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Homogenization of unbounded integrals with
quasiconvex growth

Omar Anza Hafsa · Jean-Philippe Mandallena ·
Hamdi Zorgati

Abstract We study homogenization by �-convergence of periodic nonconvex integrals 
when the integrand has quasiconvex growth with fixed convex effective domain.
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Mathematics Subject Classification 49J45 · 35B27 · 74Q05

1 Introduction and main result

Let m, d ≥ 1 be two integers and p ∈ [1, ∞[. Let � ⊂ Rd be a nonempty bounded open set 
with Lipschitz boundary. We consider the periodic homogenization problem of integral 
functionals by �-convergence. More precisely, for each ε>0, we define Iε : W 1, p(�; Rm ) 
→ [0, ∞] by

Iε(u) :=
ˆ

�

W
( x

ε
,∇u(x)

)
dx,

where the integrand W : R
d × M

m×d → [0,∞] is Borel measurable and 1-periodic
with respect to the first variable. The homogenization of {Iε}ε>0 consists to show the �-
convergence with respect to the strong topology of L p as ε → 0 to an homogenized functional
integral and to give a representation of the homogenized integrand.
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Nonconvex homogenization by �-convergence of the family {Iε}ε>0 was mainly studied
in the framework of p-polynomial growth conditions on W. Unfortunately, this framework is
not compatible with two basic conditions of hyperelasticity: the non-interpenetration of the
matter, i.e., W (x, ξ) = ∞ if and only if det(I +ξ) ≤ 0, and the necessity of an infinite amount
of energy to compress a finite volume into zero volume, i.e., for every x ∈ R

d , W (x, ξ) → ∞
as det(I + ξ) → 0. At present, it seems difficult to take these conditions into account in
homogenization problems. Generally, the attempts to go beyond the p-polynomial growth
are not easy due to the lack of available techniques. However, in the scalar case, we refer to
the book [15] where relaxation and homogenization of unbounded functionals were studied
(see also [12–14,16]). In the vectorial case, i.e., when min{d, m}>1, the homogenization in
W 1,∞ without growth conditions but with W having fixed bounded convex domain is studied
in [5] , and in [4] the homogenization with convex growth (independent of x) on W is carried
out (for the relaxation problems see [3,6,24]).

To go beyond the p-polynomial growth we consider G-growth and p-coercivity conditions
on W as follows:

(H1) G-growth conditions, i.e., there exist α, β > 0 such that for every x ∈ R
d and every

ξ ∈ M
m×d

αG(ξ) ≤ W (x, ξ) ≤ β(1 + G(ξ));
(H2) W is p-coercive, i.e., there exists c>0 such that for every (x, ξ) ∈ R

d × M
m×d

c|ξ |p ≤ W (x, ξ),

where G : M
m×d → [0,∞] is a Borel measurable function. Denote by G the effective

domain of G, i.e., G = {ξ ∈ M
m×d : G(ξ)<∞}. We can remark that (H1) implies that the

effective domain of W is independent of x and domW (x, ·) = G for all x ∈ R
d . In [4] the

case G convex with 0 ∈ int(G) and p>d was studied.
In this paper we consider the following conditions on G:

(C1) 0 ∈ int(G);
(C2) there exists C > 0 such that for every ξ, ζ ∈ M

m×d and every t ∈]0, 1[
G(tξ + (1 − t)ζ ) ≤ C(1 + G(ξ) + G(ζ ));

(C3) G is W 1,p-quasiconvex, i.e., for every ξ ∈ M
m×d

G(ξ) = inf

{ˆ
Y

G(ξ + ∇ϕ(x))dx : ϕ ∈ W 1,p
0 (Y ; R

m)

}

where Y =]0, 1[d .

Note that (C2) implies that G is convex, but G is not necessarily convex (see Sect. 9 for an
example). The condition (C2) prevents the possible “strong bumps” of G.

We say that W is periodically radially uniformly upper semicontinuous (periodically ru-
usc) if there exists a ∈ L1

loc(R
d ; ]0,∞[) 1-periodic such that

lim
t→1− 
a

W (t) ≤ 0

with


a
W (t) := sup

x∈U
sup

ξ∈domW (x,·)
W (x, tξ) − W (x, ξ)

a(x) + W (x, ξ)

where domW (x, ·) is the effective domain of W (x, ·) (see Sect. 4.2).
Here is the main result of our paper.



Theorem 1.1 Assume that p > d. Assume that (C1), (C2), (C3), (H1) and (H2) hold. If
W is periodically ru-usc then {Iε}ε>0 �-converges with respect to the strong topology of
L p(�; R

m) to I0 : W 1,p(�; R
m) → [0,∞] given by

I0(u) =
ˆ

�

ĤW (∇u(x))dx

with

ĤW (ξ) =
⎧
⎨
⎩

lim
t→1− inf

k∈N∗ inf

{ 
kY

W (x, tξ + ∇ϕ(x))dx : ϕ ∈ W 1,p
0 (kY ; R

m)

}
if ξ ∈ G

∞ otherwise.

Theorem 1.1 is an extension of the homogenization result in [4], to the case where W has
quasiconvex growth conditions.

The assumption that W is periodically ru-usc (already in [4]), allows us to consider a
suitable extension (in a radial way) of the homogenized integrand to the boundary ∂G of G.
The reason is that the weak limits of the sequences of gradients can be located at ∂G during
the homogenization process by �-convergence. In fact, we will see that the homogenized
integrand ĤW is nothing but the lower semicontinuous envelope of the Braides–Müller
homogenization formula HW (see formula (2.1) and Remark 2.2).

The assumption that p>d (already in [4]) allows, by using the p-coercivity condition (H2)

and Sobolev compact imbedding, to work with the convergence in L∞(�; R
m) instead of

L p(�; R
m). Moreover, the functions of W 1,p(�; R

m) are almost everywhere differentiable
in � since Sobolev imbedding. When it is combined with the fact that G has a local upper
bound property (see Lemma 4.1) this allows, in both proofs of the lower and upper bound of
the �-limit (see Step 2 of Sect. 6 and Step 3 of Sect. 7), to obtain suitable bounds in cut-off
techniques.

The main difficulty of proving Theorem 1.1 comes from the proof of the upper bound of
the �-limit. Indeed, in the setting of convex growth conditions on W we can use mollifier
techniques to construct approximations of Sobolev functions by smooth ones. However, we
need to develop other techniques when we deal with quasiconvex growth. We will consider
a set function which is a pointwise limit of local Dirichlet minimization problems associated
to the family {Iε}ε>0 and localization arguments introduced by [10] which reduce the proof
of the upper bound to cut-off techniques, avoiding then any approximation arguments.

Outline of the paper

In Sect. 2 we present definitions and notations needed in this paper. The proof of Theorem 1.1
is based on two propositions which are stated in this section. Proposition 2.1 is concerned
with, first the lower bound of the �-limit, and second, with the upper bound of the �-limit in
the restrictive case where the gradients belong to the interior of the effective domain. Next,
we need to extend the homogenized integrand to the boundary of the effective domain, this
is the purpose of Proposition 2.2.

In Sect. 3 we show how to recover the classical homogenization theorem with p-
polynomial growth in the case p>d from Theorem 1.1.

In Sect. 4 we present some preliminary results needed in the proof of the main result. We
first give an analogue property of convex functions for nonconvex integrands satisfying (C1)

and (C2). Then, we give the definition and some properties of radially uniformly upper
semicontinuous integrands. In Sect. 4.3, we recall some basic facts about subadditive invariant
set functions which allow easily to characterize the homogenized formula. Section 4.4 is



devoted to the introduction of the pointwise limit of local Dirichlet minimization problems
associated to a family of variational functionals.

In Sect. 5 we prove Proposition 2.2.
In Sect. 6 we prove the lower bound for the �-limit by the method of localization and

cut-off techniques.
In Sect. 7 we prove the upper bound for the �-limit for gradients in the interior of the

effective domain in three steps. The first step consists in proving that the �-limsup is lower
than a suitable envelope (similar to a Carathéodory type envelope in measure theory) of a set
function given by the pointwise limit of local Dirichlet minimization problems associated
to the family {Iε}ε>0. This envelope turns out to be a nonnegative finite Radon measure
by a domination condition coming from the G-growth conditions. Then, the second step
is devoted to prove the local equivalence of the envelope with the set function through
Radon–Nikodym derivative. In the last step, we use cut-off functions techniques allowing
to substitute the Sobolev functions with their affine tangents maps and we conclude by a
subadditive argument which gives the homogenized formula.

In Sect. 8 we prove Theorem 1.1 using Propositions 2.1 and 2.2.
In Sect. 9 we give an example, when d = m = 2, of W and G satisfying the requirements of

the homogenization result. Moreover, we show that the two basic conditions of hyperelasticity
can be considered.

2 Preliminaries

If L : �×M
m×d → [0,∞] is a Borel measurable integrand which is 1-periodic with respect

to the first variable, i.e., for every x ∈ �, z ∈ Z
d and ξ ∈ M

m×d we have

L(x + z, ξ) = L(x, ξ),

then HL : M
m×d → [0,∞] defined by

HL(ξ) := inf
k∈N∗ inf

{ 
kY

L(x, ξ + ∇ϕ(x))dx : ϕ ∈ W 1,p
0 (kY ; R

m)

}
(2.1)

is usually called the Braides–Müller homogenization formula (see [11,23]). When L has
p-polynomial growth, the corresponding homogenized functional by �-convergence with
respect to the strong topology of L p(�; R

m) is given byˆ
�

HL(∇u(x))dx

for all u ∈ W 1,p(�; R
m) (see Sect. 3).

Remark 2.1 Some comments concerning the effective domain of HW and G are in order.

(i) If (H1) and (C3)hold then domHW = G. Indeed, by a change of variables and periodicity
arguments we see that

inf
ϕ∈W 1,p

0 (nY ;Rm ) nY
G(ξ + ∇ϕ(x))dx = G(ξ)

for any ξ ∈ M
m×d and n ∈ N. So, using the G-growth conditions (H1) we obtain

αG(ξ) ≤ HW (ξ) ≤ β(1 + G(ξ))

which implies domHW = G.



(ii) Note that the effective domain G is convex when (C2) holds. Moreover, if both (C1)

and (C2) hold, then we have the well-known property

tξ ∈ int(G)

for all t ∈ [0, 1[ and all ξ ∈ G, where G denotes the closure of G.

The homogenization of the family {Iε}ε>0 is achieved by �-convergence. We refer to the
book of G. Dal Maso [19] for a good introduction to the �-convergence theory. We give a
brief description and specify some notation. We denote by O(�) the set of all open subsets
of �. Define I−, I+ : W 1,p(�; R

m) × O(�) → [0,∞] by

I−(u; O) := inf

{
lim
ε→0

Iε(uε; O) : uε → u in L p(�; R
m)

}
;

I+(u; O) := inf

{
lim
ε→0

Iε(uε; O) : uε → u in L p(�; R
m)

}
.

For any O ∈ O(�), the functional I−(·; O) (resp. I+(·; O)) is called the �-liminf (resp.
the �-limsup) with respect to the strong topology of L p(�; R

m) of the family {Iε(·; O)}ε>0.
Note that we always have I+(·; O) ≥ I−(·; O). When I+(·; O) = I−(·; O) we say that the
family {Iε(·; O)}ε>0 �-converges with the �-limit given by the common value and we write

I0(·; O) = �- lim
ε→0

Iε(·; O).

When O = � we simply write

I0(·) = �- lim
ε→0

Iε(·).

Note that the functionals I−(·; O) and I+(·; O) are lower semicontinuous with respect to the
strong topology of L p(�; R

m).
We define the radial extension of HW by

ĤW (ξ) := lim
t→1−

HW (tξ)

for all ξ ∈ M
m×d .

Define G, HI, ĤI : W 1,p(�; R
m) × O(�) → [0,∞] by

♦ G(u; O) :=
ˆ

O
G(∇u(x))dx;

♦ HI (u; O) :=
ˆ

O
HW (∇u(x))dx;

♦ ĤI (u; O) :=
ˆ

O
ĤW (∇u(x))dx .

The proof of Theorem 1.1 is based on the following result.

Proposition 2.1 Assume that p > d. Assume that (C1), (C2), (H1) and (H2) hold. Let u ∈
W 1,p(�; R

m) and O ∈ O(�).

(i) If W is periodically ru-usc then

I−(u; O) ≥ ĤI (u; O).



(ii) Let t ∈]0, 1[. If G(tu; O) < ∞ and if there exists t∗ ∈]t, 1[ such that G(t∗u; O) < ∞
then

I+(tu; O) ≤ HI (tu; O).

The following proposition gives some properties of HW and ĤW when W is periodically
ru-usc.

Proposition 2.2 Assume that (C1), (C2), (C3) and (H1) hold. If W is periodically ru-usc
then HW and ĤW are ru-usc. Moreover, we have

ĤW (ξ) = lim
t→1− HW (tξ)

for all ξ ∈ M
m×d .

Remark 2.2 Under the assumptions of Theorem 1.1 it holds that

ĤW = HW

where the bar denotes the lower semicontinuous envelope of HW . Indeed, first it is easy to
see that ĤW ≥ HW . On the other hand, ĤW is ru-usc by Proposition 2.2. By Remark 4.1
we have ĤW ≤ HW on domHW and domHW = G by Remark 2.1 (i). So it follows that

ĤW ≤ HW . But Theorem 1.1 implies that ĤW is lower semicontinuous, i.e., ĤW = ĤW ,
and then ĤW ≤ HW .

3 Application to homogenization with p-polynomial growth

We want to show how to recover, from Theorem 1.1, the classical homogenization result with
p-polynomial growth on the integrand for p>d (see [11,23]).

Let L : R
d × M

m×d → [0,∞] be a Borel measurable, 1-periodic with respect the
first variable, and satisfying p-polynomial growth: there exist α, β > 0 such that for every
ξ ∈ M

m×d

α|ξ |p ≤ L(x, ξ) ≤ β(1 + |ξ |p). (3.1)

For each ε>0 we define Jε : W 1,p(�; R
m) → [0,∞] by

Jε(u) :=
ˆ

�

L
( x

ε
,∇u(x)

)
dx .

Theorem 3.1 Let p>d. The family {Jε}ε>0 �-converges with respect to the strong topology
of L p(�; R

m) to J0 : W 1,p(�; R
m) → [0,∞] given by

J0(u) :=
ˆ

�

HL(∇u(x))dx . (3.2)

Proof Since (3.1) we consider the quasiconvexification of L , denoted by W, given by the
Dacorogna formula

W (x, ξ) = QL(x, ξ) := inf

{ˆ
Y

L(x, ξ + ∇ϕ(y))dy : ϕ ∈ W 1,∞
0 (Y ; R

m)

}

for all (x, ξ) ∈ R
d × M

m×d . We set G(·) := |·|p .



It is easy to see that G satisfies (C1), (C2), (C3), and W satisfies (H1) and (H2). We show
now that W (= QL) is periodically ru-usc. Fix any t ∈ [0, 1], any x ∈ R

d and any ξ ∈ G.
As W is quasiconvex and satisfies (3.1), there exists K > 0 such that

|W (x, ζ ) − W (x, ζ ′)| ≤ K |ζ − ζ ′|(1 + |ζ |p−1 + |ζ ′|p−1) (3.3)

for all x ∈ R
d and all ζ, ζ ′ ∈ M

d×d . Using (3.3) with ζ = tξ and ζ ′ = ξ and taking the left
inequality in (3.1) into account, we obtain

W (x, tξ) − W (x, ξ) ≤ K ′(1 − t)(1 + W (x, ξ)) (3.4)

with K ′ := 3K max{1, 1
α
}. Dividing by 1+ W (x, ξ) and passing to the supremum in x ∈ R

d

and ξ ∈ M
m×d , we have


1
W (t) ≤ K ′(1 − t).

Passing to the limit t → 1, we have that W is periodically ru-usc.
Applying Theorem 1.1 to the family {Iε}ε>0 defined by

W 1,p(�; R
m) � u �→ Iε(u) :=

ˆ
�

W
( x

ε
,∇u(x)

)
dx .

We obtain that for every u ∈ W 1,p(�; R
m)

(�- lim
ε→0

Iε)(u) = I0(u) =
ˆ

�

Ĥ(QL)(∇u(x))dx . (3.5)

By Remark 2.2, we have Ĥ(QL) = H(QL). Using Dacorogna–Acerbi–Fusco relaxation
result [1,17] (see “Dacorogna–Acerbi–Fusco” of Appendix section) we have H(QL) = HL
since the p-growth (3.1). Assume for the moment that H(QL) is lower semicontinuous, i.e.,

H(QL) = H(QL) (3.6)

then we have

HL = Ĥ(QL). (3.7)

For each ε>0 we apply the Dacorogna-Acerbi-Fusco relaxation theorem to Jε and we have

Jε(u) =
ˆ

�

QL
( x

ε
,∇u(x)

)
dx = Iε(u)

for all u ∈ W 1,p(�; R
m), where the bar over Jε denotes the lower semicontinuous envelope

with respect to the strong topology of L p(�; R
m). On the other hand, it is well known that

J0(u) := (� − lim
ε→0

Jε)(u) = (� − lim
ε→0

Jε)(u) = I0(u) (3.8)

for all u ∈ W 1,p(�; R
m). Collecting (3.5), (3.7) and (3.8), we finally obtain (3.2).

The only thing which remains to prove is (3.6). Let {ξε}ε>0, ξ0 ∈ M
m×d be such that

ξε → ξ0 as ε → 0. Without loss of generality, we can assume that

lim
ε→0

H(QL)(ξε) = lim
ε→0

H(QL)(ξε)<∞, and M := sup
ε>0

H(QL)(ξε)<∞.



Fix ε ∈]0, 1[. We choose kε ∈ N and ϕε ∈ W 1,p(kεY ; R
m) such that

M + 1 ≥ ε + H(QL)(ξε) ≥
kεY

QL(x, ξε + ∇ϕε(x))dx

=
ˆ

Y
QL(kε y, ξε + ∇ϕε(kε y))dy,

where a change of variable is used. Set φε(·) := 1
kε

ϕ(kε·). It is easy to see that QL satis-
fies (3.1) with the same constants. So, it follows that

sup
ε>0

ˆ
Y
|ξε + ∇φε(x)|pdx ≤ M + 1

c
. (3.9)

By Hölder inequality and (3.9) we have for every ε>0

‖ξε + ∇φε‖L p−1(Y ;Rm ) ≤ ‖ξε + ∇φε‖L p(Y ;Rm ) ≤
(

M + 1

c

) 1
p

, (3.10)

and also by norm inequality

‖ξ0 + ∇φε‖L p−1(Y ;Rm ) ≤ |ξ0 − ξε| + ‖ξε + ∇φε‖L p−1(Y ;Rm ) (3.11)

≤ |ξ0 − ξε| +
(

M + 1

c

) 1
p

.

By the definition of H(QL)(ξ0), (3.3), (3.10) and (3.11), we have for every ε>0

ε + H(QL)(ξε)

≥
ˆ

Y
QL(kε y, ξε + ∇φε(y)) − QL(kε y, ξ0 + ∇φε(y))dy + H(QL)(ξ0)

≥ −K |ξε − ξ0|
(

1 +
ˆ

Y
|ξε + ∇φε(x)|p−1 + |ξ0 + ∇φε(x)|p−1dx

)
+ H(QL)(ξ0)

≥ −K |ξε − ξ0|
⎛
⎝1 +

(
M + 1

c

) p−1
p +

(
|ξ0 − ξε| +

(
M + 1

c

) 1
p
)p−1

⎞
⎠ + H(QL)(ξ0),

letting ε → 0 we obtain the lower semicontinuity of H(QL). ��

4 Auxiliary results

4.1 Consequence of assumptions (C1) and (C2)

The following lemma is an extension, for nonconvex functions satisfying (C1) and (C2), of
the classical local upper bound property for convex functions.

Lemma 4.1 Let L : M
m×d → [0,∞] be a Borel measurable integrand. If L satisfies (C1)

and (C2) then there exists ρ0 >0 such that

r0 := sup
ζ∈Bρ0 (0)

L(ζ )<∞.



Proof From (C1) there exists ρ0 > 0 such that L(ξ) < ∞ for all ξ ∈ Bρ0(0). Each matrix
ξ ∈ Bρ0(0) is identified to the vector

ξ = (ξ11, . . . , ξ1d , . . . , ξi1, . . . , ξid , . . . , ξm1, . . . , ξmd) .

Consider the finite subset

S :=
{
(ξ11, . . . , ξmd) ∈ M

m×d : ξi j ∈ {−ρ0, 0, ρ0}
}

⊂ Bρ0(0)

and we define L∗ := max
ξ∈S

L(ξ)<∞.

Let ζ = (ζ11, . . . , ζ1d , . . . , ζi1, . . . , ζid , . . . , ζm1, . . . , ζmd) ∈ S and ξ ∈ Bρ0(0) with
ξi j = ζi j for all i �= 1 and j �= 1. If ξ11 �= 0 then by (C2) we have

L(ξ) =L

( |ξ11|
ρ0

sgn (ξ11)ρ0 +
(

1 − |ξ11|
ρ0

)
0, . . . , ξ1d , . . . , ξm1, . . . , ξmd

)
(4.1)

≤C (1 + L(ρ0, . . . , ξmd) + L(0, . . . , ξmd))

≤2C
(
1 + L∗)

where sgn (ξi j ) denotes the sign of ξi j . The same upper bound in (4.1) holds for L(ξ) when
ξ11 = 0.

Assume now that ξi j = ζi j for all i �= 1 and j /∈ {1, 2}. Then using (4.1) and (C2), we
have

L(ξ) =L

(
ξ11,

|ξ12|
ρ0

sgn (ξ12)ρ0 +
(

1 − |ξ12|
ρ0

)
0, . . . , ξ1d , . . . , ξm1, . . . , ξmd

)

≤C
(
1 + 2C(1 + L∗) + L∗)

≤C(1 + 2C)
(
1 + L∗) .

Recursively, we obtain C∗ >0 which depends on C only, such that

L(ξ) ≤ C∗(1 + L∗)

for all ξ ∈ Bρ0(0). ��
4.2 Ru-usc functions

Let U ⊂ R
d be an open set and let L : U × M

m×d → [0,∞] be a Borel measurable
function. For each x ∈ U , we denote the effective domain of L(x, ·) by Lx and, for each
a ∈ L1

loc(U ; ]0,∞[), we define 
a
L : [0, 1] →] − ∞,∞] by


a
L(t) := sup

x∈U
sup
ξ∈Lx

L(x, tξ) − L(x, ξ)

a(x) + L(x, ξ)
.

Definition 4.1 We say that L is radially uniformly upper semicontinuous (ru-usc) if there
exists a ∈ L1

loc(U ; ]0,∞[) such that

lim
t→1


a
L(t) ≤ 0.

If moreover a is 1-periodic then we say that L is periodically ru-usc.

For a detailed study of ru-usc functions see [7].



Remark 4.1 If L is ru-usc then

lim
t→1− L(x, tξ) ≤ L(x, ξ) (4.2)

for all x ∈ U and all ξ ∈ Lx . Indeed, given x ∈ U and ξ ∈ Lx , we have

L(x, tξ) ≤ 
a
L(t) (a(x) + L(x, ξ)) + L(x, ξ) for all t ∈ [0, 1],

which gives (4.2) since a(x) + L(x, ξ) > 0 and limt→1 
a
L(t) ≤ 0.

Define L̂ : U × M
m×d → [0,∞] by

L̂(x, ξ) := lim
t→1−

L(x, tξ).

The following lemma gives some properties of L̂ when L is ru-usc (for the proof see
also [4, Lemma 3.4 and Theorem 3.5 (ii)]).

Lemma 4.2 If L is ru-usc and if for every x ∈ U,

tLx ⊂ Lx for all t ∈]0, 1[ (4.3)

then

(i) for every ξ ∈ Lx it holds L̂(x, ξ) = lim
t→1− L(x, tξ) for all x ∈ U;

(ii) L̂ is ru-usc.

Proof First we prove (i). Fix x ∈ U . We have to prove that for every ξ ∈ Lx

lim
t→1−

L(x, tξ) = lim
t→1− L(x, tξ).

Fix ξ ∈ Lx . It suffices to prove that

lim
t→1

�(t) ≤ lim
t→1

�(t). (4.4)

where �(t) := L(x, tξ) for all t ∈ [0, 1]. Without loss of generality we can assume that
limt→1 �(t) < ∞. Choose two sequences {tn}n, {sn}n ⊂]0, 1[ such that tn → 1, sn → 1,
tn
sn

< 1 for all n ∈ N, and

lim
t→1

�(t) = lim
n→∞ �(tn);

lim
t→1

�(t) = lim
n→∞ �(sn).

It is possible because, once the sequences {tn}n, {sn}n ⊂]0, 1[ satisfying tn → 1, sn → 1
choosen, we can extract a subsequence {sσ(n)}n such that tn

sσ(n)
< 1 for all n ∈ N. Indeed, it

suffices to consider the increasing map σ : N → N defined by σ(0) := min{ν ∈ N : sν > t0}
and σ(n + 1) := min{ν ∈ N : ν > σ(n) and sν > tn+1} for all n ∈ N.

Since (4.3) we have tnξ ∈ Lx for all n ∈ N, so we can assert that for every n ∈ N

�(tn) = �

(
tn
sn

sn

)
= L

(
x,

tn
sn

(snξ)

)
(4.5)

≤ 
a
L

(
tn
sn

)
(a(x) + �(sn)) + �(sn).



Letting n → ∞ we deduce (4.4) from (4.5) since L is ru-usc.
It remains to prove (ii), i.e., L̂ is ru-usc. Fix t ∈ [0, 1[ and ξ ∈ Lx . By (i) we can assert

that

L̂(x, ξ) = lim
s→1

L(x, sξ)

L̂(x, tξ) = lim
s→1

L(x, s(tξ)).

So, we have

L̂(x, tξ) − L̂(x, ξ)

a(x) + L̂(x, ξ)
= lim

s→1

L(x, t (sξ)) − L(x, sξ)

a(x) + L(x, sξ)
≤ 
a

L(t).

It follows that 
a
L̂
(t) ≤ 
a

L (t). Letting t → 1, we finish the proof. ��

Assume that U = R
d and consider HL given by (2.1). The following result shows that the

ru-usc property is stable by homogenization.

Proposition 4.1 If L is periodically ru-usc then HL is ru-usc.

Proof Fix any t ∈ [0, 1] and any ξ ∈ HL, where HL denotes the effective domain of HL .
By definition, there exists {kn;φn}n such that

♦ φn ∈ W 1,p
0 (knY ; R

m) for all n ≥ 1;

♦ HL(ξ) = lim
n→∞ knY

L(x, ξ + ∇φn(x))dx ;

♦ ξ + ∇φn(x) ∈ Lx for all n ≥ 1 and a.a. x ∈ knY .

Moreover, for every n ≥ 1,

HL(tξ) ≤
knY

L(x, t (ξ + ∇φn(x)))dx

since tφn ∈ W 1,p
0 (knY ; R

m), and so

HL(tξ) − HL(ξ) ≤ lim
n→∞ knY

(
L(x, t (ξ + ∇φn(x))) − L(x, ξ + ∇φn(x))

)
dx .

As L is periodically ru-usc it follows that

HL(tξ) − HL(ξ) ≤ 
a
L(t)

(〈a〉 + HL(ξ)
)

with 〈a〉 := ´
Y a(y)dy, which implies that 


〈a〉
HL (t) ≤ 
a

L (t) for all t ∈ [0, 1], and the proof
is complete. ��
4.3 Subadditive theorem

Let Ob(R
d) be the class of all bounded open subsets of R

d .

Definition 4.2 Let S : Ob(R
d) → [0,∞] be a set function.

(i) We say that S is subadditive if

S(A) ≤ S(B) + S(C)

for all A, B, C ∈ Ob(R
d) with B, C ⊂ A, B ∩ C = ∅ and |A \ B ∪ C | = 0.



(ii) We say that S is Z
d -invariant if

S(A + z) = S(A)

for all A ∈ Ob(R
d) and all z ∈ Z

d .

Let Cub(Rd) be the class of all open cubes in R
d and let Y :=]0, 1[d . The following

theorem is due to Akcoglu and Krengel (see [8], see also [22], and [4, Theorem 3.11]).

Theorem 4.1 Let S : Ob(R
d) → [0,∞] be a subadditive and Z

d -invariant set function for
which there exists c > 0 such that

S(A) ≤ c|A| (4.6)

for all A ∈ Ob(R
d). Then, for every Q ∈ Cub(Rd),

lim
ε→0

S ( 1
ε

Q
)

∣∣ 1
ε

Q
∣∣ = inf

k≥1

S(kY )

kd
.

Given a Borel measurable function W : R
d × M

m×d → [0,∞], we define for each
ξ ∈ M

m×d , Sξ : Ob(R
d) → [0,∞] by

Sξ (A) := inf

{ˆ
A

W (x, ξ + ∇φ(x))dx : φ ∈ W 1,p
0 (A; R

m)

}
. (4.7)

It is easy to see that the set function Sξ is subadditive. If we assume that W is 1-periodic with
respect to the first variable, then Sξ is Z

d -invariant. Moreover, if W is such that there exist a
Borel measurable function G : M

m×d → [0,∞] and β > 0 satisfying

W (x, ξ) ≤ β(1 + G(ξ)) (4.8)

for all ξ ∈ M
m×d , then

Sξ (A) ≤ β(1 + G(ξ))|A|
for all A ∈ Ob(R

d).
From the above, we see that the following result is a direct consequence of Theorem 4.1.

Corollary 4.1 Assume that W is 1-periodic with respect to the first variable and satisfies
(4.8). Then, for every ξ ∈ G

lim
ε→0

Sξ

( 1
ε

Q
)

∣∣ 1
ε

Q
∣∣ = inf

k≥1

Sξ (kY )

kd
.

4.4 Local Dirichlet problems associated to a family of functionals

For any family of (variational) functionals {Hδ}δ>0, Hδ : W 1,p(�; R
m) × O(�) → [0,∞]

we set

♦ mδ(u; O) := inf
{

Hδ(v; O) : v ∈ u + W 1,p
0 (O; R

m)
}

;

♦ M (u; O) := lim
δ→0

mδ(u; O),

where v ∈ u + W0
1, p

(O; Rm ) means that v ∈ W 1, p(�; Rm ) and v − u = 0 in � \ O 
(this definition is equivalent to the classical definition of u + W0

1, p
(O; Rm ), see for



instance [AH96, Chap. 9, p. 233]). It is easy to see that we may also write mδ(u; O) =
inf

{
Hδ(u + ϕ; O) : ϕ ∈ W 1,p

0 (O; R
m)

}
for all δ>0 and all u ∈ W 1,p(�; R

m).

For each ε > 0 and each O ∈ O(�), denote by Vε(O) the class of all countable family
{Qi := Qρi

(xi )}i∈I of disjointed (pairwise disjoint) closed balls of O with xi ∈ O and
ρi ∈]0, ε[ such that |O \ ∪i∈I Qi | = 0. Let u ∈ W 1,p(�; R

m) and ε>0. Consider M ε(u; ·) :
O(�) → [0,∞] defined by

M ε(u; O) := inf

{∑
i∈I

M (u; Qi ) : {Qi }i∈I ∈ Vε(O)

}
,

and define M ∗(u; ·) : O(�) → [0,∞] by

M ∗(u; O) := sup
ε>0

M ε(u; O) = lim
ε→0

M ε(u; O).

Lemma 4.3 Assume that for each δ > 0 and each v ∈ W 1,p(�; R
m) the set function Hδ(v; ·)

is countably subadditive. Let (u, O) ∈ W 1,p(�; R
m) × O(�) satisfying

∑
i∈I

sup
δ>0

Hδ(u; Qi )<∞ (4.9)

for all countable disjointed closed balls {Qi }i∈I of O satisfying |O \∪i∈I Qi | = 0. Then we
have

M (u; O) ≤ M ∗(u; O). (4.10)

Proof Fix (u, O) ∈ W 1,p(�; R
m) × O(�) satisfying (4.9). Fix ε > 0. Choose {Qi }i≥1 ∈

Vε(O) such that
∑
i≥1

M (u; Qi ) ≤ M ε(u; O) + ε

2
≤ M ∗(u; O) + ε

2
. (4.11)

Fix δ>0. For each i ≥ 1 there exists ϕi ∈ W 1,p
0 (Qi ; R

m) such that

Hδ(u + ϕi ; Qi ) ≤ δ

2i+1 + mδ(u; Qi ). (4.12)

Set ϕδ,ε := ∑
i≥1 ϕi IQi ∈ W 1,p

0 (O; R
m). By the countable subadditivity of Hδ(u + ϕδ,ε; ·)

and (4.12) we have

M (u; O) ≤ lim
δ→0

Hδ(u + ϕδ,ε; O) ≤ lim
δ→0

∑
i≥1

Hδ(u + ϕi ; Qi ) ≤ lim
δ→0

∑
i≥1

mδ(u; Qi ).

(4.13)

But, for every δ>0 and every i ≥ 1 it holds

sup
η∈]0,δ[

mη(u; Qi ) ≤ sup
η>0

Hη(u; Qi ). (4.14)

Applying the dominated convergence theorem and using (4.9) together with (4.14), we have

lim
δ→0

∑
i≥1

mδ(u; Qi ) ≤
∑
i≥1

lim
δ→0

mδ(u; Qi ) =
∑
i≥1

M (u; Qi ). (4.15)

Collecting (4.11), (4.15) and (4.13) and letting ε → 0 we obtain (4.10). ��



Remark 4.2 Let (u, O) ∈ W 1,p(�; R
m)×O(�) and let G : W 1,p(�; R

m)×O(�) → [0,∞]
be such that G(u, O)<∞ and G(v, ·) is a measure for all v ∈ W 1,p(�; R

m). If there exists
β >0 such that for every δ>0 it holds

Hδ(u; U ) ≤ β (|U | + G(u; U ))

for all U ∈ O(O), then (4.9) is satisfied. Indeed, we have
∑
i∈I

sup
δ>0

Hδ(u; Qi ) ≤
∑
i∈I

β (|Qi | + G(u; Qi )) = β (|O| + G(u; O))<∞.

The following result is needed for the proof of Lemma 7.1.

Lemma 4.4 ([10] and [9, Prop. 2.1.]) Let u ∈ W 1,p(�; R
m). If there exists a finite Radon

measure μu on � such that for every cube Q ∈ O(�)

M (u; Q) ≤ μu(Q)

then M ∗(u; ·) can be extended to a Radon measure λu on � satisfying 0 ≤ λu ≤ μu.

5 Proof of Proposition 2.2

The function HW is ru-usc since Proposition 4.1, and so ĤW is ru-usc by Lemma 4.2 (ii).
Since Remark 2.1 (i) we have domHW = G. It is easy to deduce that domĤW = G. From
Lemma 4.2 (i) it holds that

ĤW (ξ) = lim
t→1− HW (tξ) for all ξ ∈ G.

The proof is complete. ��

6 Proof of Proposition 2.1 (i)

Let O ∈ O(�) and let u ∈ W 1,p(�; R
m) be such that I−(u; O) < ∞. It follows that

∇u(·) ∈ G a.e. in O since G is convex and the coercivity condition (H2).
We have to prove that

I−(u; O) ≥
ˆ

O
ĤW (∇u(x))dx . (6.1)

Consider {uε}ε>0 ⊂ W 1,p(�; R
m) satisfying ‖uε − u‖L p(�;Rm ) → 0. Without loss of

generality we can assume that

lim
ε→0

Iε(uε; O) = lim
ε→0

Iε(uε; O)<∞, and so sup
ε>0

Iε(uε; O)<∞. (6.2)

Then for every t ∈ [0, 1[ it holds

t∇uε(x) ∈ G for all ε>0 and for a.a. x ∈ O (6.3)

and, up to a subsequence,
uε ⇀ u in W 1,p(�; R

m) (6.4)

since W is p-coercive (H2) and (6.2).
As p>d, by the Sobolev compact imbedding and (6.4), we have, for a subsequence, that

‖uε − u‖L∞(�;Rm ) → 0. (6.5)



Step 1: Localization

For each ε > 0, we define the nonnegative Radon measure με on O by

με := W
( ·

ε
,∇uε(·)

)
dx�O .

From (6.2) we see that supε με(O) < ∞, and so there exists a Radon measure μ on O

such that (up to a subsequence) με
∗
⇀ μ. By Lebesgue’s decomposition theorem, we have

μ = μa + μs where μa and μs are nonnegative Radon measures such that μa � dx�O

and μs ⊥ dx�O , and from Radon-Nikodym’s theorem we deduce that there exists f ∈
L1(O; [0,∞[), given by

f (x) = lim
ρ→0

μa(Qρ(x))

ρd
= lim

ρ→0

μ(Qρ(x))

ρd
a.e. in O (6.6)

with Qρ(x) := x + ρY , such that

μa(A) =
ˆ

A
f (x)dx for all measurable sets A ⊂ O.

Remark 6.1 The support of μs , spt (μs), is the smallest closed subset F of O such that
μs(O \ F) = 0. Hence, O \ spt (μs) is an open set, and so, given any x ∈ O \ spt (μs), there
exists ρ̂ > 0 such that Qρ̂ (x) ⊂ O \ spt (μs) with Qρ̂ (x) := x + ρ̂Y . Thus, for a.a. x ∈ �,
μ(Qρ(x)) = μa(Qρ(x)) for all ρ > 0 sufficiently small.

To prove (6.1) it suffices to show that

f (x) ≥ ĤW (∇u(x)) a.e. in O. (6.7)

Indeed, by Alexandrov theorem (see “Alexandrov theorem” of Appendix section) we see that

lim
ε→0

Iε(uε; O) = lim
ε→0

με(O) ≥ μ(O) = μa(O) + μs(O) ≥ μa(O) =
ˆ

�

f (x)dx .

But, by (6.7), we have ˆ
O

f (x)dx ≥
ˆ

O
ĤW (∇u(x))dx,

and (6.1) follows.
Fix t ∈]0, 1[. Let t∗ ∈]t, 1[ be such that


a
W (t∗)<∞. (6.8)

Fix x0 ∈ O \ N , where N ⊂ O is a suitable set such that |N | = 0, and such that

∇u(x0) ∈ G; (6.9)

f (x0)<∞; (6.10)

G(t∗∇u(x0))<∞; (6.11)

lim
ρ→0

1

ρ
‖u − ux0‖L∞(Qρ(x0);Rm ) = 0. (6.12)

Note that G(t∗∇u(·))<∞ a.e. in O since Remark 2.1 (ii) and ∇u(·) ∈ G a.e. in O . Note
also that u is almost everywhere differentiable, i.e., lim

ρ→0

1
ρ
‖u − ux‖L∞(Qρ(x);Rm ) = 0 a.e. in

O since p>d (where ux (·) := u(x)+∇u(x)(·− x) is the affine tangent map of u at x ∈ O).



We have to prove that f (x0) ≥ ĤW (∇u(x0)).
As μ(O) < ∞ we have μ(∂ Qρ(x0)) = 0 for all ρ ∈]0, 1] \ D where D is a countable

set. From (6.6) and Alexandrov theorem (see “Alexandrov theorem” of Appendix section)
we deduce that

f (x0) = lim
ρ→0

μ(Qρ(x0))

ρd
= lim

ρ→0
lim
ε→0

με(Qρ(x0))

ρd
,

and so we are reduced to show that

lim
ρ→0

lim
ε→0 Qρ(x0)

W
( x

ε
,∇uε(x)

)
dx ≥ ĤW (∇u(x0)). (6.13)

Using ru-usc property of W we can see that

lim
ρ→0

lim
ε→0 Qρ(x0)

W
( x

ε
,∇uε(x)

)
dx ≥ lim

t→1− lim
ρ→0

lim
ε→0 Qρ(x0)

W
( x

ε
, t∇uε(x)

)
dx .

So to prove (6.13), it is enough to show that

lim
t→1− lim

ρ→0
lim
ε→0 Qρ(x0)

W
( x

ε
, t∇uε(x)

)
dx ≥ ĤW (∇u(x0)). (6.14)

Step 2: Cut-off technique to substitute tuε with tvε∈ tux0 +W 1,p
0 (Qρ(x0);Rm)

Fix any ε>0 and any s ∈]0, 1[. Let φ ∈ W 1,∞
0 (Qρ(x0); [0, 1]) be a cut-off function between

Qsρ(x0) and Qρ(x0) such that ‖∇φ‖L∞(Qρ(x0)) ≤ 4
ρ(1−s) . Setting

vε := φuε + (1 − φ)ux0

where ux0(·) := u(x0) + ∇u(x0)(· − x0), we have

tvε ∈ tux0 + W 1,p
0 (Qρ(x0); R

m), (6.15)

and if τ := t
t∗ ∈]0, 1[ then

t∇vε :=
{

t∇uε on Qsρ(x0)

τ (φt∗∇uε + (1 − φ)t∗∇u(x0)) + (1 − τ)�ε,ρ on Sρ
(6.16)

with Sρ := Qρ(x0) \ Qsρ(x0) and �ε,ρ := t
1−τ

∇φ ⊗ (
uε − ux0

)
.

Using the G-growth conditions (H1) we have

Qρ(x0)

W
( x

ε
, t∇vε

)
dx

≤
 

Qsρ(x0)

W
( x

ε
, t∇uε

)
dx + 1

ρd

ˆ
Sρ

W
( x

ε
, t∇vε

)
dx

≤
 

Qρ(x0)

W
( x

ε
, t∇uε

)
dx + β(1 − sd) + β

ρd

ˆ
Sρ

G(t∇vε)dx .

On the other hand, taking (6.16) into account and using (C2), we have

G(t∇vε) ≤2C1
(
1 + G(t∗∇uε) + G(t∗∇u(x0)) + G(�ε,ρ)

)

≤2C1

(
1 + 1

α
W

( x

ε
, t∗∇uε

)
+ G(t∗∇u(x0)) + G

(
�ε,ρ

))
a.e. in Sρ



with C1 := C2 + C . Moreover, it is easy to see that
∥∥�ε,ρ

∥∥
L∞(Qρ(x0);Mm×d )

≤ 4t

(1 − τ)(1 − s)

1

ρ
‖u − ux0‖L∞(Qρ(x0);Rm ) + 4t

ρ(1 − τ)(1 − s)
‖uε − u‖L∞(�;Rm )

where

lim
ρ→0

4t

(1 − t)(1 − s)

1

ρ
‖u − ux0‖L∞(Qρ(x0);Rm ) = 0 (6.17)

since (6.12), i.e., limρ→0
1
ρ
‖u − ux0‖L∞(Qρ(x0);Rm ) = 0, and

lim
ε→0

4t

ρ(1 − t)(1 − s)
‖uε − u‖L∞(�;Rm ) = 0 for all ρ > 0 (6.18)

since (6.5), i.e., lim
ε→0

‖uε − u‖L∞(�;Rm ) = 0. By Lemma 4.1 we have for some ρ0 >0

r0 := sup
ξ∈Bρ0 (0)

G(ξ)<∞.

By (6.17) there exists ρ > 0 such that 4t
(1−t)(1−s)

1
ρ
‖u − ux0‖L∞(Qρ̄ (x0);Rm ) <

ρ0
2 for all

ρ ∈]0, ρ[.
Fix any ρ ∈]0, ρ[. Taking (6.18) into account we can assert that there exists ερ > 0 such

that for every ε ∈]0, ερ[
G

(
�ε,ρ

) ≤ r0 a.e. in Qρ(x0).

Thus, for every ε ∈]0, ερ[, we have

Qρ(x0)

W
( x

ε
, t∇vε

)
dx

≤
Qρ(x0)

W
( x

ε
, t∇uε

)
dx +

(
1 − sd

) (
β + C

(
1 + r0 +G(t∗∇u(x0))

))

+ C

α

1

ρd

ˆ
Sρ

W
( x

ε
, t∗∇uε

)
dx (6.19)

where 2βC1 := C . Since W is periodically ru-usc, for every ε ∈]0, ερ[ we have the estimate
for the last term of (6.19) shown as follows

1

ρd

ˆ
Sρ

W
( x

ε
, t∗∇uε

)
dx ≤ 
a

W (t∗)
1

ρd

ˆ
Sρ

a
( x

ε

)
dx +

(
1 + 
a

W (t∗)
) 1

ρd
με(Sρ).

(6.20)

Step 3: End of the proof

Taking (6.15) into account we see that for every ε ∈]0, ερ[

Qρ(x0)

W
( x

ε
, t∇vε

)
dx ≥ 1

| 1
ε

Qρ(x0)|
St∇u(x0)

(
1

ε
Qρ(x0)

)
,

where Sξ (A) is given by (4.7) for all ξ ∈ M
m×d and all open set A ⊂ R

d . By (6.9) we have
∇u(x0) ∈ G, and so t∇u(x0) ∈ G because G is convex and 0 ∈ int(G) since (C1) and (C2).



From Corollary 4.1 we deduce that

lim
ε→0 Qρ(x0)

W
( x

ε
, t∇vε

)
dx ≥ HW (t∇u(x0)) (6.21)

for all ρ ∈]0, ρ[. On the other hand, as με(Sρ) ≤ με(Sρ) for all ε ∈]0, ερ [, Sρ is compact and

με
∗
⇀ μ, we have limε→0 με(Sρ) ≤ μ(Sρ) by Alexandrov theorem. But μ(Sρ) = μa(Sρ)

since Sρ ⊂ Qρ(x0) ⊂ � \ spt (μs) (see Remark 6.1). Hence, for every ρ ∈]0, ρ[,

lim
ε→0

1

ρd
με(Sρ) ≤ 1

ρd

ˆ
Sρ

f (x)dx =
Qρ(x0)

f (x)dx − sd

Qsρ(x0)

f (x)dx,

and consequently

lim
ρ→0

lim
ε→0

1

ρd
με(Sρ) ≤ (1 − sd) f (x0). (6.22)

Taking (6.19) and (6.20) into account, from (6.21) and (6.22) we deduce that

HW (t∇u(x0))

≤ lim
ε→0 Qρ(x0)

W
( x

ε
, t∇uε

)
dx

+
(

1 − sd
)(

β + C

(
1 + r0 +G(t∗∇u(x0) + 1

α

(

a

W (t∗)〈a〉 + f (x0)
)))

.

Taking (6.10), (6.11) and (6.8) into account and passing to the limits ρ → 0 and s → 1, we
obtain

HW (t∇u(x0)) ≤ lim
ρ→0

lim
ε→0 Qρ(x0)

W
( x

ε
, t∇uε

)
dx,

and (6.14) follows when t → 1. ��

7 Proof of Proposition 2.1 (ii)

For each (u, O) ∈ W 1,p(�; R
m) × O(�) we recall that

mε(u; O) := inf
{

Iε(v; O) : v ∈ W 1,p
0 (O; R

m)
}

and M (u; O) := lim
ε→0

mε(u; O).

We give a sketch of the proof which is divided into three steps.
The first step consists in proving that I+(u; O) ≤ M ∗(u; O) for all (u, O) ∈

W 1,p(�; R
m) × O(�). When we assume that G(u; O)<∞, Lemma 4.4 and the G-growth

conditions imply that M ∗(u; ·) is a Radon measure which is absolutely continuous with
respect to the Lebesgue measure on O . Thus, we can write

I+(u; O) ≤ M ∗(u; O) =
ˆ

O
lim
ρ→0

M ∗(u; Qρ(x))

ρd
dx . (7.1)

The second step consists in showing that M ∗(u; ·) is locally equivalent to M (u; ·), i.e.,
for a.a. x ∈ O

lim
ρ→0

M ∗(u; Qρ(x))

ρd
= lim

ρ→0

M (u; Qρ(x))

ρd
. (7.2)

This is carrying out by measure theoretic arguments (see Step 2).



In the third and last step we replace u by tu with t ∈]0, 1[ and we show, using cut-off
techniques, that for a.a. x ∈ O

lim
ρ→0

M (tu; Qρ(x))

ρd
≤ lim

s→1
lim
ρ→0

M (tux ; Qsρ(x))

(sρ)d
(7.3)

where ux (·) := u(x)+∇u(x)(· − x). The right hand term of (7.3) is equal to HW (t∇u(x)).
Indeed, it is easy to see that for any ε, ρ >0 and any x ∈ O we can write

mε(tux ; Qsρ(x))

(sρ)d

= 1∣∣ 1
ε

Qsρ(x)
∣∣ inf

{ˆ
1
ε

Qsρ(x)

W (y,∇v(εy))dy : v ∈ tux + W 1,p
0 (Qsρ(x); R

m)

}

= 1∣∣ 1
ε

Qsρ(x)
∣∣ inf

{ˆ
1
ε

Qsρ(x)

W (y, t∇u(x0) + ∇φ(εy))dy : φ ∈ W 1,p
0 (Qsρ(x); R

m)

}

= 1∣∣ 1
ε

Qsρ(x)
∣∣St∇u(x)

(
1

ε
Qsρ(x)

)

which give

M (tux ; Qsρ(x))

(sρ)d
= HW (t∇u(x))

since a subadditive argument (see Corollary 4.1). The proof is achieved by taking (7.2) and
(7.3) into account in the inequality (7.1)

I+(tu; O) ≤
ˆ

O
lim
ρ→0

M ∗(tu; Qρ(x))

ρd
dx =

ˆ
O

lim
ρ→0

M (tu; Qρ(x))

ρd
dx

≤
ˆ

O
lim
s→1

lim
ρ→0

M (tux ; Qsρ(x))

(sρ)d
dx

=
ˆ

O
HW (t∇u(x))dx .

Step 1: Prove that I+(u; O) ≤ M ∗(u; O) when G(u; O)<∞

Fix (u, O) ∈ W 1,p(�; R
m) × O(�) such that G(u; O)<∞. Without loss of generality we

assume that

M ∗(u; O)<∞. (7.4)

Fix ε ∈]0, 1[. Choose {Qi }i∈I ∈ Vε(O) such that

∑
i∈I

M (u; Qi ) ≤ M ε(u; O) + ε

2
≤ M ∗(u; O) + ε

2
. (7.5)

Fix δ ∈]0, 1[. Given any i ∈ I there exists vi ∈ u + W 1,p
0 (Qi ; R

m) such that

Iδ(vi ; Qi ) ≤ mδ(u; Qi ) + δ

2

|Qi |
|O| (7.6)



by definition of mδ(u; Qi ). Define uδ,ε ∈ u + W 1,p
0 (O; R

m) by

uδ,ε :=
∑
i∈I

vi IQi + uI�\∪i∈I Qi .

From (7.6) we have that

Iδ(uδ,ε; O) =
∑
i∈I

Iδ(vi ; Qi ) ≤
∑
i∈I

mδ(u; Qi ) + δ

2
.

Letting δ → 0 we obtain

lim
δ→0

Iδ(uδ,ε; O) ≤ lim
δ→0

∑
i∈I

mδ(u; Qi ). (7.7)

By the G-growth conditions (H1) we have sup
η∈]0,δ[

mη(u; Qi ) ≤ β(|Qi | + G(u; Qi )) for all

δ>0 and all i ∈ I with
∑
i∈I

β(|Qi | + G(u; Qi )) = β(|O| + G(u; O))<∞,

then applying the dominated convergence theorem we have

lim
δ→0

∑
i∈I

mδ(u; Qi ) ≤
∑
i∈I

M (u; Qi ). (7.8)

Therefore collecting (7.5), (7.7), (7.8) and passing to the limit ε → 0, we have

lim
ε→0

lim
δ→0

Iδ(uδ,ε; O) ≤ M ∗(u; O). (7.9)

From the p-coercivity of W (H2), (7.9) and (7.4), we deduce

lim
ε→0

lim
δ→0

ˆ
O

|∇uδ,ε|pdx <∞. (7.10)

By Poincaré inequality there exists K > 0 depending only on p and d such that for each
vi ∈ u + W 1,p

0 (Qi ; R
m)

ˆ
Qi

|vi − u|pdx ≤ K ε p
ˆ

Qi

|∇vi − ∇u|pdx

since diam(Qi )<ε. Summing on i ∈ I we obtain
ˆ

O
|uδ,ε − u|pdx ≤ 2p−1 K ε p

(ˆ
O

|∇uδ,ε|pdx +
ˆ

O
|∇u|pdx

)

which shows that

lim
ε→0

lim
δ→0

ˆ
�

|uδ,ε − u|pdx = 0 (7.11)

since (7.10). A simultaneous diagonalization of (7.9) and (7.11) gives a sequence {uδ :=
uδ,ε(δ)}δ>0 ⊂ u + W 1,p

0 (O; R
m) such that uδ → u in L p(�; R

m) and

I+(u; O) ≤ lim
δ→0

Iδ(uδ; O) ≤ M ∗(u; O)

since the definition of I+(u; O). The proof is complete. ��



Step 2: Prove that M ∗(u; ·) is locally equivalent to M (u; ·)

In this step we use the following result from [9,10]. For a sake of completeness we give a
proof.

Lemma 7.1 If G(u; O)<∞ then we have

lim
ρ→0

M ∗(u; Qρ(x0))

ρd
= lim

ρ→0

M (u; Qρ(x0))

ρd
x0-a.e. in O.

Proof Let u ∈ W 1,p(�; R
m) be such that G(u; O)<∞. Then for each U ∈ O(O)

M (u; U ) ≤ lim
ε→0

ˆ
U

W
( x

ε
,∇u(x)

)
dx ≤ β

(
|O| +

ˆ
O

G(∇u)dx

)
<∞,

so, using Lemma 4.4 with μu := β (| · | + G(∇u(·))dx)) �O , we have M (u; ·) is the trace
of a Radon measure λu on O satisfying 0 ≤ λu ≤ μu . Since μu is absolutely continuous
with respect to dx�O the Lebesgue measure on O , the limit limρ→0

λu (Qρ(x0))

ρd exists for
a.a. x0 ∈ O as the Radon-Nikodym derivative of λu with respect to dx�O . Moreover, using
Lemma 4.3, the G-growth conditions together with Remark 4.2 we have

lim
ρ→0

M ∗(u; Qρ(x0))

ρd
≥ lim

ρ→0

M (u; Qρ(x0))

ρd
x0-a.e. in O.

It remains to prove that

lim
ρ→0

M ∗(u; Qρ(x0))

ρd
≤ lim

ρ→0

M (u; Qρ(x0))

ρd
x0-a.e. in O. (7.12)

Fix any θ >0. Consider the following sets

Gθ :=
{

Qρ(x) : x ∈ O, ρ > 0 and M ∗(u; Qρ(x))>M (u; Qρ(x)) + θ
∣∣Qρ(x)

∣∣ },

Nθ :=
{

x ∈ O : ∀δ>0 ∃ρ ∈]0, δ[ Qρ(x) ∈ Gθ

}
.

It is sufficient to prove that Nθ is a negligible set for the Lebesgue measure on O . Indeed,
given x0 ∈ O \ Nθ there exists δ0 >0 such that

M ∗(u; Qρ(x0)) ≤ M (u; Qρ(x0)) + θ
∣∣Qρ(x0)

∣∣
for all ρ ∈]0, δ0[. Hence

lim
ρ→0

M ∗(u; Qρ(x0))∣∣Qρ(x0)
∣∣ ≤ lim

ρ→0

M (u; Qρ(x0))∣∣Qρ(x0)
∣∣ + θ,

then we obtain (7.12) when θ → 0.
Fix δ>0. Consider the set

Fδ :=
{

Qρ(x) : x ∈ Nθ , ρ ∈]0, δ[ and Qρ(x) ∈ Gθ

}
.

Using the definition of Nθ we can see that inf
Q∈Fδ

diam (Q) = 0. By the Vitali covering theorem

there exists a (pairwise) disjointed countable subfamily {Qi }i≥1 of Fδ such that
∣∣Nθ \ ∪

i≥1
Qi

∣∣ = 0. (7.13)



We have Nθ ⊂ ∪i≥1 Qi ∪ Nθ \∪i≥1 Qi . To prove that Nθ is a negligible set is equivalent to
prove that |Vj | = 0 for all j ≥ 1 where

Vj := j∪
i=1

Qi .

Fix j ≥ 1. Let {Q′
i }i≥1 ∈ Vδ

(
O\∪ j

i=1 Qi
)

satisfying

∑
i≥1

M (u; Q′
i ) ≤ M ∗(u; O \ j∪

i=1
Qi

) + δ. (7.14)

Recalling that M ∗(u; ·) is the trace on O(O) of a nonnegative finite Radon measure, we see
that

M ∗(u; O) ≥M ∗(u; O \ j∪
i=1

Qi
) + M ∗(u; Vj

)

=M ∗(u; O \ j∪
i=1

Qi
) +

∑
1≤i≤ j

M ∗(u; Qi ).

Since each Qi ∈ Gθ , by (7.14) we have

M ∗(u; O) ≥
∑
i≥1

M (u; Q′
i ) − δ +

j∑
i=1

M (u; Qi ) + θ |Vj |.

It is easy to see that the countable family {Q′
i : i ≥ 1} ∪ {Qi : 1 ≤ i ≤ j} belongs to Vδ(O),

thus

M ∗(u; O) ≥ M δ(u; O) + θ |Vj | − δ.

Letting δ → 0, we have M δ(u; O) → M ∗(u; O), and so |Vj | = 0 since θ >0. ��

Step 3: Cut-off technique to locally substitute tu with tux0 in M (·;Qρ(x0))

ρd

Fix (u, O) ∈ W 1,p(�; R
m) × O(�). Let t ∈]0, 1[ such that

G(tu; O)<∞. (7.15)

Our goal here is to prove

lim
ρ→0

M (tu; Qρ(x0))

ρd
≤ HW (t∇u(x0)) x0-a.e. in O. (7.16)

We claim that it is enough to prove that

lim
ρ→0

M (tu; Qρ(x0))

ρd
≤ lim

s→1
lim
ρ→0

M (tux0 ; Qsρ(x0))

(sρ)d
x0-a.e. in O, (7.17)

where ux0(·) := u(x0) + ∇u(x0)(· − x0). Indeed, by Corollary 4.1 we have

lim
s→1

lim
ρ→0

M (tux0 ; Qsρ(x0))

(sρ)d

= lim
s→1

lim
ρ→0

lim
ε→0

1∣∣ 1
ε

Qsρ(x0)
∣∣St∇u(x0)

(
1

ε
Qsρ(x0)

)
= HW (t∇u(x0)) x0-a.e. in O.



since t∇u(·) ∈ G a.e. in O by (7.15).
We are reduced to prove (7.17). Consider x0 ∈ O satisfying

lim
ρ→0 Qρ(x0)

G(t∇u(x))dx = G(t∇u(x0))<∞; (7.18)

lim
ρ→0 Qρ(x0)

G(t∗∇u(x))dx = G(t∗∇u(x0))<∞. (7.19)

Fix s ∈]0, 1[, ρ >0 and ε>0.
Choose v ∈ ux0 + W 1,p

0 (Qsρ(x0); R
m) satisfying

Iε(tv; Qsρ(x0)) ≤ mε(tux0 ; Qsρ(x0)) + ρd+1.

Consider a cut-off function φ ∈ W 1,∞
0 (Qρ(x0); [0, 1]) between Qsρ(x0) and Qρ(x0) such

that ‖∇φ‖L∞(Qρ(x0)) ≤ 4
(1−s)ρ .

Define w := φv + (1 − φ)u which belongs to u + W 1,p
0 (Qρ(x0); R

m). We have

mε(tu; Qρ(x0)) ≤ Iε(tv; Qsρ(x0)) + Iε(tw; Qρ(x0) \ Qsρ(x0)) (7.20)

≤ mε(tux0 ; Qsρ(x0)) + ρd+1 + Iε(tw; Qρ(x0) \ Qsρ(x0)).

Let us estimate the last term of (7.20) divided by ρd .
Set τ := t t∗−1, �ρ := t

1−τ
∇φ ⊗ (ux0 − u) and Sρ := Qρ(x0) \ Qsρ(x0). Using the

G-growth conditions, (C2) and (7.19) we have

lim
ρ→0

lim
ε→0

Iε(tw; Sρ)

ρd

≤ β lim
ρ→0

(
(1 − sd) + 1

ρd

ˆ
Sρ

G
(
τ(φt∗∇u(x0) + (1 − φ)t∗∇u) + (1 − τ)�ρ

)
dx

)

≤ C1 lim
ρ→0

(
(1 − sd) + 1

ρd

ˆ
Sρ

G(φt∗∇u(x0) + (1 − φ)t∗∇u)dx + 1

ρd

ˆ
Sρ

G(�ρ)dx

)

≤ C2 lim
ρ→0

(
(1 − sd)(1 + G(t∗∇u(x0))) + 1

ρd

ˆ
Sρ

G(t∗∇u)dx + 1

ρd

ˆ
Sρ

G(�ρ)dx

)

≤ 2C2

(
(1 − sd)(1 + G(t∗∇u(x0))) + lim

ρ→0

1

ρd

ˆ
Sρ

G(�ρ)dx

)
. (7.21)

where C1 := β(1 + C) and C2 := C1(1 + C).
Since (6.12), we choose ρ >0 such that for every ρ ∈]0, ρ[ it holds

4t

(1 − τ)(1 − s)

1

ρ
‖ux0 − u‖L∞(Qρ(x0);Rm ) ≤ ρ0

2
.

It follows that

‖�ρ‖L∞(Qρ(x0);Mm×d ) ≤ ρ0.

Using Lemma 4.1 we deduce that

G(�ρ(·)) ≤ r0 a.e. in Qρ(x0) (7.22)



for all ρ ∈]0, ρ[. From (7.21) and (7.22) we obtain

lim
ρ→0

lim
ε→0

Iε(tw; Sρ)

ρd
≤ 2C2(1 − sd)(1 + G(t∗∇u(x0) + r0). (7.23)

Taking (7.23) into account in the inequality (7.20) we obtain by passing to the limit ε → 0
and ρ → 0

lim
ρ→0

M (tu; Qρ(x0))

ρd
≤ sd lim

ρ→0

M (tux0 ; Qsρ(x0))

(sρ)d
+2C2(1 − sd)(1+G(t∗∇u(x0))+r0).

Letting s → 1, we finally find (7.17). ��

8 Proof of Theorem 1.1

To shorten notation we set

G(·;�) := G(·), HI (·;�) := HI (·), and ĤI (·;�) := ĤI (·).
Let u ∈ W 1,p(�; R

m). The proof of the lower bound is already done in Proposition 2.1 (i),
so it remains to prove the upper bound I+(·) ≤ ĤI (·).

Assume without loss of generality that ĤI (u)<∞.
First, we assume that ∇u(·) ∈ int(G) a.e. in �. In this case, from Proposition 2.2, coercivity

conditions (H1) and (C2) we have

ĤI (u) =
ˆ

�

lim
t→1− HW (t∇u(x))dx ≥ α

ˆ
�

lim
t→1−

G(t∇u(x))dx .

But G is W 1,p-quasiconvex, so it is continuous in int(G) (see for instance [20] or [18]). It
follows that

lim
t→1−

G(t∇u(x)) = G(∇u(x)) a.e. in �

since we assumed that ∇u(·) ∈ int(G) a.e. in �. Therefore

αG(u) ≤ ĤI (u)<∞.

So, using (C2) and (C1) we have G(tu) ≤ C (|�|(1 + G(0)) + G(u))<∞ for all t ∈]0, 1[.
Applying Proposition 2.1 (ii) we have for every t ∈]0, 1[

I+(tu) ≤ HI (tu).

Since (H1), we have for any t ∈]0, 1[ that HW (t∇u(·)) ≤ β(1 + G(t∇u(·)), so applying
Lebesgue dominated convergence theorem and Proposition 2.2 we obtain

lim
t→1−

HI (tu) ≤
ˆ

�

lim
t→1− HW (t∇u(x))dx = ĤI (u).

Using the lower semicontinuity of I+ with respect to the strong topology of L p(�; R
m), we

then have

I+(u) ≤ lim
t→1−

I+(tu) ≤ lim
t→1−

HI (tu) ≤ ĤI (u).



Now, we assume the general case ∇u(·) ∈ G a.e. in �. We have for every t ∈]0, 1[ that
t∇u(·) ∈ int(G) a.e. in � since G is convex with 0 ∈ int(G) (see Remark 2.1 (ii)). We can
apply the first part of the proof to get

I+(tu) ≤ ĤI (tu)

for all t ∈]0, 1[. But ĤW is ru-usc since Proposition 2.2, so, for every t ∈]0, 1[
ĤI (tu) ≤ 


〈a〉
ĤW

(t)
(〈a〉|�| + ĤI (u)

) + ĤI (u).

Letting t → 1 and using the lower semicontinuity of I+, we obtain the desired result. ��

9 A two-dimensional example

We show, when m = d = 2, how to construct an example of W with G-growth conditions
satisfying the assumptions of Theorem 1.1. We want to point out that the following dis-
cussed example is not covered by [4], indeed the growth considered here are not convex see
Remark 9.3.

Consider a set G ⊂ M
2×2 with the following properties:

(A1) 0 ∈ int(G);
(A2) G is convex;
(A3) det(I + ξ)>0 for all ξ ∈ G;
(A4) tr (cof(I + ξ)ᵀ(I + ζ ))>0 for all ξ, ζ ∈ G,

where I is the identity matrix and cof(F) is the matrix of cofactors of F ∈ M
2×2.

Remark 9.1 The set I + G can be interpreted as internal constraints of an elastic material.
However, the properties of I + G do not fit with the requirements of the theory of internal
constraints as developed by [21]. Indeed, due to the frame indifference principle, we should
have

SO(2)(I + G) ⊂ I + G, (9.1)

but this is not true. Assume that a such I + G satisfying (9.1) exists then SO(2) ⊂ I + G

since (A1). Choose any rotation matrix I + ζ with angle θ ∈ [π
2 , 3π

2 ] and I + ξ = I , i.e.,
ξ = 0, then

tr
(
cof(I + ξ)ᵀ(I + ζ )

) = tr (I + ζ ) ≤ 0,

so (A4) cannot be satisfied.

Let g : M
2×2 → [0,∞] be defined by

g(ξ) :=
{

h(det(I + ξ)) if ξ ∈ G

∞ otherwise

where h :]0,∞[→ [0,∞] is a nonincreasing convex function satisfying for every λ ∈]0, 1[
and every x ∈]0,∞[

h(λx) ≤ 1

λr
h(x) (9.2)

where r ≤ 1. Note that the function h can be chosen to satisfy limx→0 h(x) = ∞.



Proposition 9.1 We have

(i) g̃ is polyconvex where g̃(·) := g(· − I );
(ii) for every ξ, ζ ∈ G and every λ ∈]0, 1[ it holds

g(λξ + (1 − λ)ζ ) ≤ g(ξ) + g(ζ );
(iii) g is ru-usc.

Proof We have (i) because we can write g̃(F) = ϕ(F, det(F)) with ϕ : M
2×2 ×R → [0,∞]

is the convex function defined by

ϕ(F, s) :=
{

h(s) if F ∈ I + G

∞ otherwise.

Now, we show (ii). Fix ξ, ζ ∈ G and λ ∈]0, 1[. Using (A3), (A4) and properties of h, we
have

g(λξ + (1 − λ)ζ ))

= h(det(λ(I + ξ) + (1 − λ)(I + ζ )))

= h(λ2 det(I + ξ) + (1 − λ)2 det(I + ζ ) + λ(1 − λ)tr
(
cof(I + ξ)ᵀ(I + ζ )

)
)

≤ h(λ2 det(I + ξ) + (1 − λ)2 det(I + ζ ))

≤ λh(λ det(I + ξ)) + (1 − λ)h((1 − λ) det(I + ζ ))

≤ λ1−r h(det(I + ξ)) + (1 − λ)1−r h(det(I + ζ ))

≤ g(ξ) + g(ζ ). (9.3)

From (9.3) and properties of h we have for every ξ ∈ G and every t ∈]0, 1[
g(tξ) = h(t2 det(I + ξ) + (1 − t)2 + t (1 − t)tr (I + ξ))

≤ h(t2 det(I + ξ))

≤ 1

t2r
h(det(I + ξ))

= 1

t2r
h(det(I + ξ)) − h(det(I + ξ)) + g(ξ)

≤ 1 − t2r

t2r
(1 + g(ξ)) + g(ξ)

which implies 
1
g(t) ≤ 1−t2r

t2r . Letting t → 1 we obtain (iii). ��
Remark 9.2 We may think that the function g̃ could be convex but it is not the case in general,
see Remark 9.3.

We define the function G : M
2×2 → [0,∞] by

G(ξ) :=
{ |ξ |p + g(ξ) if ξ ∈ G

∞ otherwise.
(9.4)

Using (A1), Proposition 9.1 (i) and (ii) it is easy to see

Lemma 9.1 The function G defined in (9.4) satisfies (C1), (C2) and (C3).



Let W : R
2 × M

2×2 → [0,∞] be defined by

W (x, ξ) :=
{

�(x, ξ) + g(ξ) if ξ ∈ G

∞ otherwise,
(9.5)

where � : R
2 × M

2×2 → [0,∞] is a quasiconvex function, 1-periodic with respect to its
first variable and of p-polynomial growth, i.e., there exist c, C > 0 such that

c|ξ |p ≤ �(x, ξ) ≤ C(1 + |ξ |p) (9.6)

for all (x, ξ) ∈ R
2 × M

2×2.
The following proposition shows that such a W is consistent with the assumptions of

Theorem 1.1 as well as with the two basic conditions of hyperelasticity, i.e., the non-
interpenetration of the matter and the necessity of an infinite amount of energy to compress
a finite volume of matter into zero volume.

Proposition 9.2 We have

(i) W is 1-periodic with respect to the first variable;
(ii) W satisfies (H1) and (H2) with G given by (9.4);

(iii) for every (x, ξ) ∈ R
d × G, W (x, ξ) < ∞ if and only if det(I + ξ) > 0;

(iv) if lim
x→0

h(x) = ∞ then for every x ∈ R
d , W (x, ξ) → ∞ as det(I + ξ) → 0;

(v) W is periodically ru-usc.

Proof The only not direct property is (v). Fix any t ∈ [0, 1], any x ∈ R
d and any ξ ∈ G.

As � is quasiconvex and satisfies (9.6), then repeating the same arguments as in the proof of
Theorem 3.1 (Sect. 3) we see that � is periodically ru-usc with a ≡ 1.

On the other hand, as g is ru-usc by Proposition 9.1 (iii) we have

g(tξ) − g(ξ) ≤ 
1
g(t)(1 + g(ξ)). (9.7)

From (3.4) and (9.7) we deduce that

W (x, tξ) − W (x, ξ) ≤ max
{

2

�(t),
1
g(t)

}
(2 + W (x, ξ)).

Passing to the supremum on x and ξ , we obtain

sup
x∈Rd

sup
ξ∈G

W (x, tξ) − W (x, ξ)

2 + W (x, ξ)
≤ max

{

2

�(t),
1
g(t)

}
,

and (v) follows when t → 1. ��
Concrete example

Every ξ ∈ M
2×2 is denoted by

ξ :=
(

ξ11 ξ12

ξ21 ξ22

)

Define the set

G :=
{
ξ ∈ M

2×2 : min {1 + ξ11, 1 + ξ22}>max {|ξ12|, |ξ21|}
}
,

Property (A1) is evident. The subset G is open and convex as intersection of open convex
sets, so (A2) holds. The assertion (A3) is satisfied because for every ξ ∈ G we have

det(I + ξ) = (1 + ξ11) (1 + ξ22) − ξ12ξ21 > |ξ12ξ21| − ξ12ξ21 ≥ 0.



To verify (A4), we note that for every ξ, ζ ∈ G it holds

tr
(
cof(I + ξ)ᵀ(I + ζ )

)

= (1 + ξ11) (1 + ζ11) + (1 + ξ22) (1 + ζ11) − ξ12ζ21 − ξ21ζ12

> |ξ12ζ21| + |ξ21ζ12| − ξ12ζ21 − ξ21ζ12 ≥ 0.

We can take g : M
2×2 → [0,∞] defined by

g(ξ) :=
{

h(det(I + ξ)) if ξ ∈ G

∞ otherwise

where h is the convex and nonincreasing function defined by h(x) := 1
x for all x >0 satisfying

(9.2) with r = 1.

Remark 9.3 It is easy to see that g̃(·) := g(· − I ) is polyconvex but not convex. Indeed,
consider F ∈ I + G defined by

F :=
(

1 1
2− 1

2 1

)

then g̃
( 1

2 F + 1
2 Fᵀ) = 1> 4

5 = 1
2 (g̃(F) + g̃(Fᵀ)).

Remark 9.4 A necessary condition for g̃ to be frame indifferent is that P(I + G) ⊆ I + G

for all P ∈ SO(2), which in particular means that SO(2) ⊆ I + G since (A1). But, this is
not true because the rotation of angle π

2 does not belong to I + G.
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Appendix

Let � ⊂ R
d be an open bounded set with Lipschitz boundary.

A) Dacorogna-Acerbi-Fusco relaxation theorem

Let p ∈ [1, ∞[. Let f : � × M
m×d → [0,∞] be a Borel measurable integrand with

p-polynomial growth, i.e., there exist c, C > 0 such that for every (x, ξ) ∈ � × M
m×d it

holds

c|ξ |p ≤ f (x, ξ) ≤ C(1 + |ξ |p).

Let J : W 1,p(�; R
m) → [0,∞] be defined by

J (u) :=
ˆ

�

f (x,∇u(x))dx .

Then for every u ∈ W 1,p(�; R
m)

J (u) := inf

{
lim
ε→0

J (uε) : uε → u in L p(�; R
m)

}
=
ˆ

�

Q f (x,∇u(x))dx, (9.8)



where Q f : � × M
m×d → [0,∞[ is the quasiconvexification of f given by the Dacorogna

formula

Q f (x, ξ) = inf

{ˆ
Y

f (x, ξ + ∇ϕ(y))dy : ϕ ∈ W 1,∞
0 (Y ; R

m)

}
.

As a consequence we have

inf

{ˆ
�

f (x,∇u)dx : u ∈ W 1,p(�; R
m)

}
= inf

{ˆ
�

Q f (x,∇u)dx : u ∈ W 1,p(�; R
m)

}
.

(9.9)

The same equalities (9.8) and (9.9) hold when replacing W 1,p(�; R
m) by W 1,p

0 (�; R
m).

B) Alexandrov theorem

If the sequence {με}ε>0 of nonnegative finite Radon measures on � weakly converges to the
Radon measure μ, i.e.,

lim
ε→0

ˆ
�

φdμε =
ˆ

�

φdμ for all φ ∈ Cc(�),

then

(a) lim
ε→0

με(U ) ≥ μ(U ) for all open sets U ⊂ �;
(b) lim

ε→0
με(K ) ≤ μ(K ) for all compact sets K ⊂ �;

(c) lim
ε→0

με(B) = μ(B) for all Borel sets B ⊂ � with μ(∂ B) = 0.
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