
HAL Id: hal-01302560
https://hal.science/hal-01302560v2

Preprint submitted on 5 Sep 2016 (v2), last revised 31 May 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the homogenization of the Stokes problem in a
perforated domain

Matthieu Hillairet

To cite this version:
Matthieu Hillairet. On the homogenization of the Stokes problem in a perforated domain. 2016.
�hal-01302560v2�

https://hal.science/hal-01302560v2
https://hal.archives-ouvertes.fr


ON THE HOMOGENIZATION OF THE STOKES PROBLEM IN A

PERFORATED DOMAIN

M. HILLAIRET

Abstract. We consider the Stokes equations on a bounded perforated domain completed
with non-zero constant boundary conditions on the holes. We investigate configurations for
which the holes are identical spheres and their number N goes to infinity while their radius
1/N tends to zero. We prove that, under the assumption that there is no concentration
in the distribution of holes, the solution is well approximated asymptotically by solving a
Stokes-Brinkman problem.

1. Introduction

Let Ω a smooth bounded domain in R
3 and N ∈ N. Given hN

1 , . . . , h
N
N in Ω such that

the BN
i = B(hN

i , 1/N) satisfy

(A0) BN
i ⋐ Ω , BN

i ∩BN
j = ∅ , for i 6= j in {1, . . . , N} ,

and a N -uplet (vNi )i=1,...,N ∈ (R3)N , it is classical that there exists a unique solution to

(1)

{

−∆u +∇p = 0 ,
div u = 0 ,

on FN := Ω \
N
⋃

i=1

BN
i ,

completed with boundary conditions

(2)

{

u = vNi , on ∂BN
i , ∀ i = 1, . . . , N ,

u = 0 , on ∂Ω .

We are interested here in the behavior of this solution when N goes to infinity and the
asymptotics of the data (hN

i , v
N
i )i=1,...,N are given.

The closely related problem of periodic homogenization of the Stokes equations in a
bounded domain perforated by tiny holes is considered in [1]. It is proven therein that
there exists a critical value of the ratio between the size of the holes and their minimal
distance for which the homogenized problem is a Stokes-Brinkman problem. If the holes are
”denser” the homogenized problem is of Darcy type while if the holes are ”more dilute”
one obtains again a Stokes problem. This former result is an adaptation to the Stokes
equations of a previous analysis on the Laplace equation in [3]. We refer the reader to
[2, 5] for a review of equivalent results for other fluid models.
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2 M. HILLAIRET

In [1], the Stokes equations are completed with vanishing boundary conditions while a
volumic source term is added in the bulk. The very problem that we consider herein (1)-
(2), with non-zero constant boundary conditions, is introduced in [4] for the modeling of
a thin spray in a highly viscous fluid. In this case, the holes represent droplets of another
phase called ”dispersed phase”. This phase can be made of another fluid or small rigid
spheres. The Stokes equations should then be completed with evolution equations for this
dispersed phase yielding a time-evolution problem with moving holes. With this application
in mind, computing the asymptotics of the stationary Stokes problem (1)-(2) is a tool for
understanding the instantaneous response of the dispersed phase to the drag forces exerted
by the flow on the droplets/spheres. We refer the reader to [4, 11] for more details on the
modeling. In [4], the authors adapt the result of [1] on the derivation of the Stokes-
Brinkman system. A comparable analysis with another purpose is provided in [10]. We
emphasize that there is a significant new difficulty in introducing non-vanishing boundary
conditions. Indeed, the boundary conditions on the holes may be highly oscillating (when
jumping from one hole to another). Hence, if one were trying to compute the homogenized
system for (1)-(2) by lifting the boundary conditions, he would introduce a highly oscillating
source term in the Stokes equations that is out of the scope of the analysis in [1].

The result in [4] is obtained under the assumption that the distance between two cen-
ters hN

i and hN
j is larger than 2/N1/3. This assumption is quite restrictive and prevents

from extension to a time-dependent problem or a random model (in the spirit of [12]).
Furthermore, the proof in [4] relies heavily on explicit formulas for solutions to the Stokes
equations in annuli and exterior domains preventing from application to configurations in
which the holes have non-spherical shapes or more complex velocities than simple transla-
tions. Our main motivation in this paper is to provide another approach that may help to
overcome these two difficulties.

In order to consider the limit N → ∞, we make now precise the different assumptions
on the data of our Stokes problem (1)-(2). This includes:

• the positions of the centers (hN
i )i=1,...,N ,

• the velocities prescribed on the holes (vNi )i=1,...,N .

First, similarly to [4], we consider finite-energy solutions so that:

(A1)
1

N

N
∑

i=1

|vNi |2 is uniformly bounded .

We also introduce the empiric measure

SN =
1

N

N
∑

i=1

δhN
i ,vNi

∈ P(R3 × R
3),



HOMOGENIZATION OF THE STOKES PROBLEM 3

and we assume:
∫

R3

SN(dv) ⇀ ρ(x)dx weakly in the sense of measures on R
3 ,(A2)

∫

R3

vSN(dv) ⇀ j(x)dx weakly in the sense of (vectorial-)measures on R
3 .(A3)

We recall that, by assumption (A0), the measure SN is supported in Ω×R
3 so that, in the

weak limit, ρ > 0 and ρ and j have support included in Ω.

As in [1, 4], we also make precise the dilution regime for the holes that we consider. It is
nowadays well documented that the properties of Stokes flows in domains with obstacles
change drastically when the distance between obstacles decreases becoming comparable
to their diameters (see [8]). We want to avoid this phenomenon in the pairwise as in the
global interactions between holes through the flow. To quantify this, we introduce:

dNmin = min
i=1,...,N

{

dist(hN
i , ∂Ω),min

j 6=i
|hN

i − hN
j |
}

,

and, given λN > 0 to be made precise:

MN = sup
x∈Ω

{

#
{

i ∈ {1, . . . , N} s.t. hN
i ∈ B(x, λN)

}}

.

We assume below that there exists a sequence (λN)N∈N ∈ (0,∞)N for which the associated
(MN )N∈N satisfy:

lim
N→∞

dNmin

|λN |3 = +∞ ,(A4)

(

MN

N |λN |3
)

N∈N

is bounded.(A5)

By construction dNmin is bounded by the diameter of Ω while MN is bounded from be-
low by 1. Consequently, for any sequence (λN)N∈N satisfying simultaneously the above
assumptions, there must exist a nonnegative constant c such that:

(3)
c

N
1

3

< λN ∀N ∈ N , lim
N→∞

λN = 0.

Plugging the bound below on λN in (A4) we infer also that the above assumptions imply:

(4) lim
N→∞

NdNmin = +∞.

In particular, for N sufficiently large the (BN
i )i=1,...,N are disjoint and do not intersect ∂Ω.

Hence, for N large enough, assumption (A0) only fixes that the holes are inside Ω. There
exists then a unique pair (uN , pN) ∈ H1(FN)×L2(FN) solution to (1)-(2) (see next section
for more details). The pressure is unique up to an additive constant that we may fix by
requiring that pN has mean 0. It can be seen as the Lagrange multiplier of the divergence-
free condition in (1). Hence, we focus on the convergence of the sequence (uN)N∈N and
will not go into details on what happens to the pressure (in contrast with [1]). The uN are



4 M. HILLAIRET

defined on different domains. In order to compute a limit for this sequence of vector-fields,
we unify their domain of definition by extending uN with the values vNi on BN

i for any
i = 1, . . . , N. We still denote uN the extension for simplicity. This is now a sequence in
H1

0 (Ω).

Our main result reads:

Theorem 1. Let (vNi , hN
i )i=1,...,N be a sequence of data satisfying (A0) for arbitrary N ∈ N

and (A1)–(A3) with j ∈ L2(Ω), ρ ∈ L∞(Ω) . Assume furthermore that there exists a
sequence (λN)N∈N ∈ (0,∞)N for which (A4)–(A5) hold true. Then, the associated sequence
of extended velocity-fields (uN)N∈N converges in H1

0 (Ω) − w to the unique velocity-field
ū ∈ H1(Ω) such that there exists a pressure p̄ ∈ L2(Ω) for which (ū, p̄) solves:

(5)

{

−∆ū+∇p̄ = 6π(j − ρū) ,
div ū = 0 ,

on Ω,

completed with boundary conditions

(6) ū = 0 , on ∂Ω .

With the assumptions (A1) and (A5), we may extract a subsequence such that the first
momentums of SN in v converge to some (ρ, j) ∈ L∞(Ω)×L2(Ω). Hence, assumptions (A2)
and (A3) only fix that the whole sequence converges to the same density ρ and momentum
distribution j. For simplicity, we do not include a source term in (1) even if our result
extends in a straightfoward way to this case (due to the linearity of the Stokes equations).

The result above is compatible with the previous ones in [1] and [4]. Indeed, our set
of assumptions is compatible with the periodic setting of [1] only if the minmal distance
between holes behaves like 1/N1/3. This is also the configurations that are considered in
[4]. In both references, the authors recover the same Stokes-Brinkman system that we
obtain herein. The two other regimes that are considered in [1] are incompatible with our
set of assumptions: if the perforation period (modeled by dNmin in our case) is much larger
than 1/N1/3, it is not possible to make N holes in Ω; if the perforation period is much
smaller than 1/N1/3, assumption (A5) is not satisfied. The assumptions of our theorem
extend the results in [1] and [4] in a new direction: it provides a broader class of finite-
energy configurations with bounded density for which the homogenized system is (5)-(6).
To be more precise, if the empiric measures SN converge in the sense of (A2) to a bounded
density ρ ∈ L∞(Ω), standard measure theory arguments show that (up to the extraction of
a subsequence) there exists a sequence (λN)N∈N so that (A5) holds true. Then (A4) might
be interpreted as a compatibility condition between the minimal distances (dNmin)N∈N and
the sequence (λN)N∈N so that the homogenization process yields the Stokes-Brinkman
problem (5)-(6). In a concluding section, we show that assumption (A4) is optimal and
discuss the possible homogenized problems when it is not satisfied.

To conclude, one novelty of this paper is that we expect the two assumptions (A4)–(A5)
are sufficiently general to tackle the time-evolution problem. Another novelty of the paper
stems from the method of proof. We shall apply arguments that are not highly sensitive to
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the explicit value of solutions to the Stokes problem. The two main ingredients of the proof
are the decrease of stokeslets (see (16)) and conservation arguments (see next subsection).
In particular, we plan to consider more general shapes of holes and more general boundary
conditions on holes in future works.

1.1. Outline of the proof. Our proof is based on a classical compactness argument.
We first prove that the sequence (uN)N∈N is bounded in H1

0 (Ω). This part is obtained by
applying a variational characterization of solutions to Stokes problems and relies only upon
(A1) and (4). We may then extract a subsequence (that we do not relabel) converging to
some ū in H1

0 (Ω) (and strongly in any Lq(Ω) for q ∈ [1, 6[). In order to identify a system
satisfied by ū all that remains is devoted to the proof that:

Iw :=

∫

Ω

∇ū : ∇w ,

satisfies:

Iw = 6π

∫

Ω

(j(x)− ρ(x)ū(x)) · w(x)dx ,

for arbitrary divergence-free w ∈ C∞
c (Ω). So, we fix a divergence-free w ∈ C∞

c (Ω) and we
note that, by construction, we have

Iw = lim
N→∞

INw with INw =

∫

Ω

∇uN : ∇w , ∀N ∈ N.

We compute then INw by applying that uN is a solution to the Stokes problem (1)-(2).
As the support of all the integrals INw is Ω and the support of w is not adapted to the
Stokes problem (1)-(2), this requires special care. So, we introduce a covering (TN

κ )κ∈KN

of Supp(w) with cubes of width λN and we split

INw =
∑

κ∈KN

∫

TN
κ

∇uN : ∇w.

Given N and κ, we apply that there are not too many holes in TN
κ because of assumption

(A3). This enables to localize the method of reflections [9, 10] and replace w with
∑

i∈IN
κ

UN [w(hN
i )](x− hN

i ) ,

in the integral on TN
κ . We denote here

• IN
κ the subset of indices i ∈ {1, . . . , N} for which hN

i ∈ TN
κ ,

• (UN [v](y), PN [v](y)) the solution to the Stokes problem outside B(0, 1/N) with
boundary condition U [v](y) = v on ∂B(0, 1/N) and vanishing condition at infinity.

We obtain that
∫

TN
κ

∇uN : ∇w ∼
∑

i∈IN
κ

∫

TN
κ

∇uN : ∇[UN [w(hN
i )]](x− hN

i ) .
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Then, we observe that the pair
(

UN [w(hN
i )](x− hN

i ), P
N [w(hN

i )](x− hN
i )
)

is a solution to the Stokes problem outside BN
i . Hence, we apply that uN is divergence-free,

introduce the pressure and integrate by parts to obtain that:
∫

TN
κ

∇uN : ∇w ∼
∑

i∈IN
κ

∫

∂BN
i

(∂nU
N [w(hN

i )]− PN [w(hN
i )]n) · vNi dσ

+

∫

∂TN
κ

∑

i∈IN
κ

(∂nU
N [w(hN

i )]− PN [w(hN
i )]n) · uNdσ .

We skip for conciseness that (UN , PN) depends on (x − hN
i ) in these last identities. It is

classical by the Stokes law that:
∫

∂BN
i

(∂nU
N [w(hN

i )]− PN [w(hN
i )]n)dσ =

6π

N
w(hN

i ) ,

and, by interpreting the Stokes system as the conservation of normal stress, that:
∫

∂TN
κ

(∂nU [w(hN
i )]− PN [w(hN

i )]n)dσ = −6π

N
w(hN

i ) .

To take advantage of this last identity, we use that the size of TN
κ decreases to 0 and we

replace uN by some mean value ūN
κ in the integral on ∂TN

κ . Say for simplicity that:

(7) ūN
κ =

1

|TN
κ |

∫

TN
κ

uN(x)dx ,

and assume that replacing uN by ūN
κ induces a small error in the boundary integral. We

obtain then that:
∫

TN
κ

∇uN : ∇w ∼
∑

i∈IN
κ

6π

N
w(hN

i ) · vNi −
∑

i∈IN
κ

6π

N
w(hN

i ) · ūN
κ .

Summing over κ yields:

INw ∼
N
∑

i=1

6π

N
w(hN

i ) · vNi −
∑

κ∈KN





∑

i∈IN
κ

6π

N
w(hN

i )



 · ūN
κ .

The first term on the right-hand side converges by assumption (A3) to :

6π

∫

Ω

j(x) · w(x)dx.

To compute the limit of the second term, we introduce:

σN =
6π

N |λN |3
∑

κ∈KN





∑

i∈IN
κ

w(hN
i )



1TN
κ
,
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so that:

∑

κ∈KN





∑

i∈IN
κ

6π

N
w(hN

i )



 · ūN
κ =

∫

Ω

σN · uN(x)dx.

For w ∈ C∞
c (Ω), we have that σN is bounded in L1(Ω) and, under assumption (A2), it

converges to σ(x) = ρ(x)w(x) in D′(Ω). However, this is not sufficient to compute the limit
of this last term. Indeed we have strong convergence of the sequence uN in Lq(Ω) for q < 6
only. Consequently, we need the supplementary assumption (A5) which entails that σN is
bounded in L∞(Ω). Now, σN converges in Lq(Ω) − w for arbitrary q ∈ (1,∞) (up to the
extraction of a subsequence) and combining this fact with the strong convergence of uN

we obtain that:

lim
N→∞

∑

κ∈KN

∑

i∈IN
κ

6π

N
w(hN

i ) · ūN
κ =

∫

Ω

ρ(x)w(x) · ū(x)dx.

This would end the proof if we could actually define ūN
κ as in (7) and prove that it induces

a small error by replacing uN with the average ūN
κ in the integral on ∂TN

κ . Unfortunately,
for this, we need that the combination of stokeslets to which uN is multiplied is a solution
to the Stokes equations on the set where the average is taken (in particular we cannot
choose TN

κ here contrary to what we have written in (7)). So, we introduce a parameter
δ (which will be large), we ”delete” the holes in a λN/δ−neighborhood of ∂TN

κ and we
construct ūN

κ as the average of uN on the λN/(2δ)-neighborhood of ∂TN
κ (inside TN

κ ). By a
suitable choice of the covering (TN

κ )κ∈KN we prove that the cost of this deletion process is

O(1/
√
δ). This relies on the two fundamental properties of our choice for the sets on which

we average uN : they are all obtained from a model annulus by translation and dilation, the
non-deleted holes are ”far” from this set (with respect to the decay of solutions to Stokes
problems in exterior domains). Hence, we obtain that:

∣

∣

∣

∣

Iw − 6π

∫

Ω

(j(x)− ρ(x)ū(x)) · w(x)dx
∣

∣

∣

∣

.
1√
δ

for arbitrary large δ.

1.2. Notations. In the whole paper, for arbitrary x ∈ R
3 and r > 0, we denote B∞(x, r)

the open ball with center x and radius r for the ℓ∞ norm. The classical euclidean balls are
denoted B(x, r). For x ∈ R

3 and 0 < λ1 < λ2 we also denote:

A(x, λ1, λ2) := B∞(x, λ2) \B∞(x, λ1) .

The operator distance (between sets) is always computed with the ℓ∞ norm. We will con-
stantly use a truncation function associated to the parameter N. This truncation function
is constructed in a classical way. We introduce χ ∈ C∞

c (R3) a truncation function such
that χ = 1 on [−1, 1]3 and χ = 0 outside [−2, 2]3. We denote χN = χ(N ·) its rescaled
versions. This truncation function satisfies :

• χN = 1 on B∞(0, 1/N) and χN = 0 outside B∞(0, 2/N),
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• ∇χN has support in A(0, 1/N, 2/N) and size O(N).

When we truncate vector-fields with χN we shall create a priori non divergence-free vector-
fields. To lift the divergence of these vector-fields, we use extensively the Bogovskii operator
Bx,λ1,λ2

on the ”cubic” annulus A(x, λ1, λ2) (again x ∈ R
3 and 0 < λ1 < λ2). We recall

that w = Bx,λ1,λ2
[f ] is defined for arbitrary f ∈ L2(A(x, λ1, λ2)), whose mean vanishes,

and yields an H1
0 (A(x, λ1, λ2)) vector-field such that divw = f. As the returned vector-field

vanishes on ∂A(x, λ1, λ2) we extend it by 0 to obtain an H1(R3) function.

For legibility we also make precise a few conventions. We have the following generic
notations:

• u is a velocity-field solution to a Stokes problem, with associated pressure p,
• w is a test-function,
• I is an integral while I is a set of indices,
• T is a cube, depending on the width we shall use different exponents,
• n denotes the outward normal to the open set under consideration .

We shall also use extensively the symbol . to denote that we have an inequality with a
non-significant constant. We mean that we denote a . b when there exists a constant C,
which is not relevant to our problem, such that a 6 Cb. In most cases ”not relevant” will
mean that it does not depend on the parameters N and/or δ. If a more precise statement
of this ”non-relevance” is required we shall make it precise.

1.3. Outline of the paper. As our proof is based on fine properties of the Stokes problem,
we recall in next section basics and advanced material on the resolution of this problem in
bounded domains, in exterior domains and in a model cell domain. The core of the paper
is sections 4 and 5 where a more rigorous statement of our main result is given and the
proof is developed. In a concluding section, we provide some remarks and examples on the
optimality/limits of our dilution assumptions. Finally, we collect in two appendices tech-
nical properties on the Bogovskii operators, Poincaré-Wirtinger inequalities and covering
arguments in measure theory.

2. Analysis of the Stokes problem

In this section, we recall how can be solved the Stokes problem:

(8)

{

−∆u+∇p = 0 ,
div u = 0 ,

on F ,

completed with boundary conditions

(9) u(x) = u∗ , on ∂F ,

for a lipschitz domain F and boundary condition u∗ ∈ H
1

2 (∂F). We consider the different
cases: F is a bounded set, an exterior domain, or a perforated cube. In the second case,
we complement the system with a vanishing condition at infinity.
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2.1. Reminders on the Stokes problem in a bounded or an exterior domain. We
first assume that F is a bounded domain with a lipschitz boundary ∂F . In this setting, a
standard way to solve the Stokes problem (8)-(9) is to work with a generalized formulation
(see [7, Section 4]). For this, we introduce:

D(F) :=
{

u ∈ H1(F) s.t. div u = 0
}

, D0(F) :=
{

u ∈ H1
0 (F) s.t. div u = 0

}

.

By [7, Theorem III.4.1], we have that D0(F) is the closure for the H1
0 (Ω)−norm of

D0(F) = {w ∈ C∞
c (F) s.t. divw = 0} .

We have then the following definition

Definition 2. Given u∗ ∈ H
1

2 (∂F), a vector-field u ∈ D(F) is called generalized solution
to (8)-(9) if

• u = u∗ on ∂F in the sense of traces,

• for arbitrary w ∈ D0(F), there holds:

(10)

∫

F

∇u : ∇w = 0 .

This generalized formulation is obtained assuming that we have a classical solution,
multiplying (8) with arbitrary w ∈ D0(F) and performing integration by parts. De Rham
theory ensures that conversely, if one constructs a generalized solution then it is possible
to find a pressure p such that (8) holds in the sense of distributions. Standard arguments
yield:

Theorem 3. Assume that the boundary of the fluid domain ∂F splits into (N + 1) ∈ N

lipschitz connected components Γ0,Γ1, . . . ,ΓN . Given u∗ ∈ H
1

2 (∂F) satisfying

(11)

∫

Γi

u∗ · ndσ = 0 , ∀ i ∈ {0, . . . , N},

then

• there exists a unique generalized solution u to (19)-(20);
• this generalized solution realizes

(12) inf

{
∫

F

|∇u|2, u ∈ D(F) s.t. u|∂F = u∗

}

.

Proof. Existence and uniqueness of the generalized solution is a consequence of [7, Theorem
IV.1.1]. A key argument in the proof of this reference is the property of traces that we
state in the following lemma:

Lemma 4. For arbitrary u∗ ∈ H
1

2 (∂F) satisfying (11) there holds:

• there exists ubdy ∈ D(F) having trace u∗ on ∂F ,

• for arbitrary ubdy ∈ D(F) having trace u∗ on ∂F there holds
{

u ∈ D(F) s.t. u|∂F = u∗

}

= ubdy +D0(F) .
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Then, given u ∈ D(F) the generalized solution to (19)-(20) and w ∈ D0(F), the funda-
mental property (10) of u entails that:

∫

F

|∇(u+ w)|2 =

∫

F

|∇u|2 + 2

∫

F

∇u : ∇w +

∫

F

|∇w|2 ,

=

∫

F

|∇u|2 +
∫

F

|∇w|2 .

Consequently, the norm on the left-hand side is minimal if and only if w = 0. Combining
this remark with the above lemma yields that the generalized solution to (19)-(20) is the
unique minimizer of (12) in

{

v ∈ D(F) s.t. v|∂F = u∗

}

. �

As mentioned previously, once it is proven that there exists a unique generalized solution
u to (8)-(9), it is possible to recover a pressure p so that (8)-(9) holds in the sense of
distributions. If the data are smooth (i.e. F has smooth boundaries and u∗ is smooth)
one proves also that (u, p) ∈ C∞(F).

We turn to the exterior problem as developed in [7, Section 5]. We assume now that
F = R

3 \Ba where Ba = B(0, 1/a) and we consider the Stokes problem (8) with boundary
condition

(13) u = u∗ on ∂Ba , lim
|x|→∞

u(x) = 0 ,

for some u∗ ∈ H
1

2 (∂Ba). For the exterior problem, we keep the definition of generalized
solution up to change a little the function spaces. We denote in this case:

• D(F) =
{

w|F , w ∈ C∞
c (R3) s.t. divw = 0

}

,

• D(F) is the closure of D(F) for the norm:

‖w‖D(F) =

(
∫

F

|∇w|2
) 1

2

.

We keep the definition of D0(F) as in the bounded-domain case and we construct D0(F)
as the closure of D0(F) with respect to this latter homogeneous H1-norm. We note that,
in the exterior domain case, we still have that D(F) ⊂ W 1,2

loc (F) (see [7, Lemma II.6.1]) so
that we have a trace operator on ∂Ba and an equivalent to Lemma 4.

As in the case of bounded domains, the Stokes problem (8)-(13) with boundary conditions
u∗ prescribing no flux through ∂Ba has a unique generalized solution (see [7, Theorem
V.2.1], actually the no-flux assumption is not necessary for the exterior problem). Thus,
this solution satisfies:

• ∇u ∈ L2(R3 \Ba) ,

• for any w ∈ D0(R
3 \Ba) there holds:

∫

R3\Ba

∇u : ∇w = 0.
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Explicit formulas are provided when the boundary condition u∗ = v with v ∈ R
3 constant

(see [4, Section 6.2] for instance):

u(x) = Ua[v](x) :=
1

4a

(

3

|x| +
1

a2|x|3
)

v +
3

4a

(

1

|x| −
1

a2|x|3
)

v · x
|x|2 x ,(14)

p(x) = P a[v](x) :=
3

2a

v · x
|x|3 .(15)

We call this classical solution stokeslet in what follows. With these explicit formulas, we
remark that:

(16) |Ua[v](x)| . |v|
a|x| , |∇Ua[v](x)|+ |P a[v](x)| . |v|

a|x|2 , ∀ x ∈ R
3 \Ba ,

and we recall that the force exerted by the flow on ∂Ba reads:

(17)

∫

∂Ba

(∂nU
a[v]− P a[v]n)dσ =

6π

a
v.

For convenience, the stokeslet Ua[v] is extended by Ua[v] = v on Ba in what follows.

2.2. Stokes problem in a perforated cube. In this last subsection, we fix (N,M, λ) ∈
(N \ {0})2 × (0,∞), and a divergence-free w ∈ C∞

c (R3). We denote T an open cube of
width λ and BN

i = B(hi, 1/N) ⊂ T for i = 1, . . . ,M. We assume further that there exists
dm satisfying

(18) min
i=1,...,M

{

dist(hi, ∂T ),min
j 6=i

(|hi − hj|)
}

> dm >
4

N
.

We consider the Stokes problem:

(19)

{

−∆u +∇p = 0 ,
div u = 0 ,

on F = T \
M
⋃

i=1

BN
i ,

completed with boundary conditions

(20)

{

u(x) = w(x) , on BN
i , ∀ i = 1, . . . ,M ,

u(x) = 0 , on ∂T .

Assumption (18) entails that the BN
i do not intersect and do not meet the boundary ∂T. So,

the set T \⋃M
i=1B

N
i has a lipschitz boundary that one can decompose in M + 1 connected

component corresponding to ∂T and ∂BN
i for i = 1, . . . ,M.

For any i = 1, . . . ,M, direct computations show that:
∫

∂BN
i

w · ndσ =

∫

BN
i

divw = 0.
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Hence, the problem (19)-(20) is solved by applying Theorem 3 and it admits a unique
generalized solution u ∈ H1(F). We want to compare this solution with:

us(x) =

M
∑

i=1

UN [w(hi)](x− hi),

where UN is the stokeslet as defined in (14). The main result of this subsection is:

Proposition 5. There exists a constant K independent of (N,M, dm, w, λ) for which:

‖(u− us)‖L6(F) + ‖∇(u− us)‖L2(F) 6 K‖w‖W 1,∞(R3)

√

M

N

[

1

N
+

√

M

Ndm

]

.

Proof. We split the error term into two pieces. First, we reduce the boundary conditions
of the Stokes problem (19)-(20) to constant boundary conditions. Then, we compare the
solution to the Stokes problem with constant boundary conditions to the combination of
stokeslets us. In the whole proof, the symbol . is used when the implicit constant in our
inequality does not depend on N,M, dm, w and λ.

So, we introduce uc the unique generalized solution to the Stokes problem on F with
boundary conditions:

(21)

{

uc = w(hi) , on BN
i , ∀ i = 1, . . . ,M ,

uc = 0 , on ∂T .

Again, existence and uniqueness of this velocity-field holds by applying Theorem 3. We
split then:

‖(u− us)‖L6(F) 6 ‖(u− uc)‖L6(F) + ‖(uc − us)‖L6(F) ,

‖∇(u− us)‖L2(F) 6 ‖∇(u− uc)‖L2(F) + ‖∇(uc − us)‖L2(F).

To control the first term on the right-hand sides, we note that (u − uc) is the unique
generalized solution to the Stokes problem on F with boundary conditions:

{

(u− uc)(x) = w(x)− w(hi) , on BN
i , ∀ i = 1, . . . ,M ,

(u− uc)(x) = 0 , on ∂T .

Hence, by the variational characterization of Theorem 3, ‖∇(u − uc)‖L2(F) realizes the
minimum of ‖∇w̃‖L2(F) amongst

{

w̃ ∈ H1(F) s.t. div w̃ = 0 , w̃|∂T = 0 , w̃|
∂BN

i

= w(·)− w(hi) , ∀ i = 1, . . . ,M
}

.

We construct thus a suitable w̃ in this space. We set:

w̃ =
M
∑

i=1

w̃i

with, for i = 1, . . . ,M :

w̃i =
(

χN(· − hi)(w(·)− w(hi))−Bhi,1/N,2/N

[

x 7→ (w(x)− w(hi)) · ∇χN(x− hi)
])

.
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We recall that χN is a chosen function that truncates between B∞(0, 1/N) and B∞(0, 2/N)
and that we denote Bhi,1/N,2/N the Bogovskii operator on the annulus A(hi, 1/N, 2/N). The
properties of this operator are analyzed in Appendix A. The above vector-field w̃i is well-
defined as, for i = 1, . . . ,M, there holds:

∫

A(hi,1/N,2/N)

(w(x)− w(hi)) · ∇χN(x− hi)dx

=

∫

B∞(hi,2/N)\B∞(hi,1/N)

div(χN(· − hi)(w(·)− w(hi))) ,

=

∫

∂B∞(hi,1/N)

(w(x)− w(hi)) · ndσ ,

=

∫

B∞(hi,1/N)

div(w) = 0 ,

and we can apply the Bogovskii operator to x 7→ (w(·)−w(hi)) ·∇χN(·−hi) on the annulus
A(hi, 1/N, 2/N). We note that w̃i has support in B∞(hi, 2/N) so that, as dm > 4/N, the
w̃i have disjoint supports inside T. This yields that w̃ is indeed divergence-free and fits the
required boudary conditions. Furthermore, there holds:

‖∇w̃‖L2(F) 6

[

M
∑

i=1

‖∇w̃i‖2L2(B∞(hi,2/N))

]
1

2

.

For i ∈ {1, . . . ,M} we have by direct computations:

‖∇χN(· − hi)(w(·)− w(hi))‖2L2(B∞(hi,2/N)) .
‖w‖2W 1,∞

N3
,

‖χN(· − hi)∇(w(·)− w(hi))‖2L2(B∞(hi,2/N)) .
‖w‖2W 1,∞

N3
,

and, by applying Lemma 16:

‖∇Bhi,1/N,2/N

[

x 7→ (w(x)− w(hi)) · ∇χN (x− hi)
]

‖2L2(B∞(hi,2/N))

. ‖x 7→ (w(x)− w(hi)) · ∇χN(x− hi)‖2L2(B∞(hi,2/N))

.
‖w‖2W 1,∞

N3
.

Gathering all these inequalities in the computation of w̃ yields finally:

‖∇w̃‖L2(F) .
√
M

‖w‖W 1,∞

N
3

2

.

The variational characterization of generalized solutions to Stokes problems entails that we
have the same bound for (u−uc). At this point, we argue that the straightforward extension
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of u and uc (by w and w(hi) on the BN
i respectively) satisfy (u− uc) ∈ H1

0 (T ) ⊂ L6(T ) so
that

‖u− uc‖L6(F) 6 ‖u− uc‖L6(T ) . ‖∇(u− uc)‖L2(T )

.

(

‖∇(u− uc)‖2L2(F) +M
‖w‖2W 1,∞

N3

)
1

2

.
√
M

‖w‖W 1,∞

N
3

2

.

We emphasize that, by a scaling argument, the constant deriving from the embedding
H1

0 (T ) ⊂ L6(T ) does not depend on λ so that it is not significant to our problem.

We turn to estimating uc − us. Due to the linearity of the Stokes equations, we split

uc =
M
∑

i=1

uc,i,

where uc,i is the generalized solution to the Stokes problem on F with boundary conditions:
{

uc,i = w(hi) , on ∂BN
i ,

uc,i = 0 , on ∂T ∪⋃j 6=i ∂B
N
j .

We have then

(22) ‖∇(uc − us)‖L2(F) 6

M
∑

i=1

‖∇(uc,i − UN [w(hi)](· − hi))‖L2(F).

Similarly, we expand :

us =
M
∑

i=1

Ui , where Ui(x) = UN [w(hi)](x− hi) , ∀ x ∈ R
3.

For i ∈ {1, . . . ,M} we extend uc,i by 0 on R
3 \ T and BN

j for j 6= i. The extension we still

denote by uc,i satisfies uc,i ∈ H1(R3 \ BN
i ) and is divergence-free. In particular, we have

uc,i ∈ D(R3 \BN
i ). Consequently, uc,i − Ui ∈ D(R3 \BN

i ) and:

‖∇(uc,i − Ui(· − hi))‖2L2(F) 6

∫

R3\BN
i

|∇uc,i(x)−∇Ui(x)|2dx

6

∫

R3\BN
i

|∇uc,i|2 − 2

∫

R3\BN
i

∇uc,i : ∇Ui +

∫

R3\BN
i

|∇Ui|2 .

To compute the product term, we apply that uc,i and Ui = UN [w(hi)](·−hi) have the same

trace on ∂BN
i and that Ui is a generalized solution to the Stokes problem on R

3 \BN
i . So,

integrals of the form
∫

R3\BN
i

∇Ui : ∇w (for w ∈ D(R3 \ BN
i )) depend only on the trace of
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w on ∂BN
i . This entails that:

∫

R3\BN
i

∇uc,i : ∇Ui =

∫

R3\BN
i

|∇Ui|2 ,

and we have:

(23) ‖∇(uc,i − UN (· − hi))‖2L2(F) 6

∫

R3\BN
i

|∇uc,i|2 −
∫

R3\BN
i

|∇Ui|2 .

To conclude, we find a bound from above for
∫

R3\BN
i

|∇uc,i(x)|2dx =

∫

F

|∇uc,i(x)|2dx.

As uc,i is a generalized solution to a Stokes problem on F , this can be done by constructing
a divergence-free w̄i satisfying the same boundary condition as uc,i. We define:

w̄i = χdm/4(· − hi)Ui −Bhi,dm/4,dm/2

[

x 7→ Ui(x) · ∇χdm/4(x− hi)
]

where χdm/4 := χ4/dm (with the family of truncation functions of the introduction). As
previously, we have here a divergence-free function which satisfies the right boundary con-
ditions because χdm/4(· − hi) = 1 on BN

i (since dm/4 > 1/N) and vanishes on all the other
boundaries of ∂F (since the distance between one hole center and the other holes or ∂T is
larger than dm − 1/N > dm/2). Again, similarly as in the computation of w̃i we apply the
properties of the Bogovskii operator Bhi,dm/4,dm/2 and there exists an absolute constant K
for which:

‖∇w̄i‖2L2(F) 6

∫

R3\BN
i

|χdm/4(· − hi)∇Ui|2

+K

(
∫

A(hi,dm/4,dm/2)

|∇Ui(x)|2 + |∇χdm/4(x− hi)⊗ Ui(x)|2dx
)

As we have the same bound for uc,i, we plug the right-hand side above in (23) and get:

‖∇(uc,i − Ui)‖2L2(F) .

∫

R3\B(hi,dm/4)

|∇Ui(x)|2dx

+

∫

A(hi,dm/4,dm/2)

|∇χdm/4(x− hi)⊗ Ui(x)|2dx .

With the explicit decay properties for Ui (see (16)) and ∇χdm/4 we derive:
∫

R3\B(hi,dm/4)

|∇Ui(x)|2dx+

∫

A(hi,dm/4,dm/2)

|∇χdm/4(x− hi)⊗ Ui(x)|2dx .
‖w‖2W 1,∞

N2dm
.

Combining these bounds for i = 1, . . . ,M in (22) we get:

‖∇(uc − us)‖L2(F) 6
M‖w‖W 1,∞

N
√
dm

.
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By similar arguments, we also have:

‖uc − us‖L6(F) = ‖uc − us‖L6(T ) 6

M
∑

i=1

‖uc,i − Ui‖L6(R3\BN
i )
.

As uc,i, Ui ∈ D(R3 \BN
i ) and uc,i, Ui share the same value on ∂BN

i , there holds uc,i −Ui ∈
D0(R

3 \BN
i ) and we may use the classical inequality (see [7, (II.6.9)]):

‖uc,i − Ui‖L6(R3\BN
i )

. ‖∇uc,i −∇Ui‖L2(R3\BN
i )

, ∀ i = 1, . . . ,M ,

(again the constant arising from this embedding does not depend on N by a standard
scaling argument). This yields again the bound:

‖(uc − us)‖L6(F) 6
M‖w‖W 1,∞

N
√
dm

,

and ends the proof of our proposition. �

3. Proof of Theorem 1 – Uniform estimates

From now on, we fix a sequence of data (vNi , hN
i )i=1,...,N associated with (BN

i )i=1,...,N that
satisfy (A0) for arbitrary N ∈ N and such that (A1)–(A3) hold true with

j ∈ L2(Ω) , ρ ∈ L∞(Ω) .

We introduce also (λN)N∈N ∈ (0,∞)N for which we have (A4)-(A5). Because of assumption
(A0), the existence result of the previous section applies so that there exists a unique
generalized solution uN ∈ H1(FN) to (1)-(2). In what follows, we extend implicitly uN by
its boundary values on the ∂BN

i :

uN =

{

vNi , in BN
i , for i = 1, . . . , N ,

uN , in FN .

As the BN
i do not overlap and do not meet ∂Ω, it is straightforward that these velocity-

fields yield a sequence in H1
0 (Ω) of divergence-free vector-fields. Moreover, we have the

property:

‖∇uN‖L2(FN ) = ‖∇uN‖L2(Ω).

Our target result reads:

Theorem 6. The sequence of extended generalized solutions (uN)N∈N converges weakly in
H1

0 (Ω) to ū satisfying

(B1) ū ∈ H1
0 (Ω) ,

(B2) div ū = 0 on Ω ,

(B3) for any divergence-free w ∈ C∞
c (Ω) we have:

(24)

∫

Ω

∇ū : ∇w = 6π

∫

Ω

[j − ρū] · w .
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Theorem 1 is a corollary of this theorem as (B1)-(B2)-(B3) corresponds to the generalized
formulation of the Stokes-Brinkman system (5)-(6). The proof of this result is developed
in the end of this section and the two next ones.

Let first compute uniform bounds on uN by applying the variational characterization of
solutions to the Stokes problem (12). Given N ∈ N, we set:

vN(x) =
N
∑

i=1

∇×
(

χN (x− hN
i )

2
vNi × (x− hN

i )

)

=:
N
∑

i=1

vi(x).

Then, vN ∈ C∞
c (R3) is the curl of a smooth potential vector so that div vN = 0 . Because

of assumptions (A4)-(A5) (see (4)), there exists a N0 ∈ N such that:

NdNmin > 4 , ∀N > N0.

Let N > N0 from now on. Because χN has support in B∞(0, 2/N) we have that Supp(vi) ⊂
B∞(hN

i , 2/N) and the (vi)i=1,...,N have disjoint supports. Because χN is 1 on B(0, 1/N) ⊂
B∞(0, 1/N) we derive further that, for i ∈ {1, . . . , N} :

vi(x) = 0 , on ∂Ω ∪
⋃

j 6=i

BN
j ,

vi(x) = ∇×
(

1

2
vNi × (x− hN

i )

)

= vNi , on BN
i .

By combination, we obtain:

vN(x) = vNi , on BN
i , ∀ i = 1, . . . , N ,

vN(x) = 0 , on ∂Ω .

We have then by Theorem 3 that:

(25) ‖∇uN‖L2(FN ) 6 ‖∇vN‖L2(FN ) =

(

N
∑

i=1

‖∇vi‖2L2(R3)

)
1

2

.

For arbitrary N ∈ N and i ∈ {1, . . . , N}, there holds:

|∇vi(x)| . |∇χN(x− hN
i )||vNi |+ |∇2χN (x− hN

i )||vNi ||x− hN
i |

. N
(

|∇χ(N(x− hN
i ))|+ |∇2χ(N(x− hN

i ))|
)

|vNi | .
Consequently, by a standard scaling argument:

∫

R3

|∇vi(x)|2dx .
1

N

(∫

R3

|∇χ(|y|)|2 + |∇2χ(|y|)|2dy
)

|vNi |2 .

Then, for N > N0, we combine the previous computation into:

‖∇vN‖2L2(FN ) .
1

N

N
∑

i=1

|vNi |2 .
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Note that χ is fixed a priori so that all constants depending on χ may be considered as
non-significant. Assumption (A1) then yields that there exists E∞ < ∞ so that:

(26)

(

1

N

N
∑

i=1

|vNi |2
)

1

2

6 E∞ , ∀N > N0.

By (25) the norm of uN in H1
0 (Ω) is also bounded by E∞. We keep the symbol E∞ to denote

the above bound in what follows.

As uN is bounded in H1
0 (Ω), it is weakly-compact and we denote by ū a cluster-point for

the weak topology. It is straightforward that ū satisfies div ū = 0 on Ω. So ū satisfies (B1)
and (B2) of our theorem. The remainder of the proof consists in showing that it satisfies
(B3) also. Indeed, we remark that ρ is the density of a probability measure. Hence ρ > 0
on Ω. By a simple energy estimate one may then show that, given j ∈ L2(Ω), there exists
at most one ū ∈ H1

0 (Ω) that satisfies simultaneously (B1)-(B2)-(B3). A direct corollary
of this remark is that, if we prove that (B3) is satisfied by ū we have uniqueness of the
possible cluster point to the sequence (uN)N∈N and the whole sequence converges to this ū
in H1

0 (Ω)− w.

4. Proof of Theorem 1 – Computations for finite N

From now on, we assume that uN converges weakly to ū in H1
0 (Ω) (we do not relabel the

subsequence for simplicity) and we fix a divergence-free w ∈ C∞
c (Ω). We aim to compute

the scalar product:
∫

Ω

∇ū : ∇w.

By definition, we have:
∫

Ω

∇ū : ∇w = lim
N→∞

IN with IN =

∫

Ω

∇uN : ∇w , ∀N ∈ N .

As classical, we want to apply the equation satisfied by uN in order to compute IN in a
way that makes possible to use the assumption on the convergence of the empiric measures
SN . To do this, we fix an integer δ > 4, we construct, for fixed N, a suitable test-function
ws (depending actually on δ and N) so that

• we make an error of order 1/
√
δ by replacing w with ws in IN ,

• replacing w with ws in IN we prove that,
∫

Ω

∇uN : ∇ws → 6π

∫

Ω

(j − ρū) · w + error ,

when N → ∞, with an error of size 1/
√
δ.

As δ can be taken arbitrary large, this yields the expected result.
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We explain now the construction of ws. The integer δ > 4 is fixed in the remainder of
this section. For a given N ∈ N, applying the construction in Appendix B, we obtain
(TN

κ )κ∈Z3 a covering of R3 with cubes of width λN such that denoting:

ZN
δ :=

{

i ∈ {1, . . . , N} s.t. dist

(

hN
i ,
⋃

κ∈Z3

∂TN
κ

)

<
λN

δ

}

,

there holds:

(27)
1

N

∑

i∈ZN
δ

(1 + |vNi |2) 6 12

δ

1

N

N
∑

i=1

(1 + |vNi |2) 6 12(1 + |E∞|2)
δ

.

Moreover, for N > Nw, for a Nw depending only on w (and the sequence (λN )N∈N) keeping
only the indices KN such that TN

κ intersect Supp(w), we obtain a covering (TN
κ )κ∈KN of

Supp(w) such that all the cubes are included in Ω (see the appendix for more details). We
assume N > Nw from now on. We do not make precise the set of indices KN . The only
relevant property to our computations is that

(28) #KN 6 |Ω|/|λN |3 .
This inequality is derived by remarking that the TN

κ are disjoint cubes of volume |λN |3 that
are all included in Ω. Associated to this covering, we introduce the following notations.
For arbitrary κ ∈ KN , we set

IN
κ := {i ∈ {1, . . . , N} s.t. hN

i ∈ TN
κ } , MN

κ := #IN
κ , IN :=

⋃

κ∈KN

IN
κ .

Because of assumption (A5), there exists M∞ ∈ N such that:

(29) MN
κ 6 M∞|λN |3N , ∀κ ∈ KN , ∀N ∈ N .

In brief, the set of indices {1, . . . , N} contains the two important subsets:

• the subset IN contains all the indices that are ”activated” in our computations,
• the subset ZN

δ contains the indices that are close to boundaries of the partition.

We emphasize that ZN
δ contains indices that can be in both IN and its complement.

We construct then ws piecewisely on the covering of Supp(w). Given κ ∈ KN , we set:

(30) ws
κ(x) =

∑

i∈IN
κ \ZN

δ

UN [w(hN
i )](x− hN

i ) , ∀ x ∈ R
3 ,

and
ws =

∑

κ∈KN

ws
κ1TN

κ

We note that ws /∈ H1
0(FN) because of jumps at interfaces ∂TN

κ . It will be sufficient for

our purpose that ws ∈ H1(T̊N
κ ) for arbitrary κ ∈ KN . In a cube T̊N

κ the test function ws

is thus a combination of stokeslets centered in the hN
i that are contained in the cell. We

delete from this combination the centers that are too close to ∂TN
κ (namely λN/δ-close to

∂TN
κ ). We proceed by proving that we make a small error by replacing w with ws in IN :
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Proposition 7. There exists Nδ ∈ N depending only on δ and w for which, given N > Nδ,
there holds:

(31)

∣

∣

∣

∣

∣

∫

Ω

∇uN : ∇w −
∑

κ∈KN

∫

TN
κ

∇uN : ∇ws

∣

∣

∣

∣

∣

. (1 + |E∞|2)M∞

(

1√
δ
+
√
δ|λN |+

√

|λN |3
dNmin

)

‖w‖W 1,∞ .

Proof. We split the proof in several steps by introducing different intermediate test-functions.
In this proof, we use symbol . to denote inequalities with constants that do not depend
on N and δ.

First step: Construction of auxiliary test-functions. For arbitrary κ ∈ KN , we

consider the Stokes problem on T̊N
κ \⋃i∈IN

κ \ZN
δ
BN

i with boundary conditions:

(32)

{

u(x) = w(x) , on ∂BN
i for i ∈ IN

κ \ ZN
δ ,

u(x) = 0 , on ∂TN
κ .

We note that this problem enters the framework of Section 2.2. Indeed, let denote:

dκm := min
i∈IN

κ \ZN
δ

{

dist(hN
i , ∂T

N
κ ) ,min

j 6=i
|hN

i − hN
j |
}

Because we deleted the indices of ZN
δ , we have that:

(33) dκm > min

(

dNmin,
λN

δ

)

.

In particular, we recall that by combining assumptions (A4)-(A5) we have that λN decays
at most like 1/N1/3 (see (4)). Hence, for N sufficiently large depending only on δ and the
sequence (λN)N∈N (say N > Nδ) the dκm satisfy assumption (18) uniformy in κ ∈ KN .

So, for N > Nδ the arguments developed in Section 2.2 entail that there exists a unique

generalized solution to the Stokes problem on T̊N
κ \⋃i∈IN

κ \ZN
δ
BN

i with boundary condition

(32). We denote this solution by w̄κ. We keep notation w̄κ to denote its extension to Ω (by

w on the holes and by 0 outside T̊N
κ ). As T̊N

κ ⊂ Ω, we obtain a divergence-free w̄κ ∈ H1
0 (Ω).

We then add the w̄κ into:

w̄ =
∑

κ∈KN

w̄κ .

This vector-field satisfies:

• w̄ ∈ H1
0 (Ω),

• div w̄ = 0 on Ω,
• w̄ = w(x) on BN

i for all i ∈ {1, . . . , N} \ ZN
δ .
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The only statement that needs further explanation is the last one. By construction, we
have clearly that w̄(x) = w(x) on BN

i for all i ∈ IN \ZN
δ . When i ∈ {1, . . . , N}\(IN ∪ZN

δ )
we have that hN

i is in the λN/δ core of the cube TN
κ that contains him. As the index κ

of this cube is not in KN and N > Nδ, we have then that B(hN
i , 1/N) ⊂ TN

κ where there
holds that w̄(x) = w(x) = 0.

We correct now the value of w̄ on the BN
i when i ∈ ZN

δ in order that it fits the same
boundary conditions as w on FN . We set:

w̃ =
∑

i∈ZN
δ

[

χN (· − hN
i )w −BhN

i ,1/N,2/N [x 7→ w(x) · ∇χN(x− hN
i )]
]

+
∏

i∈ZN
δ

(1− χN (· − hN
i ))w̄ +

∑

i∈ZN
δ

BhN
i ,1/N,2/N [x 7→ w̄(x) · ∇χN(x− hN

i )] .

One may interpret the construction of w̃ as follows. The sum on the first line creates a
divergence-free lifiting of the boundary conditions prescribed by w on the ∂BN

i for i ∈
ZN

δ . On the second line is a divergence-free truncation of w̄ that creates a vector-field
vanishing on ∪i∈ZN

δ
BN

i . We remark that this vector-field is well defined because, by similar
computations as we did in the proof of Proposition 5, we have:
∫

A(hN
i ,1/N,2/N)

w̄(x)·∇χN (x−hN
i )dx =

∫

A(hN
i ,1/N,2/N)

w(x)·∇χN(x−hN
i )dx = 0 , ∀ i ∈ ZN

δ .

Hence, we may apply the Bogovskii operator which lifts the divergence term in the brackets
with a vector-field vanishing on the boundaries of A(hN

i , 1/N, 2/N) that we extend by 0
on R

3 \ A(hN
i , 1/N, 2/N).

Direct computations show that div w̃ = 0 on Ω. On the other hand, because N >
N0, the family of balls (B∞(hN

i , 2/N))i=1,...,N are disjoint and included in Ω. Hence, the
truncations that we perform in w̃ do not perturb the value of w̄ neither on the BN

i for
i ∈ {1, . . . , N} \ ZN

δ nor on ∂Ω. This remark entails that

• for i ∈ {1, . . . , N} \ ZN
δ :

w̃(x) = w̄(x) = w(x) , on BN
i ,

• for i ∈ ZN
δ :

w̃(x) = χN(x− hN
i )w(x) = w(x) , on BN

i ,

• w̃(x) = 0 , on ∂Ω.

Consequently, by restriction, there holds that w − w̃ ∈ H1
0 (FN) is divergence-free. As

uN is a generalized solution to a Stokes problem on FN we have thus:
∫

FN

∇uN : ∇(w − w̃) = 0.
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We rewrite this identity as follows:

(34)

∫

Ω

∇uN : ∇w =
∑

κ∈KN

∫

TN
κ

∇uN : ∇ws − E1 −E2 ,

with :

E1 =
∑

κ∈KN

∫

TN
κ

∇uN : ∇(ws
κ − w̄κ) ,

E2 =

∫

Ω

∇uN : ∇(w̄ − w̃) .

Third step: Control of error term E1. For arbitrary κ ∈ KN , we apply Proposition 5
to w̄κ and its corresponding combination of stokeslets (namely, the restriction ws

κ of ws to

T̊N
κ ). By construction, dκm satisfies the requirement dκm > 4/N for N > Nδ. We have thus:

‖∇(ws
κ − w̄κ)‖L2(TN

κ ) .

√

MN
κ

N

(

1

N
+

√

MN
κ

Ndκm

)

‖w‖W 1,∞ .

Note here that #(IN
κ \ ZN

δ ) 6 #IN
κ = MN

κ . Consequently, introducing this last bound in
the computation of E1 and applying a standard Cauchy-Schwarz inequality together with
(28)-(29) yields:

|E1| .
∑

κ∈KN

‖∇uN‖L2(TN
κ )

MN
κ

N

(

1√
N

+
1

√

dκm

)

‖w‖W 1,∞ ,

.

(

∑

κ∈KN

‖∇uN‖2L2(TN
κ )

)
1

2

M∞|λN | 32
(

1√
N

+
1

√

dκm

)

‖w‖W 1,∞ .

Here, we note again that, by construction, the TN
κ are disjoint and included in Ω so that

(

∑

κ∈KN

‖∇uN‖2L2(TN
κ )

) 1

2

6 ‖∇uN‖L2(Ω).

Applying the uniform bound for uN in H1
0 (Ω) and introducing (33), we conclude then that:

(35) |E1| . E∞M∞

(

1√
N

+
√
δ|λN |+

√

|λN |3
dNmin

)

‖w‖W 1,∞ .

Second step: Control of error term E2. As for the second term, we replace w̃ by its
explicit construction. We remark that because the supports of the (χN(· − hN

i ))i∈{1,...,N}

are disjoint (as dNmin > 4/N for N > N0) we have:

1−
∏

i∈ZN
δ

(1− χN(x− hN
i )) =

∑

i∈ZN
δ

χN (x− hN
i ) , ∀ x ∈ Ω.
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Consequently, we split:

w̄ − w̃ =
∑

i∈ZN
δ

[

χN(· − hN
i )w̄ −BhN

i ,1/N,2/N [x 7→ w̄(x) · ∇χN(x− hN
i )]
]

−
∑

i∈ZN
δ

[

χN(· − hN
i )w −BhN

i ,1/N,2/N [x 7→ w(x) · ∇χN(x− hN
i )]
]

.

By direct computations and application of Lemma 16 to the Bogovskii operatorBhN
i ,1/N,2/N ,

we find Ei
2 ∈ L2(B∞(hN

i , 2/N)), i ∈ ZN
δ , for which:

∇ (w̄ − w̃) =
∑

i∈ZN
δ

Ei
21B∞(hN

i ,2/N) ,

and such that:

‖Ei
2‖2L2(B∞(hN

i
,2/N)) .

1

N
‖w‖2W 1,∞ +N2‖w̄‖2L2(B∞(hN

i
,2/N)) + ‖∇w̄‖2L2(B∞(hN

i
,2/N)) .

Introducing these bounds in the computation of E2, and reproducing similar computations
as for E1, we derive:

|E2| 6
∑

i∈ZN
δ

∫

B∞(hN
i ,2/N)

|∇uN ||Ei
2| ,

6





∑

i∈ZN
δ

‖∇uN‖2L2(B∞(hN
i
,2/N))





1

2





∑

i∈ZN
δ

‖Ei
2‖2L2(B∞(hN

i
,2/N)))





1

2

,

. E∞





∑

i∈ZN
δ

‖Ei
2‖2L2(B∞(hN

i ,2/N)))





1

2

,

where we applied again that the (B∞(hN
i , 2/N))i∈ZN

δ
are disjoint and cover a subset of Ω.

To complete the proof, it remains to compute:

∑

i∈ZN
δ

‖Ei
2‖2L2(B∞(hN

i ,2/N))

.
∑

i∈ZN
δ

1

N
‖w‖2W 1,∞ +N2‖w̄‖2L2(B∞(hN

i ,2/N)) + ‖∇w̄‖2L2(B∞(hN
i ,2/N)) .

We rewrite the right-hand side of this inequality: Ei
2,∞ +N2Ei

2,0 + Ei
2,1.

First, we recall that, by choice of the covering (see (27)), we have:

(36)
∑

i∈ZN
δ

1

N
.

1

δ
(1 + |E∞|2).
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Consequently, there holds:

Ei
2,∞ :=

∑

i∈ZN
δ

1

N
‖w‖2W 1,∞ .

‖w‖2W 1,∞

δ
(1 + |E∞|2) .

Second, as (TN
κ )κ∈KN is a covering of Supp(w̄), we have:

Ei
2,0 :=

∑

i∈ZN
δ

‖w̄‖2L2(B∞(hN
i ,2/N)) =

∑

i∈ZN
δ

∑

κ∈KN

‖w̄‖2L2(B∞(hN
i ,2/N)∩TN

κ ) ,

.
∑

κ∈KN

∑

i∈ZN
δ

‖w̄κ − ws
κ‖2L2(B∞(hN

i
,2/N)∩TN

κ ) +
∑

i∈ZN
δ

∑

κ∈KN

‖ws
κ‖2L2(B∞(hN

i
,2/N)∩TN

κ ) .

We compute the terms involving ws
κ by using the explicit formula (30) and the expansion

of stokeslet (16). To this end, we remark that B∞(hN
i , 2/N)∩TN

κ 6= ∅ implies that hN
i is in

the 2/N -neighborhood of TN
κ . As the width of a TN

κ is much larger than 2/N this implies
that this property is satisfied by at most 8 cubes. We have thus:

∑

κ∈KN

‖ws
κ‖2L2(B∞(hN

i
,2/N)∩TN

κ ) 6 8 sup
κ∈KN

‖ws
κ‖2L2(B∞(hN

i
,2/N) , ∀ i ∈ ZN

δ .

Given i ∈ ZN
δ and κ ∈ KN , for N > N0 and j ∈ IN

κ \ ZN
δ the distance between hN

j and

B∞(hN
i , 2/N) is larger than dNmin/2. Recalling that there are at most MN

κ indices in IN
κ \ZN

δ

we derive the bound:

|ws
κ(x)| .

MN
κ

NdNmin

‖w‖W 1,∞ , ∀ x ∈ B∞(hN
i , 2/N) .

Consequently, there holds

‖ws
κ‖L2(B∞(hN

i ,2/N)) .
|MN

κ |2
N5|dNmin|2

‖w‖2W 1,∞ .
|M∞|2
N3

‖w‖2W 1,∞ .

where we applied (29) combined with assumption (A4). This yields, due to our choice of
covering:

∑

i∈ZN
δ

∑

κ∈KN

‖ws
κ‖2L2(B∞(hN

i ,2/N)∩TN
κ ) .

∑

i∈ZN
δ

|M∞|2
N3

‖w‖2W 1,∞

.
|M∞|2‖w‖2W 1,∞

δN2
(1 + |E∞|2) .

For the remainder terms, we apply again Proposition 5 combined with (29) and (33) :

‖(w̄κ − ws
κ)‖2L6(TN

κ ) .
MN

κ

N

(

1

N
+

√

MN
κ

Ndκm

)2

‖w‖2W 1,∞ ,

. |M∞|2|λN |3
(

δ|λN |2 + |λN |3
dNmin

)

‖w‖2W 1,∞
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For arbitrary κ ∈ KN , we introducing ZN
δ,κ the set of indices i such thatB∞(hN

i , 2/N)∩TN
κ 6=

∅, we infer by a Hölder inequality that:

∑

i∈ZN
δ,κ

‖(w̄κ − ws
κ)‖2L2(B∞(hN

i ,2/N)∩TN
κ ) .

|♯ZN
δ,κ|

2

3

N2
‖(w̄κ − ws

κ)‖2L6(TN
κ ) ,

. |♯ZN
δ,κ|

2

3

|M∞|2|λN |3
N2

(

δ|λN |2 + |λN |3
dNmin

)

‖w‖2W 1,∞ .

Eventually, we obtain, by applying again a Hölder inequality (recall that there areO(1/|λN |3)
indices in KN ):
∑

κ∈KN

∑

i∈ZN
δ

‖w̄κ − ws
κ‖2L2(B∞(hN

i ,2/N)∩TN
κ )

.

[

∑

κ∈KN

♯ZN
δ,κ

]
2

3 |M∞|2|λN |2
N2

(

δ|λN |2 + |λN |3
dNmin

)

‖w‖2W 1,∞

At this point, we remark again that one index i belongs to at most 8 sets ZN
δ,κ so that, by

our choice of covering and (4):
[

∑

κ∈KN

♯ZN
δ,κ

] 2

3

.
[

♯ZN
δ

]
2

3 .

[

N

δ
(1 + |E∞|2)

]
2

3

.
1 + |E∞| 43
δ

2

3 |λN |2
.

This entails:
∑

κ∈KN

∑

i∈ZN
δ

‖(w̄κ − ws
κ)‖2L2(B∞(hN

i ,2/N)∩TN
κ ) 6

(1 + |E∞| 43 )|M∞|2
N2

(

δ
1

3 |λN |2 + |λN |3
dNmin

)

Finally:

Ei
2,0 .

(1 + |E∞|2)|M∞|2
N2

(

1

δ
+ δ

1

3 |λN |2 + |λN |3
dNmin

)

‖w‖2W 1,∞.

With similar arguments, we prove that:

Ei
2,1 :=

∑

i∈ZN
δ

‖∇w̄‖2L2(B∞(hN
i ,2/N)) .

satisfies a similar bound:

Ei
2,1 . (1 + |E∞|2)|M∞|2

(

1

δ
+ δ|λN |2 + |λN |3

dNmin

)

‖w‖2W 1,∞.

Eventually, we obtain that:

(37) E2 . (1 + |E∞|2)|M∞|
(

1√
δ
+
√
δ|λN |+

√

|λN |3
dNmin

)

‖w‖W 1,∞.

Combining (35) and (37) in (34), we obtain the expected result. �
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5. Proof of Theorem 1 – Asymptotics N → ∞
In this section, we end the proof of Theorem 1 keeping the notations introduced in the

previous section. Because of assumption (A4), a straightforward corollary of Proposition
7 reads :

Corollary 8. For arbitrary δ > 4, there holds:

lim sup
N→∞

∣

∣

∣

∣

∣

∫

Ω

∇uN : ∇w −
∑

κ∈IN

∫

TN
κ

∇uN : ∇ws

∣

∣

∣

∣

∣

.
(1 + |E∞|2)M∞‖w‖W 1,∞√

δ
.

So in this section, we prove the following proposition:

Proposition 9. For arbitrary δ > 4, there holds:

lim sup
N→∞

∣

∣

∣

∣

∣

∑

κ∈IN

∫

TN
κ

∇uN : ∇ws − 6π

∫

Ω

(j − ρū) · w
∣

∣

∣

∣

∣

.
(1 + |E∞| 52 )|M∞| 14‖w‖W 1,∞√

δ
.

This will end the proof of Theorem 1. Indeed, combining the above corollary and propo-
sition, we obtain that there exists K which does not depend on δ such that, for arbitrary
δ > 4:

lim sup
N→∞

∣

∣

∣

∣

∫

Ω

∇uN : ∇w − 6π

∫

Ω

(j − ρū) · w
∣

∣

∣

∣

6
K√
δ
.

As

lim
N→∞

∫

Ω

∇uN : ∇w =

∫

Ω

∇ū : ∇w ,

and δ can be made arbitrary large, this entails that
∫

Ω

∇ū : ∇w = 6π

∫

Ω

(j − ρū) · w ,

and we obtain that ū satisfies (B3).

We give now a proof of Proposition 9. From now on δ is fixed larger than 4 and we
assume, with the conventions of the previous section, that:

N > max(N0, Nw, Nδ) .

For such a N, we denote:

ĨN =
∑

κ∈KN

∫

TN
κ

∇uN : ∇ws =
∑

κ∈KN

∫

TN
κ

∇uN : ∇ws
κ.

First, let fix κ ∈ KN and simplify

ĨNκ :=

∫

TN
κ

∇uN : ∇ws
κ .

By definition, we have that:

ws
κ(x) =

∑

i∈IN
κ \ZN

δ

UN [w(hN
i )](x− hN

i ) , ∀ x ∈ R
3 ,
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so that, introducing the associated pressures x 7→ PN [w(hN
i )](x − hN

i ), we obtain (recall
that uN is divergence-free and constant on the BN

i ):

ĨNκ =

∫

TN
κ

∇uN : ∇ws
κ ,

=
∑

i∈IN
κ \ZN

δ

∫

TN
κ \BN

i

∇uN(x) : [∇UN [w(hN
i )](x− hN

i )− PN [w(hN
i )](x− hN

i )I3]dx ,

=
∑

i∈IN
κ \ZN

δ

(

∫

∂BN
i

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· vNi dσ

+

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· uN(x)dσ

)

,

=
∑

i∈IN
κ \ZN

δ

INi,int + INi,ext ,

where we denoted:

INi,int =

∫

∂BN
i

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· vNi dσ ,

INi,ext :=

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· uN(x)dσ .

Recalling that (UN , PN) is the solution to the Stokes problem in the exterior of a ball of
radius 1/N , and that vNi is constant on ∂BN

i , we have an explicit value for the interior
integral whatever the value of the index i (see (17)):

INi,int =
6π

N
w(hN

i ) · vNi .

For the other term, we apply that the diameter of TN
κ is small so that we may approximate

uN on ∂TN
κ by a constant. Namely, we choose:

ūN
κ =

1

|[TN
κ ]2δ|

∫

[TN
κ ]2δ

uN(x)dx,

where [TN
κ ]2δ is the λN/(2δ)-neighborhood of ∂TN

κ inside T̊N
κ . At this point, we remark

that we have actually two notations for the same quantity. Indeed, a simple draw shows
that introducing xN

κ the center of TN
κ , we have:

T̊N
κ = B∞

(

xN
κ ,

λN

2

)

while [TN
κ ]2δ = A

(

xN
κ ,

[

1− 1

δ

]

λN

2
,
λN

2

)

.
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So, we replace:

INi,ext =

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· ūN
κ dσ

)

+

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· (uN(x)− ūN
κ )dσ .

For the first term on the right-hand side of this last identity, we apply that the flux
through hypersurfaces of the normal stress tensor is conserved by solutions to the Stokes
problem so that, applying (17), we have:

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

dσ

)

= −
∫

∂BN
i

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

dσ

= −6π

N
w(hN

i ).

Finally, we obtain:

(38) ĨNκ =
6π

N

∑

i∈IN
κ \ZN

δ

(w(hN
i ) · vNi − w(hN

i ) · ūN
κ ) + Errκ

with:

Errκ =

∫

∂TN
κ







∑

i∈IN
κ \ZN

δ

∂nU
N [w(hN

i )](· − hN
i )− PN [w(hN

i )](· − hN
i )n







· (uN − ūN
κ )dσ .

We control this error term with the following lemma:

Lemma 10. There exists a constant Cδ depending only on δ such that,

|Errκ| 6 CδM
∞‖w‖L∞|λN | 52‖∇uN‖L2(TN

κ ) , ∀κ ∈ KN .

Proof. For N > max(N0, Nw, Nδ), we have that

[TN
κ ]2δ ⊂ TN

κ \
⋃

i∈IN
κ \ZN

δ

BN
i .

Indeed, BN
i = B(hN

i , 1/N) and, for i ∈ IN
κ \ ZN

δ we have that hN
i is λN/δ far from ∂TN

κ .
These centers are thus λN/(2δ) far from [T κ

N ]2δ which is larger than 1/N since N > Nδ. In
particular all the stokeslets in ws

κ satisfy:

(39)

{

∆UN [w(hN
i )](x− hN

i )−∇PN [w(hN
i )](x− hN

i ) = 0 ,

divUN [w(hN
i )](x− hN

i ) = 0 ,
on [T κ

N ]2δ .

Consequently, we split
∂[TN

κ ]2δ = ∂TN
κ ∪ ∂TN

κ,δ
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where

∂TN
κ,δ = {x ∈ TN

κ s.t. dist(x, ∂TN
κ ) = λN/(2δ)} .

We remark then that for any divergence-free v ∈ H1([TN
κ ]2δ) satisfying

{

v = uN − ūN
κ , on ∂TN

κ ,

v = 0 , on ∂TN
κ,δ ,

integrating by parts Errκ and applying (39), we have:

Errκ =

∫

[TN
κ ]2δ







∑

i∈IN
κ \ZN

δ

∇UN [w(hN
i )](· − hN

i )







: ∇v ,

so that:

(40) |Errκ| 6







∑

i∈IN
κ \ZN

δ

‖∇UN [w(hN
i )](· − hN

i )‖L2([TN
κ ]2δ)







‖∇v‖L2([TN
κ ]2δ) .

Let choose a suitable v in order to apply this estimate. We recall that we introduced xN
κ

the center of TN
κ and that we remarked that

TN
κ = B∞

(

xN
κ ,

λN

2

)

, [TN
κ ]2δ = A

(

xN
κ ,

[

1− 1

δ

]

λN

2
,
λN

2

)

.

So, we introduce ζδ ∈ C∞(R3) such that

ζδ(x) = 0 in B∞

(

0,
1− 1/δ

2

)

and ζδ(x) = 1 outside B∞

(

0,
1

2

)

and we set

v(x) = ζδ(λ
N(x− xN

κ ))(u
N(x)− ūN

κ )

−BxN
κ ,(1−1/δ)λN /2,λN/2[x 7→ (uN(x)− ūN

κ ) · ∇[ζδ(λ
N(x− xN

κ ))]] .

Again v is well-defined as one shows by direct computations that the argument of the
Bogovskii operator has mean zero on A(xN

κ , (1 − 1/δ)λN/2, λN/2)). Applying Lemma 16,
we have then that there exists a constant Cδ depending only on δ for which:

‖∇v‖L2([TN
κ ]2δ) 6 Cδ

[

‖∇uN‖L2([TN
κ ]2δ) + λN‖uN(x)− ūN

κ ‖L2([TN
κ ]2δ)

]

.

Here we note that the ūN
κ is exactly the average of uN on [TN

κ ]2δ. Consequently, applying the
Poincaré-Wirtinger inequality in the annulus [TN

κ ]2δ with the remark on the best constant
as in Lemma 14 we obtain finally that:

(41) ‖∇v‖L2([TN
κ ]2δ) 6 Cδ‖∇uN‖L2([TN

κ ]2δ) .



30 M. HILLAIRET

As for the stokeslet, we remark again that for any i ∈ IN
κ \ ZN

δ the minimum distance
between hN

i and [TN
κ ]2δ is larger than λN/(2δ). Hence, applying the expansion (16) of the

stokeslet UN [w(hN
i )] we obtain that

‖∇UN [w(hN
i )](· − hN

i )‖L2([TN
κ ]2δ) 6

(
∫ ∞

λN/(2δ)

dr

N2r2

)
1

2

|w(hN
i )|

6

√
2δ

N
√
λN

|w(hN
i )| .

Combining these computations for the (at most) MN
κ indices i ∈ IN

κ \ ZN
δ entails by (29)

that:

(42)
∑

i∈IN
κ \ZN

δ

‖∇UN [w(hN
i )](· − hN

i )‖L2([TN
κ ]2δ) 6

√
2δ|λN | 52M∞‖w‖L∞ .

Combining (41) and (42) in (40) yields the expected result. �

Summing (38) over κ, we obtain that:

ĨN =
6π

N

∑

κ∈KN

∑

i∈IN
κ \ZN

δ

(w(hN
i ) · vNi − w(hN

i ) · ūN
κ ) + Err

=
6π

N

∑

i∈IN\ZN
δ

w(hN
i ) · vNi − 6π

N

∑

κ∈KN

∑

i∈IN
κ \ZN

δ

w(hN
i ) · ūN

κ + Err.(43)

where

Err =
∑

κ∈KN

Errκ.

Hence, applying Lemma 10, a Cauchy-Schwarz inequality and remarking again that the
(TN

κ )κ∈KN form a partition of a subset of Ω with a number of elements satisfying (28), we
have:

|Err| 6 CδM
∞‖w‖L∞

∑

κ∈KN

‖∇uN‖L2(TN
κ )|λN | 52 6 CδM

∞‖w‖L∞λN‖∇uN‖L2(Ω)

6 Cδλ
NM∞E∞‖w‖L∞ .(44)

As λN → 0, the asymptotics of ĨN is given by the two first terms on the right-hand side
of (43). We make precise these asymptotics in the two following lemmas:

Lemma 11. For arbitrary δ > 4, there holds:

lim sup
N→∞

∣

∣

∣

∣

∣

∣

6π

N

∑

i∈IN\ZN
δ

w(hN
i ) · vNi − 6π

∫

Ω

j(x) · w(x)dx

∣

∣

∣

∣

∣

∣

.
(1 + |E∞|2)‖w‖L∞

δ
.
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Proof. As w ∈ C∞
c (Ω) and (TN

κ )κ∈KN is a covering of Supp(w) we have by assumption (A3)
that:

∫

Ω

j(x) · w(x)dx = lim
N→∞

N
∑

i=1

w(hN
i ) · vNi = lim

N→∞

∑

i∈IN

w(hN
i ) · vNi .

Hence, our proof reduces to find a uniform bound on
∑

i∈IN

w(hN
i ) · vNi −

∑

i∈IN\ZN
δ

w(hN
i ) · vNi =

∑

i∈ZN
δ
∩IN

w(hN
i ) · vNi .

However, for large N, there holds:
∣

∣

∣

∣

∣

∣

1

N

∑

i∈ZN
δ
∩IN

w(hN
i ) · vNi

∣

∣

∣

∣

∣

∣

6





1

N

∑

i∈ZN
δ

|vNi |2




1

2





1

N

∑

i∈ZN
δ

|w(hN
i )|2





1

2

.

Here, we apply (27) that has guided our choice for the covering (TN
κ )κ∈KN :





1

N

∑

i∈ZN
δ

|vNi |2


 6
12

δ

(

1 + |E∞|2
)

,





1

N

∑

i∈ZN
δ

|w(hN
i )|2



 6
12

δ

(

1 + |E∞|2
)

‖w‖2L∞ .

Combining these two estimates, we obtain:

lim sup
N→∞

∣

∣

∣

∣

∣

∣

1

N

∑

i∈ZN
δ
∩IN

w(hN
i ) · vNi

∣

∣

∣

∣

∣

∣

6
12

δ

(

1 + |E∞|2
)

‖w‖L∞ .

�

Lemma 12. For δ > 4 there holds:

lim sup
N→∞

∣

∣

∣

∣

∣

∣

6π

N

∑

κ∈KN

∑

i∈IN
κ \ZN

δ

w(hN
i ) · ūN

κ − 6π

∫

Ω

ρ(x)ū(x) · w(x)dx

∣

∣

∣

∣

∣

∣

.
|M∞| 14 (1 + |E∞| 52 )√

δ
‖w‖L∞ .

Proof. As in the previous proof, let first complete the sum by reintroducing the ZN
δ indices:

(45)
1

N

∑

κ∈KN

∑

i∈IN
κ \ZN

δ

w(hN
i ) · ūN

κ =
1

N

∑

κ∈KN

∑

i∈IN
κ

w(hN
i ) · ūN

κ + ẼrrN

where:

ẼrrN =
1

N

∑

κ∈KN

∑

i∈IN
κ ∩ZN

δ

w(hN
i ) · ūN

κ .
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For the first term on the right-hand side of (45), we remark that:

1

N

∑

κ∈KN

∑

i∈IN
κ

w(hN
i ) · ūN

κ =

(

1−
(

1− 1

δ

)3
)−1

1

|λN |3N
∑

κ∈KN

∫

[TN
κ ]2δ





∑

i∈IN
κ

w(hN
i )



 · uN .

So, we introduce:

σN =

(

1−
(

1− 1

δ

)3
)−1

1

N |λN |3
∑

κ∈KN





∑

i∈IN
κ

w(hN
i )



 1[TN
κ ]2δ ,

for which:
1

N

∑

κ∈KN

∑

i∈IN
κ

w(hN
i ) · ūN

κ =

∫

Ω

σN(x) · uN(x)dx.

On the one-hand, we note that:

‖σN‖L1(Ω) 6
1

N

∑

κ∈KN

MN
κ ‖w‖L∞ ,

where
∑

κ∈KN MN
κ 6 N, so that:

‖σN‖L1(Ω) 6 ‖w‖L∞ .

Complementarily, because of assumption (A5), we also have :

‖σN‖L∞(Ω) 6

(

1−
(

1− 1

δ

)3
)−1

sup
κ∈KN

MN
κ

N |λN |3‖w‖L∞

6

(

1−
(

1− 1

δ

)3
)−1

M∞‖w‖L∞ ,

and σN is bounded in all Lq-spaces.

On the other hand, for any v ∈ C∞
c (Ω) we have

∫

Ω

σN(x) · v(x)dx =
1

N

∑

κ∈KN

∑

i∈IN
κ

w(hN
i ) · v̄Nκ

with

v̄Nκ =
1

|[TN
κ ]2δ|

∫

[Tκ
N
]2δ

v(x)dx.

We remark that, for any i ∈ IN
κ , hN

i is inside TN
κ whose diameter is λN . This entails:

∣

∣v̄Nκ − v(hN
i )
∣

∣ . λN‖∇v‖L∞ .

Gathering these identities for all indices i in all the cubes TN
κ , we infer :

∣

∣

∣

∣

∣

∫

Ω

σN(x) · v(x)dx− 1

N

∑

i∈IN

w(hN
i ) · v(hN

i )

∣

∣

∣

∣

∣

. λN‖∇v‖L∞‖w‖L∞ .
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Consequently, assumption (A2) implies that:

lim
N→∞

∫

Ω

σN (x) · v(x)dx =

∫

Ω

ρ(x)w(x) · v(x)dx ,

and σN ⇀ ρw weakly in Lq(Ω) for arbitrary q ∈ (1,∞). Combining then the weak
convergence of σN in L2(Ω) and the strong convergence of uN in L2(Ω) (up to the extraction
of a subsequence), we have:

lim
N→∞

∫

Ω

σN · uN =

∫

Ω

ρw · ū.

As for the remainder term, we introduce:

σ̃N =

(

1−
(

1− 1

δ

)3
)−1

1

N |λN |3
∑

κ∈KN





∑

i∈IN
κ ∩ZN

δ

|w(hN
i )|



1[TN
κ ]2δ .

so that:

|ẼrrN | 6
∫

Ω

σ̃N (x)|uN(x)|dx .

With similar arguments as in the previous computations, we have, applying (27):

‖σ̃N‖L1(Ω) 6
1

N
#ZN

δ ‖w‖L∞ 6
1

δ
‖w‖L∞(1 + |E∞|2).

Furthermore, we have:

‖σ̃N‖L∞(Ω) . δM∞‖w‖L∞ .

Consequently, by interpolation, we obtain:

‖σ̃N‖
L

4
3 (Ω)

.
|M∞| 14√

δ
‖w‖L∞(1 + |E∞|2) 3

4 .

As uN is bounded in L4(Ω) by sobolev embedding, this yields that:

|ẼrrN | . |M∞| 14√
δ

‖w‖L∞(1 + |E∞|2) 5

4 , ∀N ∈ N .

This ends the proof. �

6. Two (counter-)examples

In this paper, we derive the Stokes-Brinkman system by homogenizing the Stokes prob-
lem in a perforated domain. We recall that we deal only with the dilution regime specified
by assumptions (A4)-(A5). Assumption (A5) is motivated by the fact that we want to
consider particle distribution functions (x, v) 7→ f(x, v) such that the associated density
x 7→ ρ(x) is bounded. This implies that, for arbitrary (x, λ) ∈ Ω × (0,∞) the density
M(x, λ) of cloud particles in B(x, λ) satisfies

M(x, λ) 6 ‖ρ‖L∞λ3.
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At the discrete level, we require thus that the density of particles in any box of width λN

satisfies:
MN

κ

N
6 M∞|λN |3 , ∀κ.

One may prove that under the sole assumption that the sequence of discrete density mea-
sures ρN converges to ρ(x)dx with ρ ∈ L∞(Ω) implies that there exists a sequence (λN)N∈N

converging to 0 for which, up to the extraction of a subsequence, (A5) holds true. So, in
this section, we keep this assumption and, on the basis of two examples, we discuss the
minimal distances (dNmin)N∈N below which we do not expect the homogenized system to
correspond to our Stokes-Brinkman problem (5)-(6).

First, as pointed out in the introduction, with assumptions (A4)-(A5), we enforce that
dNmin remains much larger than 1/N. On the opposite, if dNmin ∼ 1/N or dNmin << 1/N , the
distance between holes becomes comparable to their common radius and the influence of
the holes on the solution is more intricate. In such a case, we expect that one can pack the
holes into sub-groups containing holes between which the distance is smaller or comparable
to their common radius. Then, each of these packs of holes has to be considered as one
hole with a complicated shape instead of a group of holes. This remark applies in the
following example. Let divide the container Ω = [0, 1]3 into N/2 cubes (TN

k )k=1,...,N/2 of

width (2/N)1/3. Each of the cubes contains 2 holes so that the centers of these holes are
diametrically symmetric on a sphere of radius (1+h)/N (h is a positive parameter) centered
in the center of the cube (see Figure 1). Broadly, it comes from the proof in the previous
sections that the Brinkman term in the limit problem can be computed by zooming in
any of the elementary cells (with a scale 1/N), computing the drag terms involved by
the Stokes problem in the cells and suming them after rescaling. In this example, one
cell corresponds to a cube TN

k which contains two spherical holes. Then, the drag term
is computed by considering the Stokes problem in an exterior domain whose shape is the
complement of two unit balls. We expect that, after summation, the resulting Brinkman
term has a different structure than ”6π(j − ρu)”. Especially, it should depend nonlinearly
on the parameter h and anisotropically on u. To end up the analysis of this example, we
mention that it would be natural to choose λN = 1/N1/3 in order that (A5) holds true.
We would then get

lim
N→∞

dNmin

|λN |3 = 2h

so that (A4) is not satisfied. The value h = 0 is allowed here up to some restriction on the
choice of velocities (vNi )i=1,...,N .

The above construction shows that if concentration holds, the microscopic structure of
the cells plays a role on the Brinkman term. Now, we provide also an example which
shows that the homogenized system might not be of Stokes-Brinkman type. Our example
is a variant of the construction in [1]. In particular, we go back to the case of a Stokes
problem in a bounded perforated domain with a source term f ∈ L2(Ω). We consider
vanishing boundary conditions on the holes for simplicity. The holes will be distributed
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• ••

(2/N)1/3

Figure 1. First counter-example configuration

(almost) periodically so that their density converges to a uniform distribution in [0, 1]3. In
particular, if our main result were extending to this case, the homogenized system should
read:

−∆u+∇p = f − 6π1[0,1]3u
divu = 0

in Ω.

Nevertheless, let consider Ω a smooth bounded domain containing [0, 1]3 and (PN)N∈N a
diverging sequence of integers. We assume that

(46) lim
N→∞

PN

N
= 0.

Given N ∈ N we cover R
3 with disjoint cubes (TN

k )k∈Z3 of width σN = |PN/N |1/3. For
k ∈ Z

3, we denote by xN
k the center of TN

k so that TN
k = B∞(xN

k , σ
N/2). For N sufficiently

large, we extract a list KN containing ⌊N/PN⌋ + 1 indices of cubes TN
k that are inside Ω.

To do this, we first choose all the cubes that are included in [0, 1]3 and we complement the
list by choosing at least one other cube that is included in Ω. For the ⌊N/PN⌋ first cubes
of the list KN (including all the ones that are inside [0, 1]3), we perform PN holes in TN

k .
The holes are distributed concentrically around the center xN

k of TN
k on an orthogonal grid

of step 2dNm > 0. In particular, we center the grid so that all the perforated sites are inside
B∞(xN

k , ⌊(|PN |1/3 + 1)⌋dNm). To ensure that all the perforated sites remain in TN
k and the

holes are sufficiently spaced, we assume below that:

(47) lim
N→∞

N
1

3dNm = 0 , lim
N→∞

NdNm = +∞ .

In the last cube, we perform N − ⌊N/PN⌋PN holes in the same way so that we have
eventually N holes of radius 1/N in Ω that we label (B(hN

i , 1/N))i=1,...,N . See Figure 2 for
an illustration.
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•
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•
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•
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(PN/N)1/3

2dNm

Figure 2. Second counter-example configuration.

With these conventions, we introduce f ∈ L2(Ω) and are interested now in the asymptotic
behavior of the unique uN ∈ H1

0 (Ω) such that there exists a pressure pN for which there
holds:

(48)

{

−∆uN +∇pN = f ,
div uN = 0 ,

on FN := Ω \
N
⋃

i=1

B(hN
i , 1/N) ,

completed with boundary conditions

(49)

{

uN = 0 , on ∂B(hN
i , 1/N) ,

uN = 0 , on ∂Ω .

We observe that the Stokes regime computed in [1] extends to this example:

Proposition 13. Assume that (46)-(47) are in force together with:

(50) lim
N→∞

NdNm

|PN | 23
= 0 .
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Then uN converges in H1
0 (Ω)−w to the unique ū ∈ H1

0 (Ω) such that there exists p̄ ∈ L2(Ω)
for which:

−∆ū +∇p̄ = f
div ū = 0

in Ω.

Proof. First, as dNm >> 1/N, we may reproduce the arguments in Section 3 to obtain that
uN is bounded in H1

0 (Ω). We have thus a weak-cluster point in the weak-topology. We
then show that any cluster point of the sequence uN for the weak topology of H1

0 (Ω) is the
above ū.

To prove this latter property, we introduce rN := (|PN | 13+1)dNm. Then, given a divergence-
free w ∈ C∞

c (Ω) we set :

w̄N = w −
[

∑

k∈KN

χ

(

(x− xN
k )

rN

)

w −BxN
k
,rN ,2rN

[

x 7→ ∇χ

(

(x− xN
k )

rN

)

· w(x)
]

]

As all the holes are contained in the B∞(xN
k , r

N) for k ∈ KN , we have that w̄N ∈ H1
0 (FN)

and is divergence-free. Because uN is a solution to the Stokes system in FN we obtain
then that:

∫

Ω

∇uN : ∇w̄N =

∫

Ω

f · w̄N .

Let denote

δNw =

[

∑

k∈KN

χ

(

(x− xN
k )

rN

)

w −BxN
k
,rN ,2rN

[

x 7→ ∇χ

(

(x− xN
k )

rN

)

· w(x)
]

]

Remarking that the vector-fields in the sum have disjoint supports (see (47)) and applying
the properties of the Bogovskii operator of the appendix together with the fact that ♯KN .
N/PN , we obtain:

‖δNw ‖2H1

0
(Ω) . ♯KNrN‖w‖2W 1,∞ .

NdNm

|PN | 23
‖w‖2W 1,∞.

Consequently, with assumption (50) we have that δNw converges strongly to 0 in H1
0 (Ω) so

that:

lim
N→∞

∫

Ω

∇uN : ∇w̄N =

∫

Ω

∇ū : ∇w̄ lim
N→∞

∫

Ω

f · w̄N =

∫

Ω

f · w .

This ends the proof. �

This last example does not contradict our main result. Indeed, in this example, the role
of dNmin is played by dNm. We wonder then, if we may construct a sequence (λN)N∈N so that
(A4) and (A5) hold simultaneously, i.e.:

MN

N
. |λN |3 << dNm.

However, if we were having such a sequence, given N ∈ N we would have two cases:
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• either λN < |PN | 13dNm, so that MN ∼ |λN |3/|dNm|3 and

MN

N |λN |3 ∼ 1

N |dNm|3
>> 1 (because of assumption (47)) ;

• either λN > |PN | 13dNm, so that PN . MN and, applying that we require |λN |3 <<
dNm, we should have:

MN

N |λN |3 >>
PN

NdNm
>> 1 (because of assumption (50)).

Hence, we contradict (A5). Finally, given the way we constructed this second example, it
would be natural to choose λN = (PN/N)1/3 so that (A5) holds true. We would then have

lim
N→∞

dNmin

|λN |3 = lim
N→∞

dNmN

PN
= 0.

Hence (A4) is not satisfied.

To conclude, we stress that the analysis of the two above examples imply that our
Theorem 1 seems optimal in the frame of finite-energy bounded-density configurations.
Indeed, we already remarked that if the density ρ of holes is bounded then we may construct
a sequence (λN)N∈N so that (A5) holds true. Then if (A4) is not satisfied we should be
able to extract a subsequence so that dNmin/|λN |3 has a bounded limit. If this limit is
strictly positive our first example shows that we need a priori more information on the
microscopic structure of the cells to compute the Brinkman term. While, if the ratio
dNmin/|λN |3 converges to 0, a comparison of the two examples shows that it is even not
clear which type of homogenized system is to be expected.

Appendix A. Auxiliary technical lemmas

We recall here several standard lemmas that help in the above proofs.

First, we recall the Poincaré-Wirtinger inequality [7, Theorem II.5.4] which states that
for arbitrary lipschitz domain F , there holds:

∥

∥

∥

∥

u− 1

|F|

∫

F

u(x)dx

∥

∥

∥

∥

L2(F)

6 CPW‖∇u‖L2(F) .

We extensively use this inequality when F is an annulus. In this case, a standard scaling
argument entails the following remark on the constant CPW :

Lemma 14. Given (x, λ, a) ∈ R
3 × (0,∞) × (0, 1) there exists a constant Ca depending

only on a (and expecially not on (x, λ)) for which :
∥

∥

∥

∥

u− 1

|A(x, aλ, λ)|

∫

A(x,aλ,λ)

u(x)dx

∥

∥

∥

∥

L2(A(x,aλ,λ))

6 Caλ‖∇u‖L2(A(x,aλ,λ)) .
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Second, we focus on the properties of the Bogovskii operators B. This means we are
interested in solving the divergence problem:

(51) div v = f , on F ,

whose data is f and unknown is v. We recall the result due to M.E. Bogovskii (see [7,
Theorem III.3.1]):

Lemma 15. Let F be a lipschitz bounded domain in R
3. Given f ∈ L2(F) such that

∫

F

f(x)dx = 0 ,

there exists a solution v := BF [f ] ∈ H1
0 (F) to (51) such that

‖∇v‖L2(F) 6 C‖f‖L2(F)

with a constant C depending only on F .

In the case of annuli, the above result yields the following lemma by a standard scaling
argument:

Lemma 16. Let (x, λ, a) ∈ R
3 × (0,∞)× (0, 1). Given f ∈ L2(A(x, aλ, λ)) such that

∫

F

f(x)dx = 0 ,

there exists a solution v := Bx,aλ,λ[f ] ∈ H1
0 (A(x, aλ, λ)) to (51) such that

‖∇v‖L2(A(x,aλ,λ)) 6 Ca‖f‖L2(A(x,aλ,λ)),

with a constant Ca depending only on a (and especially neither on f nor on (x, λ)) .

Appendix B. Proof of a covering lemma

This appendix is devoted to the construction of coverings that are adapted to the empiric
measures SN . We prove the following general lemma:

Lemma 17. Let (d, λ) ∈ N
∗×(0,∞), d > 2, and µ ∈ M+(R

3) a positive bounded measure.
There exists (Tκ)κ∈Z3 a covering of R3 with disjoint cubes of width λ such that denoting

Cλ
d :=

{

x ∈ R
3 s.t. dist

(

x,
⋃

κ∈Z3

∂Tκ

)

<
λ

(d+ 1)

}

there holds

(52) µ(Cλ
d ) 6

6

d
µ(R3).
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In Section 4, we apply the previous lemma for arbitrary N ∈ N
∗, with λ = λN , d = δ−1

and

µ :=
1

N

N
∑

i=1

(1 + |vNi |2)δhN
i
.

We obtain a covering (TN
κ )κ∈Z3 satisfying (27). Assuming then λN 6 [dist(Supp(w),R3 \

Ω)/4] (this is possible as λN → 0 ) we obtain that the subcovering (TN
κ )κ∈KN containing

only the cubes that intersect Supp(w) is made of cubes TN
κ that are included in the λN -

neighborhood of Supp(w). By direct computations, we obtain then that, for κ ∈ KN , the
distance between TN

κ and R
3 \ Ω is strictly positive so that TN

κ ⊂ Ω.

Proof. By a standard scaling argument, it suffices to prove the result for λ = 1. Let d > 2.
First, for arbitrary k = (k1, k2, k3) ∈ Z

3 we set:

T̃k =

[

k1
d
,
k1 + 1

d

[

×
[

k2
d
,
k2 + 1

d

[

×
[

k3
d
,
k3 + 1

d

[

These cubes with tildas and index k are cubes of width 1/d. We call them ”small cubes.”

It is straightforward that (T̃k)k∈Z3 forms a partition of R3. For arbitrary

κ = (k1, k2, k3) + {0, . . . , d− 1}3 ,
we set then:

Tκ =
⋃

k∈κ

T̃k =

[

k1
d
,
k1
d

+ 1

[

×
[

k2
d
,
k2
d

+ 1

[

×
[

k3
d
,
k3
d

+ 1

[

.

These cubes without tildas and with index κ are cubes of width 1. We call them ”large
cubes”. We introduce then the 1/d-neighborhood of the boundary of this large cube:

[Tκ]d :=
⋃

k∈∂κ

T̃k .

where

∂κ = {k ∈ {k1, k1 + d− 1} × {k2, . . . , k2 + d− 1} × {k3, . . . , k3 + d− 1}}
∪ {k ∈ {k1, . . . , k1 + d− 1} × {k2, k2 + d− 1} × {k3, . . . , k3 + d− 1}}
∪ {k ∈ {k1, . . . , k1 + d− 1} × {k2, . . . , k2 + d− 1} × {k3, k3 + d− 1}}

(which means taking the small cubes whose indices are in the boundary of κ). We remark
that we may split [Tκ]d into 6 subsets corresponding to the top, bottom, left, right, front
and back faces of the cube Tκ. For instance, the bottom face of [Tκ]d reads:

⋃

k∈{k1,...,k1+d−1}×{k2,...,k2+d−1}×{k3}

T̃k .

For arbitrary kℓ = ℓ(1, 1, 1) , with ℓ ∈ {0, . . . , d− 1} we also denote

Kℓ =
{

κ = (kℓ + π + {0, . . . , d− 1}3) , π ∈ dZ3
}
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We emphasize that Kℓ is a set made of sets (corresponding to large cubes). Any set Kℓ

corresponds to a partition of Z3 and then to a covering of R3 with disjoint large cubes.

Given ℓ ∈ {0, . . . , d− 1} we consider now

Cℓ
d =

{

x ∈ R
3 s.t. dist

(

x,
⋃

κ∈Kℓ

∂Tκ

)

<
1

(d+ 1)

}

.

We remark that, for fixed ℓ there holds:

Cℓ
d ⊂

⋃

κ∈Kℓ

[Tκ]d.

We denote ∂Kl the set of indices k such that T̃k contributes to this 1/d-neigborhood.
Setting ∂Kl =

⋃ {∂κ, κ ∈ Kℓ} , we have thus:

Cℓ
d ⊂

⋃

k∈∂Kl

T̃k .

We can decompose this union of small cubes by regrouping together the cubes that belong
to left / right / top / bottom / front / back faces of large cubes. For instance, the indices
k of small cubes belonging to bottom faces of large cubes satisfy

k ∈ Z
2 × {ℓ+ dZ} .

For two different ℓ and ℓ′ in {0, . . . , d− 1} the same index k cannot belong to the bottom
faces of two different cubes in the coverings Kℓ and Kℓ′ of R

3. We have the same proper-
ties for top / right / left / front / back faces. Consequently, in the family of coverings
(Kℓ)ℓ∈{0,...,d−1} one small cube T̃k belongs at most once to a top / bottom / right / left /
front / back face of a large cube so that:

(53) any k ∈ Z
3 belongs to at most 6 different ∂Kl .

Let now introduce the measure µ. For any k ∈ Z
3, we denote:

µ̃k = µ(T̃k),

and we consider the sum:

Rem :=
∑

ℓ∈{0,...,d−1}

µ(Cℓ
d).

With the previous definitions, we have:

Rem 6
∑

ℓ∈{0,...,d−1}

∑

k∈∂Kℓ

µ̃k.

Because of (53), we have then that any k ∈ Z
3 appears at most 6 times in this sum.

Consequently:

Rem 6 6
∑

k∈Z3

µ̃k 6 6µ(R3) .
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The measure µ being positive and finite, this implies that one of the terms in the sum
defining Rem is less thanRem/d. In other words, there exists at least one ℓ0 ∈ {0, . . . , d−1}
such that:

µ(Cℓ0

d ) 6
6

d
µ(R3) .

The covering (Tκ)κ∈K
ℓ0

is then made of disjoint cubes of width 1 satisfying (52). We have

obtained the required covering of R3. �
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