"/** and all
integers 0 < |ay|, lag| < 2°,

222 (¢(w; ¢, ax7iz) — @—(qu<x>) <z
(g,a1a2)=1

Unconditionally, under the same assumptions,

15X (a2a1 v~q _
qSZQ (w(x;q,cha_ﬂ - wq@) il qq;<<(;l)2a1)@/)($ X )) <L zxe 5\/@’

(g,a1a2)=1

where the term 1 (x; X,) is to be taken into account only if the x-exceptional character X
exists.

Using the Dirichlet hyperbola method (see in particular section VII of [Fou85]), it
follows that the same estimate holds on the condition ¢ < 2!~ for any fixed ¢ > 0 (the
implicit constants and ¢ may then depend on ¢). Note however that the symmetry
point is at ¢ &~ (x|ag|)'/?, rather than 2'/? (so the flexibility of taking @ somewhat
larger than z'/2 is not superfluous). We refer to [Fiol2h] for more explanations on
what happens when () is very close to z.

As mentioned in the introduction, the uniformity in a; and as is an interesting
question. At the present state of knowledge, bounds coming from the theory of au-
tomorphic forms are typically badly behaved in that aspect. By using a more refined
form of the combinatorial decomposition (6.4, Friedlander and Granville [FG92| prove
that |a;| < 2'/47¢ is admissible for all £ > 0 (in the case ay = 1), with a somewhat
larger error term.

For the application to the Titchmarsh divisor problem, the following slightly weaker
statement suffices.

Proposition 6.3. For some d > 0 and all v > 2, assuming the GRH, we have

(6.1) > (v(wig,a) = v(a%q,0) - Pale) %(qQ)) <a'
<o v(q)
(g,a)=1

Unconditionally,

(6.2)

e (@) = () == X) — (e X)
zf (¢(w;0,0) = ¥(g% q,0) e 15,x(a) e )
(g,a)=1

< xe_é‘/@.

We will focus here on proving Proposition only, because the presentation is
slightly simpler and addresses all the essential issues.

Proof of Proposition[6.3. Let 1 < R < x'/10 be a parameter. Let

=), > An).
<vzT  ¢*<n<a
(g,a)=1n=a (mod q)
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By orthogonality of characters,

1
(6.3) S = Z ﬁ Z Z x(na)A(n)
(qSS/E1 )y (mod q) 2<n<z
q?a =

We decompose S; = S; + S;” where S; is the contribution of those characters y of
conductor at most R, and

St= Y Y Amur(nag).
¢<Vz ¢?<n<z
(g,a)=1

We first focus of S;". By the Heath-Brown identity [BFIS6, lemma 5] and a di-
chotomy argument similar to[F'T85 Section 2.(a)], the problem is reduced to showing

> DIEEDD p(ma) - - p(m;) (log naJugr(namy - - - njm;a; q)
Q<q=2Q (1-A) M <m; <min{M;,z/4}
(64) (g,0)=1 (1-A)N;<n; <N;
1<i<j
< z(logz)°WR!

where j € {1,2,3,4}, 0 < A < 1/2, and Q, M;, N; > 1 (1 < i < j) are real numbers
such that
Q> <I[M;N; <z, M, <22

Let 7 > 0 be small. The contribution of tuples such that [, M;N; < '™ is trivially
bounded by O, (z'~"*¢) using Lemma Suppose then [[; M;N; > x'=". For conve-
nience we rename x = [[; M;N;. Our objective bound for (64) is O(2'~%) and we now
have M; < x'/4+7 if 5 is small enough.

Fix n € (0,1/100]. At least one of the three following cases must hold:

(a) there exists an index k such that Ny > z!=(Z=bn,

(b) we have min{ Ny, Ny} > /377 for two indices k # K/,

(c) there exists an index k such that M} or N; lies in the interval [z7, z'/377].
In case (a), our sum (6.4) is at most

(6.5) Spi=1" ) >

Q<q2Q M/2<m<M
(g,a)=1

with 3 =1 or log, MN = z and N > 2'=™. Choose 1 < 1/30, for the sum over n, we
express ug as (B.3). Using

(6.6) Y 1= g +O(1)  (2>1,(a,q) € N?)

> Buug(mna;q)

(1—=A)N<n<N

n<z
n=a (mod q)

and partial summation in case § = log, we get that the sum over n above is

> Baur(mna; q) < logz + b > ‘ > an(n)‘.

(1-A)N<n<N (q) x (mod q) (1-A)N<n<N
1<cond(x)<R

For each y in the above, the sum over n is estimated using Lemma [3.4] as

> Bux(n) < RY?(logz)*7(q).

(1-A)N<n<N
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Dropping the condition cond(x) < R, we obtain for (6.5) a crude bound
Sa =1 <L, stQR1/2 < QRI/2378" < x11/20+877+5

which is acceptable.

Consider case (b). Then the sum on the LHS of GBEI) is of the form

(6.7) Syi= > YYD« n)yeugr(mnla; q)

Q<q<2Q (1-A)N<n<N
(g,0)=1 (1-A)M<m<M
(1-A)272L<¢<L

where M, N > /3" MNL = x, o and j are either 1 or log, and ~, satisfies
Vel < T2j-2(¢) log ¥

By partial summation and upon rewriting the size restrictions on m,n, ¢, q as differ-
ences of one-sided inequalities, it suffices to establish the bound

S$=Y| ¥ ¥ Y unlmntaq)

I<L q<@Q m<M n<N
(g,a6)=1

whenever M, N > 23727 and Q < 2/x. Writing ug as in (5.3), we have by the
triangle inequality

< xl—é

Sp < Sy + Spas
where

Sé1:Z} > > Y w(mnla;q),

(<L <@ m<M n<N

(q al)=1
Su=2 % == S xm)|| X )|
I<L q<Q (10 mod q) m<M n<N
1<cond

Theorem 7 of [BFIS6| yields the acceptable bound S < 2'7? as long as n < 1/30.
In S},, by Lemma [3.4] the sums over m and n are majorized by O(7(q)R'/?*¢). Drop-
ping the condition cond(x) < R, we obtain for (6.7]) a bound

8{22 <. .T}ELRQ <. x11/12+5n

which is also acceptable.
In case (c), we write our sum as

(6.8) > YY) amByug(mna; q)

Q<q=L2Q (1-A)2 ' M<m<M
(ga)=1  (1-A)N<n<N

where 27 < N < 2377 so M > 2?/3. We may assume that R < 22, If Q < z'/?71/2,
then Lemma[5.2/is applicable. If on the contrary x'/27"/2 < @ < /z, then Theorem [5.1]
is applicable with 1 < 7/2 (assuming |a| < 2%/2 as we may). In both cases, we obtain
that the quantity (6.5) is majorized by

S, < z(logz)°Y R
Summarizing the above, we have obtained

St < z(logz)°WR™!
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We consider now &; , which we recall is
1

Si= % 5 X% A,
q<Vx w\q X (mod q) ¢?2<n<z
(q.0)=1 cond(x)<R
First let us assume the GRH. Isolating the contribution of the principal character,
we write

S = Z Ug() — Yy(d?) +S?,
<z (q)
(g,0)=1
say. For any non-trivial character x (mod ¢) with ¢ < z, the GRH [MV07, for-
mula (13.19)] yields
x(n)A(n) < z/?(log z)>.
?<n<x

We therefore have

1
S’ < 2% (logx)? —— Y 1< Ra'*(loga)?
a<vz PO (ot g
cond(x)<R

which is acceptable. The choice R = z° for small enough ¢ concludes the proof of (6.1)).

Unconditionally, for any ¢ < eV1°8% and any non-principal, non z-exceptional char-
acter x (mod ¢), we have by a straightforward adaptation of [MV07, Theorem 11.16]
the estimate

> x(n)A(n) < we eV

?<n<x

for some absolute constant ¢ > 0. Choose R = e“V1°8%/2 We write

s v(q)
(g:0)=1

the error term being there to cover the trivial case when ¢ > R (so XY was not counted
in S;). By the same computation as above,

S’ < Ra(logz)e VI8® « pe=cVioss/3,
This concludes the proof of (6.2]) hence of Proposition [6.3]

+ SI{ + O(xe_c‘/h’Eﬂ),

t

6.2. Proof of Theorems [I.1] and [1.2l. It is now straightforward to deduce Theo-
rems [T and [L2 By the Dirichlet hyperbola method [FT85, page 45], we have

T(z) =2 Y (d(r:9,1) = ¥(q% ¢, 1)) + O(Va).
<V
Assume first the GRH. Then Proposition yields
_ 2
T(ZL') -9 Z wq(x) ¢q(q ) +O(l‘1_6)
oy R A C)
The GRH [MVO07, formula (13.19)] allows us to deduce

r) = x—q2 7).
Ti) 2q§5 v(q) o)

The main term is computed using [Fou82, Lemme 6], which yields the claimed estimate.
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Unconditionally, from Proposition 6.3, we merely have to add to our estimate
for T'(x) the additional contribution of the x-exceptional character (if it exists), which
takes the form

(@5 Xg) — (6% Xo)
(6.9) 2q§/§ )
alq

We have from [MV07, Theorem 11.16]
B

= T —o0v/1ogx
V(x5 Xq) = ) + O (we™"VIET)
and similarly
2.~ q26 —6y/logx
V(g Xg) = 5 + O(ze V%)
at the possible cost of changing the numerical value of §. We obtain that (6.9) equals
2 B _ 28
—= > S + O(ze~0VIer),
qlq

The sums over ¢ are computed using [Fou82, Lemme 6] (and partial summation in the
form 2% — ¢*% = 3 I t#=1dt), which yields Theorem L2l Corollary is straightfor-
ward.

There remains to justify Corollary [L4. Note that Cy(q) is absolutely bounded,
while ¢ < eV1°8® by definition. Therefore 27 — oo, and Bli(z?)/2" ~ (logz)~!. We
deduce

log g + Cs(q) — v
— 0
of [ (Bli(zF))  wmeo

in an effective way. For x large enough, it is less than 1/3 and Corollary [[.4] follows.

Remark. If we were to consider 7(n — a) instead of 7(n — 1), for some a which is not
a perfect square, then the Siegel zero contribution (if it existed) would have a twist
by x(a), which is a priori of unpredictable sign.

7. APPLICATION TO CORRELATION OF DIVISOR FUNCTIONS

In this section, we justify Theorem [L3l The proof has the same structure as that
of Theorems [[LT and [[2 replacing the function A(n) by 7x(n).

7.1. An equidistribution estimate. The analog of Theorem is the following;:

Theorem 7.1. There exists n > 0 such that under the conditions k >4, 0 < |a| < 2"
and Q < x'/?*n

(7.1) 3 ( Y. wn)——= > Tk(n)) <z,
(g,a)=1 mn=a (mod q) (n,q)=1

If the Lindelof hypothesis is true for all Dirichlet L-functions, then the right-hand side
can be replaced by x'~".
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In order to simplify the presentation, we put

c_ x if the generalized Lindelof hypothesis is assumed,
B unconditionally.

To handle the small conductor case, we require the following.

Lemma 7.2. For some 6 > 0 and any non-principal character x (mod q) with q¢ < x,
of conductor r < £ we have

Z m(n)x(n) <5 x€7°.

n<x
Proof. Starting from the representation

> me(n)x(n) =

n<x

1 /1+1/(logm)+ioo kZL‘SdS

_L(s,x)
1+1/(log x)—ico S

— (x ¢ N),
one may truncate the contour at 7' = 2°/% | and shift it to the abscissa Re(s) = 1—4/k.
The convexity bound |L(1—d/k +it, x)| < ¢°(r(|t| + 1))</** (for some ¢ > 0) yields
the desired estimate if £ = z!/*. If the Lindelof hypothesis L(3 +it, x) < (g([t| +1))®
is true, then one chooses T' = 2° and shifts the contour to Re(s) = 1 — §, where the
bound L(1 — ¢ +it, x) < (¢(|t| + 1))F holds by convexity. O

7.1.1. Small conductors. Let Sy denote the quantity in the left-hand side of (7.1]), and
let R < &°. The contribution of those characters y having conductors at most R is

— 1
Y. 2 x@) X —= > mn)x(n).
1<r<R x (mod r) q<Q (P(Q) n<zx
X primitive (g,a)=1 (n,q)=1

Tlq
By Lemma applied to the character (mod q) induced by y, we have a bound
€03 Y Y —— < 2E°R(logx)”.

r<R x (mod r) q<Q ( )
X primitive rl|q

Letting R = £%2, this is an acceptable error term. There remains to bound

Z ZTk n)ugr(na;q).

¢<@Q n<lzx
(g:a)=1

7.1.2. Dyadic decomposition. We dyadically decompose in &; the sums over ¢ and n
in (1)), yielding an upper bound

(7.2) S < (logz)*  sup > m(n)ug(na; q)|.
Q’<]\?i/2+n Q/<q<2Q/ N<n<2N

(g,0)=1

Let n > 0 and assume throughout that ¢ is small with respect to n. When N < x!=7,
by the triangle inequality, our trivial bound (5.2) and Lemma B2 the sum over ¢
and n above is Oy (2'7/2), so we may add the restriction N > 2'~7 in the supremum
with an acceptable error. Then we relax the condition Q' < 2?7 into @/ < NV/2+21,
Renaming N into x, and expanding out 74(n), we obtain that it will suffice to prove

(7.3) Si= > > ug(ng @ q) < €0

Q<q<2Q z<ni--np<2x
(g,0)=1
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under the constraints |a| < 2?7 and Q < 2227, We decompose the sums over ny, .. ., ny,
dyadically to obtain an upper bound

(7.4) Sy < 83 := (logz)®  sup
Ni,o Ng>1/2

Z ug(ny -+ -na; q)|.

Q<q<2Q z<ny--n, <2z
(g,@)=1 N;<n;<2N;

7.1.3. Splitting cases. Let the parameter 0 < 6; < 1/100 be fixed. We separate into
two cases according to whether there is a subset J C {1,...,k} such that

I1 N € (@, 2",
JjeJ
or not. Suppose there is no such subset, and let

K:={j: 1<j<k N;>a/3%}

Necessarily card K < 3. Since N; < 2% for each j ¢ K, and by assumption there is
no subset £ C {1,...,k} \ K such that [];c, N; € (2, 2!/37], it is necessarily the
case that

H Nj S ZL‘(SI.
JgK
This implies card IC > 1. Define
W= {(un) €CN: |u,| <1 (n>1)}.

Summarizing the above, we have

(75) 83 Lo 1‘8(./4 + Bg + By + Bl)a
where
A = sup > > U Bnlir(NM@; q)|,

1< N<g! /3701 1 Qg<2Q  Nap<2kN
MN=x -

(@,0)=1 po—Fk<m<2M
(am),(Br)EW z<mn<2z

B3 = sup Z Z QU Ur(N1M2M3MT; q)
Nl,Ng,N3>$1/3761 Q<q<2Q N;j<n;<2Nj
M Ny N3 N3=zx (ga)=1 M/8<m<2M

)

(am)eW r<mninanz <2z
By=  sup > > aug(ninama;q)|,

Ni,No>al/3-01 1 Q<q<2Q Nj<n;<2N;
NiNp>zl=%1  (qa)=1 M/8<m<2M

MNi1No=z r<<mning <2t
(aem)EW
B; = sup > > amuR(nma;q)’.
N>zt~ 1Q<q<2Q  N<n<2
MN=z = (g4)=1 M/8<m<2M
(am)ew r<mn<2x

We will focus on A and Bz, since the treatment of By and Bs is analogous to Bz and
actually simpler.
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7.1.4. Separation of variables. Fix another small parameter d, > 0. We smoothen the
cutoff using a smooth function ¢ : R — [0,1] with ¢(§) = 1 for £ € [1,2], #(§) = 0
for £ ¢ [1 — £7%2,2 + £7%], whose derivatives satisfy |[¢¥)||o <; £7%2. The cost of
replacing in A and Bs the sharp cutoff condition x < nm < 2x (resp. < nynsnsm <
22) by ¢(nm/x) (resp. ¢p(ningnsm/x)) is at most O(zE~%/2), by trivially bounding
the contribution of the transition ranges using Lemma [3.2]

Integration by parts shows that the Mellin transform gzuﬁ(s) = [5° ¢(&)E51dE satisfies

509

1+ |t]°

V]

o(it) < (teR).
We use the inversion formula ¢(&) = (27)7! [ d(it)€dt at € = nm/x (vesp. £ =
mningns/x) in the case of A (resp. Bs), to obtain the upper bounds

> > amBuur(mna; q)|,
201 <NS1.1/3761 ,

a Q<q<2Q N<n<2kN
(o A{é\é—few (g,0)=1 pro—k<m<oM
m )y n

(7.6) A <, €792/ 4 £5% sup

1
Bs <, pE&%2/2 4 £5% sup — 3 X
N1,Na,N3>z1/3-7, 1+ |t|
(am)EW, teR

(7.7)

Z Z O (n1n2n3) g (n1n9M3MT; q)|.
Q<q<L2Q N;j<n;<2N;
(g,a)=1 M/8<m<2M

7.1.5. The case of A. Let (auy), (B,) and N be given as in the supremum in (7Z.6). We
wish to bound

(7.8) S.i= > > appBuug(mna).

Q<g9<2Q N<n<2FN
(@:0)=1 pro—k<om<oM

By dyadic decomposition, enlarging our bound by a factor of k2, we may assume
the conditions are Ny < n < 2N; and M; < m < 2M; for My N, € [227F 22~
Theorem B with 7 < min{d;,1/30} gives the existence of d3 > 0 depending on §;
such that (Z8) is majorized by O(2*z€~%), on the condition that |a| < 27%2% and Q <
27Fg1/24% which are satisfied assuming 7 < &3/4 and taking z large enough in terms
of k.

If on the contrary Q < x'/3, we appeal to Lemma, with 1 <= 01/k (or n « §; if
the Lindelof hypothesis is assumed). We again obtain for (Z.8) a bound

S, < 28 €%

for some d3 (depending on d;).
Summarizing, we have obtained in any case

(7.9) A <, 1E7%2/% 4 g £5027%

for 63 > 0. Choosing 0, appropriately, it is an acceptable error term once we can prove
that d; > 0 can be chosen independently of k.
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7.1.6. The case of Bs. Let (au,), N1, Na, N5 > x1/37% and t € R be as in supremum
in (Z7). The quantity we wish to bound is at most

1 |
e S ol B ST

M/8<m<2M Q<q<2Q ' n1n2n3
(g,am)=1 N;j<n;<2Nj

Sp

where Ny N, NsM = x and M < 2*. Writing n'f = (2N;)" —it f,fJNJ z=1dz, the above
is bounded by

(7.10) Sy <.  sup Z Z Z ugr(ninen3ma)

N{NG N3 - M/8<m<M Q<q<2Q | nin2ns

Fix N, Ni, N} as in the supremum. Using (B.3]) and the triangle inequality,
S <& +S/,

where

(711) Sl; = Z Z Z uy (nlngngmﬁ)

M/8<m<M Q<q<2Q | nin2.ns
(gam)=1 N;j<n; SNJ/-

I

1 3
) §= Y Y — ¥ I ¥ )
M/8<m<M Q<q<2Q ©(q) X (mod q) j=1'N;<n<N/

1<cond(x)<R

To S§; we apply [BFI87, Lemma 2] for each ¢ individually (note that this is a very deep
result [FI85, [HB&G], relying on Deligne’s proof of the Weil conjectures [Del74]). For
some small, absolute d4, on the condition that Q < z'/2*% (requiring n < d,/2), the
quantity (ZI1) is bounded by

(7.13) Sp <« Mz'™0 < gl-0at30

Consider then S;'. By Lemma [34] each sum over n is bounded by O,(2°R"?), and so
we obtain a bound

Sl;/ <. $8R5/2M

which is absorbed in the term (I3]). Inserting in (7)), we have obtained for Bs a
bound

(714) 83 < x€—52 + 55521,1—644-361'

The terms B, and By are shown in the same way to satisfy the same bound with 9, >
0 absolute and small enough. Choosing our parameters adequately, we can choose
absolute constants dy, da, d3 in such a way that both bounds (TI4) and (7Z.9)) are true
and O(z€7"). Inserting back into (TH) and (74]), we obtain the claimed bound (73)).

7.2. Proof of Theorems and [1.6l As a last step, we deduce from Theorem [7.1]
the estimate

(7.15) q;ﬁ ( nSZLP Tr(n) — m n<ZQ2 Tk(n)) L x& (0 < a| < z™)

(g,0)=1 n=a (mod q) (n,9)=1
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where as before £ = x if the generalized Lindelof is true and € = z'/F otherwise.
Let A € (0,1/10) be fixed and decompose the sums over ¢ and n into intervals ((1 +
A)71Q, Q] and ((1 + A)7IN, N]. Calling S} the left-hand side of (Z.I5]), we have

Sl < > > > Ti(n)u1 (na; q)|,
J0,j120 (1+A)71Q<¢<Q (1+A) "I N<n<N
Q=(1+A)770/z n<g?
N=(1+A) =1z
where we used the notation (5.7)). The inner sums are void if Q* < N and the
condition n < ¢? is automatically satisfied if N < Q*(1 + A)™2. The contribution
of jo, 71 such that (1 + A)72Q? < N < ? is at most

> > 7(n)[uy(n@; ¢)| < Az(log x)*
i<z ?(1+A)73<n<g?(1+A)?
(g,a)=1

by virtue of Lemma Therefore

S; < Ax(logz)* + (logx)?A™2 sup
Q<3
N<Q?

> > r(n)u1 (n@; q)|.

(1+A)71Q<¢<Q (1+A) ! N<n<N

Let @, N be as in the supremum, and let 7 > 0 be the real number given by Theo-
rem [Tl Lemma gives the bound

> > 71 (n)w (n@; Q)’ <L 1N

(1+A)71Q<¢<Q (1+A) "' N<n<N

which is acceptable if N < z!=71° Suppose N > z'~"19 then Theorem [7.1l applies
with # +— N and yields a bound O(2£~"/1°) for |a| < 2/10. Therefore,

Si - x1+€A + A72x1+651717/10.
Taking e.g. A = £7/30 and reinterpreting 7, we have the claimed estimate (Z.15).
From the Dirichlet hyperbola method, Theorem [Tl and estimate (Z.I5), we deduce

Te(z) =2 > > 7(n) + O (z1/?+9)

<vVz  ¢*<n<lz
n=-—1 (mod q)

1
=23 — Y 7n(n)+O0@E?)
mela) o5,
(n,q)=1

The main terms are computed in [FT85, Théoréme 2], with an error term O(z!~%/%)
(unconditionally). If one assumes the generalized Lindelof hypothesis, then the proof
is adapted in the following way. Under the hypotheses and in the notations of [FT85]

Lemma 6], there holds |6(p")| < C’p*‘S(LkI;QJ) ([ET85, first display page 52]). There-
fore the series Fi(s) in [FT85, Lemma 7] is bounded in terms of k only in the half-
place Me(s) > 1 — §/2. In the proof of [FT85, Lemma 7], one chooses T' = %/ and
shift the contour to Re(s) = 1 — /2, where the Lindelof hypothesis implies ((s) < t°

by convexity, to produce the conclusion

> U(n)m(n) = 2Qx-1(log ) + O p(x'~0/+).

n<x
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The rest of the argument in Corollaries 1-2 of Lemma 7, and Corollary of Lemma 8
of [FT85] are transposed verbatim to yield

1
2 Z — Z T(n) = xPy(logz) + Ok(xl_c)
o= ela) %20;9
n,q)=1

for some ¢ > 0, as claimed.

7.3. Remark on the uniformity in a. If we were to replace the shift 7(n + 1)
by 7(n +a), 0 < |a| < 2%, then the deduction of an asymptotic formula analogous
to (C4) from Theorem [T goes along similar lines. We briefly indicate how one reduces
to our previous setting. From Dirichlet’s hyperbola method, the problem reduces to

the evaluation of
Skalz) =2 > > k().

<vz  ¢*<n<z
n=—a (mod q)

Extracting the largest factor dq|a®™ from n, we rewrite this as

Skalr) =2 > m(d) Y > Te(n).

di|a®> <V ¢*/di<n<z/d)
(n,a)=1
ndi=—a (mod q)

Writing ds := (g, d;), the congruence condition is equivalent to ds|a and

= —(a/d2)<d1/d2) (mod Q/dg)
We therefore have

Sk,a(a:) =2 Z Tk(dl) Z Z Z Tk(n)

dila> dz|(d1,a) q</z/d3 q?/d1<n<z/dy
(g,d1/d2)=(q,a/d2)=1 (n,a)=1
n=—(a/dz2)(d1/d2) (mod q)

Summing for each d; individually, the contribution of d; > 2° is bounded trivially

using Lemma When d; < 2°, the sum over n and ¢ is handled by an adequate
generalization of Theorem [Tl involving a congruence of the type n = b1y (mod q),
as well as an additional coprimality condition (n,b3) = 1, for integers |b;| < 2°. Our
arguments readily adapt to account for both these modifications. Note however that
it is now important that the method is able to handle values of the modulus ¢ up
to x1/2*9 with ¢ independent of k (cf. the statement of Theorem [7.1]).
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