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ON THE HOMOGENIZATION OF THE STOKES PROBLEM IN A

PERFORATED DOMAIN

M. HILLAIRET

Abstract. In this paper we consider the Stokes equations on a bounded perforated do-
main completed with non-zero constant boundary conditions on the holes. We investigate
configurations for which the holes are identical spheres and their number N goes to in-
finity while their radius 1/N tends to zero. We prove that, under the assumption that
the holes do not concentrate in any box of size 1/N1/3, the solution is well approximated
asymptotically by solving a Stokes-Brinkman problem.

1. Introduction

In this paper we focus on the homogenization of the Stokes equations in a perforated
domain with non-zero constant boundary conditions on the holes. Precisely, we assume that
Ω is a smooth bounded domain in R

3. Given N ∈ N, we introduce N centers hN
1 , . . . , h

N
N

in Ω such that the BN
i = B(hN

i , 1/N) satisfy

(A0) BN
i ⋐ Ω , BN

i ∩BN
j = ∅ , for i 6= j in {1, . . . , N} .

Given a N -uplet (vNi )i=1,...,N ∈ (R3)N , it is classical that there exists a unique solution to

(1)

{

−∆u +∇p = 0 ,
div u = 0 ,

on FN := Ω \
N
⋃

i=1

BN
i ,

completed with boundary conditions

(2)

{

u = vNi , on ∂BN
i ,

u = 0 , on ∂Ω .

We are interested here in the behavior of this solution when N goes to infinity and the
asymptotics of the data (hN

i , v
N
i )i=1,...,N are given.

When the holes are distributed periodically, a major contribution in the analysis of this
problem is due to G. Allaire [1]. In this reference, the author proves that there exists a
critical value of the ratio between the size of the holes and their mutual distance for which
there is a transition from the Stokes equations towards the Stokes-Brinkman equations.
If the holes are ”denser” the transition holds with a Darcy law while if the holes are
”more dilute” we obtain again a Stokes problem asymptotically. This former result is an
adaptation to the Stokes equations of a previous analysis on the Laplace equation in [3].
We refer the reader to [2, 5] for a review of equivalent results for other fluid models.
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2 M. HILLAIRET

In [1], the Stokes equations are completed with vanishing boundary conditions while a
volumic source term is added in the bulk. The problem with non-zero constant boundary
conditions is introduced in [4] for the modeling of a thin spray in a highly viscous fluid.
In this case, the holes represent droplets of another phase called ”dispersed phase”. This
phase can be made of another fluid or small rigid spheres. The Stokes equations should then
be completed with evolution equations for this dispersed phase yielding a time-evolution
problem with moving holes. Computing the asymptotics of the stationary Stokes problem
is then a tool for understanding the instantaneous response of the dispersed phase to the
drag forces exerted by the flow on the droplets/spheres. We refer the reader to [4, 11] for
more details on the modeling. In [4], the authors adapt the result of [1] on the derivation
of the Stokes-Brinkman system. A comparable analysis with another purpose is provided
in [10] when the dispersed phase is sufficiently dilute so that one recovers asymptotically
the Stokes system. We emphasize that there is a significative new difficulty in introducing
non-vanishing boundary conditions. Indeed, the boundary conditions on the holes may
be highly oscillating (when jumping from one hole to another). Hence, if one were trying
to solve this new system by lifting the boundary conditions, he would introduce a highly
oscillating source term in the Stokes equations that is out of the scope of the analysis in
[1].

The result in [4] is obtained under the assumption that the distance between two cen-
ters hN

i and hN
j is larger than 2/N1/3. This assumption is quite restrictive and prevents

from extension to a time-dependant problem or a random model (in the spirit of [12]).
Furthermore, the proof in [4] relies heavily on explicit formulas for solutions to the Stokes
equations in annuli and exterior domains. Considering holes with non-spherical shapes
thus requires new tools. Our main motivation in this paper is to provide another approach
that may help to overcome these two difficulties.

In order to consider the limit N → ∞, we make now precise the different assumptions
on the data of our Stokes problem (1)-(2). This includes:

• the positions of the centers (hN
i )i=1,...,N ,

• the velocities prescribed on the holes (vNi )i=1,...,N .

First, similarly to [4], we assume that:

(A1)
1

N

N
∑

i=1

|vNi |2 is uniformly bounded .

Second, we make precise the assumptions on the separation between the holes. This is
the main point where our assumptions differ from [4]. It is nowadays classical that the
properties of Stokes flows in domains with obstacles change drastically when the distance
between obstacles decreases becoming comparable to their diameters (see [8]). We want to
avoid this phenomenon in the pairwise as in the global interactions between holes through
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the flow. We quantify this by introducing:

dNmin = min
i=1,...,N

{

dist(hN
i , ∂Ω),min

j 6=i
|hN

i − hN
j |
}

,

MN = sup
x∈Ω

{

#
{

i ∈ {1, . . . , N} s.t. hN
i ∈ B(x, 1/N1/3)

}}

.

We assume below that

lim
N→∞

NdNmin = +∞ ,(A2)

(MN )N∈N is bounded.(A3)

We note that under these assumptions, we have that forN sufficiently large the (BN
i )i=1,...,N

are disjoint and do not intersect ∂Ω. For N large enough, assumption (A0) only fixes that
the holes are inside Ω. There exists then a unique pair (uN , pN) ∈ H1(FN) × L2(FN)
solution to (1)-(2) (see next section for more details). The pressure is unique up to an
additive constant that we may fix by requiring that pN has mean 0. It can be seen as
the Lagrange multiplier of the divergence-free condition in (1). Hence, we focus on the
convergence of the sequence (uN)N∈N and will not go into details on what happens to
the pressure (in contrast with [1]). The uN are defined on different domains. In order
to compute a limit for this sequence of vector-fields, we unify their domain of definition
by extending uN with the values vNi on BN

i for any i = 1, . . . , N. We still denote uN the
extension for simplicity. This is now a sequence in H1

0 (Ω).

The final assumptions prescribe the asymptotics of the distribution (hN
i , v

N
i )i=1,...,N . We

introduce the empiric measure

SN =
1

N

N
∑

i=1

δhN
i ,vNi

∈ P(R3 × R
3),

and we assume:
∫

R3

SN(dv) ⇀ ρ(x)dx weakly in the sense of measures on R
3 ,(A4)

∫

R3

vSN(dv) ⇀ j(x)dx weakly in the sense of (vectorial-)measures on R
3 .(A5)

We recall that, by assumption (A0), the measure SN is supported in Ω×R
3 so that, in the

weak limit, ρ > 0 and ρ and j have support included in Ω.

Our main result reads:

Theorem 1. Let (vNi , hN
i )i=1,...,N be a sequence of data satisfying (A0) for arbitrary N ∈ N.

Assume furthermore that (A1)–(A5) hold true with

j ∈ L2(Ω) , ρ ∈ L∞(Ω) .
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Then, the associated sequence of extended velocity-fields (uN)N∈N converges in H1
0 (Ω)− w

to the unique velocity-field ū ∈ H1(Ω) such that there exists a pressure p̄ ∈ L2(Ω) for which
(ū, p̄) solves:

(3)

{

−∆ū+∇p̄ = 6π(j − ρū) ,
div ū = 0 ,

on Ω,

completed with boundary conditions

(4) ū = 0 , on ∂Ω .

We remark that, with the assumptions (A1) and (A3), we may extract a subsequence
such that the first momentums of SN in v converge to some (ρ, j) ∈ L∞(Ω)×L2(Ω). Hence,
assumptions (A4) and (A5) only fix that the whole sequence converges to the same density
ρ and momentum distribution j. For simplicity, we do not include a source term in (1)
even if our result extends in a straightfoward way to this case (due to the linearity of the
Stokes equations).

We emphasize that our result is not in contradiction with [1]. Indeed, in the periodic
case, if the distance between holes is smaller than 1/N1/3 we are in a case where [1] shows
that the asymptotic problem is a Darcy law. But, in our case, if the holes were arranging
periodically with distance constantly less than 1/N1/3 in some part of the domain, there
would exist one cube of size 1/N1/3 in which the number of holes goes to infinity. This
possibility is ruled out by assumption (A3). On the opposite, if the distance between holes
is too often much larger than 1/N1/3 in our framework, the asymptotic ρ and j vanish
and we obtain again the Stokes equations in the limit as in [1]. We also remark that the
results herein extend the previous results in [1] and [4]. Indeed, on the one hand, the
assumptions in [4] are clearly more restrictive than (A2)-(A3). On the other hand, our
assumptions allow the holes to be distributed periodically. In this case, we would have,
with the terminology of [1], that ”aε” = 1/N and ”ε” = (σ2

ε/N)1/3 and ”M0” = 6πI3.
The case in which [1] derives the Stokes-Brinkman problem corresponds then to j = 0 and
σε → σ̄ ∈ (0,∞) when N → ∞ (or equivalently ε → 0). In that case, straightforward
computations show that ρ = σ̄−2 and system (3)-(4) corresponds to the one derived in [1].

To conclude, one novelty of this paper is that we expect the two assumptions (A2)-(A3)
are sufficiently general to tackle the time-evolution problem. Another novelty of the paper
stems from the method of proof. We shall apply arguments that are not highly sensitive to
the explicit value of solutions to the Stokes problem. The two main ingredients of the proof
are the decrease of stokeslets (see (14)) and conservation arguments (see next subsection).
In particular, we plan to consider more general shapes of holes and boundary conditions
on holes in future works.

1.1. Outline of the proof. Our proof is based on a classical compactness argument: we
first obtain uniform bounds on the sequence uN and then extract a subsequence such that,
passing to the weak limit in the weak formulation for the N -problem, we obtain the weak
formulation of the limit problem.
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We first prove that the sequence (uN)N∈N is bounded in H1
0 (Ω). This part is obtained

by applying a variational characterization of solutions to Stokes problems and relies upon
assumptions (A1) and (A2) only. We may then extract a subsequence (that we do not
relabel) converging to some ū in H1

0 (Ω) (and strongly in any Lq(Ω) for q ∈ [1, 6[). In order
to identify a system satisfied by ū all that remains is devoted to the proof that:

Iw :=

∫

Ω

∇ū : ∇w ,

satisfies:

Iw = 6π

∫

Ω

(j(x)− ρ(x)ū(x)) · w(x)dx ,

for arbitrary divergence-free w ∈ C∞
c (Ω). So, we fix a divergence-free w ∈ C∞

c (Ω) and we
note that by construction, we have

Iw = lim
N→∞

INw with INw =

∫

Ω

∇uN : ∇w , ∀N ∈ N.

We compute then INw by applying that uN is a solution to the Stokes problem (1)-(2). As
the support of all the integrals INw is Ω and the support of w is not adapted to the Stokes
problem (1)-(2), this requires a special care. So, we introduce a covering (TN

κ )κ∈KN of
Supp(w) with cubes of width 1/N1/3 and we split

INw =
∑

κ∈KN

∫

TN
κ

∇uN : ∇w.

Given N and κ, we apply that there are not too many particles in TN
κ because of assumption

(A5). This enables to localize the method of reflections [9, 10] and replace w with
∑

i∈IN
κ

UN [w(hN
i )](x− hN

i ) ,

in the integral on TN
κ . We denote here

• IN
κ the subset of indices i ∈ {1, . . . , N} for which hN

i ∈ TN
κ ,

• (UN [v](y), PN [v](y)) the solution to the Stokes problem outside B(0, 1/N) with
boundary condition U [v](y) = v on ∂B(0, 1/N) and vanishing condition at infinity.

We obtain that
∫

TN
κ

∇uN : ∇w ∼
∑

i∈IN
κ

∫

TN
κ

∇uN : ∇[UN [w(hN
i )]](x− hN

i ) .

Then, we observe that the pair
(

UN [w(hN
i )](x− hN

i ), P
N [w(hN

i )](x− hN
i )
)
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is a solution to the Stokes problem outside BN
i . Hence, we apply that uN is divergence-free,

introduce the pressure and integrate by parts to obtain that:

∫

TN
κ

∇uN : ∇w ∼
∑

i∈IN
κ

∫

∂BN
i

(∂nU
N [w(hN

i )]− PN [w(hN
i )]n) · vNi dσ

+

∫

∂TN
κ

∑

i∈IN
κ

(∂nU
N [w(hN

i )]− PN [w(hN
i )]n) · uNdσ .

We skip for conciseness that (UN , PN) depend on (x − hN
i ) in these last identities. It is

classical by the Stokes law that:
∫

∂BN
i

(∂nU
N [w(hN

i )]− PN [w(hN
i )]n)dσ =

6π

N
w(hN

i ) ,

and, by interpreting the Stokes system as the conservation of normal stress, that:
∫

∂TN
κ

(∂nU [w(hN
i )]− PN [w(hN

i )]n)dσ = −6π

N
w(hN

i ) .

To take advantage of this last identity, we use that TN
κ has small width to replace uN by

some mean value ūN
κ on ∂TN

κ . Say for simplicity that:

(5) ūN
κ =

1

|TN
κ |

∫

TN
κ

uN(x)dx ,

and assume that replacing uN by ūN
κ induces a small error in the boundary integral. We

obtain then that:
∫

TN
κ

∇uN : ∇w ∼
∑

i∈IN
κ

6π

N
w(hN

i ) · vNi −
∑

i∈IN
κ

6π

N
w(hN

i ) · ūN
κ .

Summing over κ yields:

INw ∼
N
∑

i=1

6π

N
w(hN

i ) · vNi −
∑

κ∈KN





∑

i∈IN
κ

6π

N
w(hN

i )



 · ūN
κ .

The first term on the right-hand side converges by assumption (A3) to :

6π

∫

Ω

j(x) · w(x)dx.

To compute the limit of the second term, we introduce:

σN = 6π
∑

κ∈KN





∑

i∈IN
κ

w(hN
i )



1TN
κ
,
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so that:

∑

κ∈KN





∑

i∈IN
κ

6π

N
w(hN

i )



 · ūN
κ =

∫

Ω

σN · uN(x)dx.

For w ∈ C∞
c (Ω), we have that σN is bounded in L1(Ω) and, under assumption (A4), it

converges to σ(x) = ρ(x)w(x) in D′(Ω). However, this is not sufficient to compute the limit
of this last term. Indeed we have strong convergence of the sequence uN in Lq(Ω) for q < 6
only. Consequently, we need the supplementary assumption (A5) which entails that σN is
bounded in L∞(Ω). Now, σN converges in Lq(Ω) − w for arbitrary q ∈ (1,∞) (up to the
extraction of a subsequence) and combining this fact with the strong convergence of uN

we obtain that:

lim
N→∞

∑

κ∈KN

∑

i∈IN
κ

6π

N
w(hN

i ) · ūN
κ =

∫

Ω

ρ(x)w(x) · ū(x)dx.

This would end the proof if we could actually define ūN
κ as in (5) and prove that it induces

a small error by replacing uN with the mean ūN
κ on ∂TN

κ . Unfortunately, for this, we need
that the combination of stokeslets to which uN is multiplied is a solution to the Stokes
equations on the set where the mean is taken (in particular we cannot choose TN

κ here
contrary to what we have written in (5)). We also remark that, in order that the sum:

∑

κ∈KN

∑

i∈IN
κ

6π

N
w(hN

i ) · ūN
κ

corresponds to the multiplication with an L1-bounded sequence (σN)N∈N, we not only need
(A5) but also that the mean ūN

κ is taken on a set whose volume is of magnitude 1/N. To
handle both technical difficulties simultaneously, we introduce a parameter δ (which will
be large), we ”delete” the particles in a 1/(δN1/3)−neighborhood of ∂TN

κ and we construct
ūN
κ as the mean of uN on the 1/(2δN1/3)-neighborhood of ∂TN

κ (inside TN
κ ). By a suitable

choice of the covering TN
κ we prove that the cost of this deletion process is O(1/

√
δ). Hence,

we obtain that:
∣

∣

∣

∣

Iw − 6π

∫

Ω

(j(x)− ρ(x)ū(x)) · w(x)dx
∣

∣

∣

∣

.
1√
δ

for arbitrary large δ.

1.2. Notations. In the whole paper, for arbitrary x ∈ R
3 and r > 0, we denote B∞(x, r)

the open ball with center x and radius r for the ℓ∞ norm. The classical euclidean balls are
denoted B(x, r). For x ∈ R

3 and 0 < λ1 < λ2 we also denote:

A(x, λ1, λ2) := B∞(x, λ2) \B∞(x, λ1) .

The operator distance (between sets) is always computed with the ℓ∞ norm. We will con-
stantly use a truncation function associated to the parameter N. This truncation function
is constructed in a classical way. We introduce χ ∈ C∞

c (R3) a truncation function such
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that χ = 1 on [−1, 1]3 and χ = 0 outside [−2, 2]3. We denote χN = χ(N ·) its rescaled
versions. This truncation function satisfies :

• χN = 1 on B∞(0, 1/N) and χN = 0 outside B∞(0, 2/N),

• ∇χN has support in A(0, 1/N, 2/N) and size O(N).

When we truncate vector-fields with χN we shall create a priori non divergence-free vector-
fields. To lift the divergence of these vector-fields, we use extensively the Bogovskii operator
Bx,λ1,λ2

on the ”cubic” annulus A(x, λ1, λ2) (again x ∈ R
3 and 0 < λ1 < λ2). We recall

that w = Bx,λ1,λ2
[f ] is defined for arbitrary f ∈ L2(A(x, λ1, λ2)), whose mean vanishes,

and yields an H1
0 (A(x, λ1, λ2)) vector-field such that divw = f. As the returned vector-field

vanishes on ∂A(x, λ1, λ2) we extend it tacitly by 0 to obtain an H1(R3) function.

For legibility we also make precise a few conventions. We have the following generic
notations:

• u is a velocity-field solution to a Stokes problem, with associated pressure p,
• w is a test-function,
• I is an integral while I is a set of indices,
• T is a cube, depending on the width we shall use different exponants,
• n denotes the outward normal to the open set under consideration .

We shall also use extensively the symbol . to denote that we have an inequality with a
non-significant constant. We mean that we denote a . b when there exists a constant C,
which is not relevant to our problem, such that a 6 Cb. In most cases ”not relevant” will
mean that it does not depend on the parameters N and/or δ. If a more precise statement
of this ”non-relevance” is required we shall make it precise.

2. Analysis of the Stokes problem

In this section, we recall how is solved the Stokes problem:

(6)

{

−∆u+∇p = 0 ,
div u = 0 ,

on F ,

completed with boundary conditions

(7) u(x) = u∗ , on ∂F ,

for a lipschitz domain F and boundary condition u∗ ∈ H
1

2 (∂F). We consider the different
cases: F is a bounded set, an exterior domain, or a perforated cube. In the second case,
we complement the system with a vanishing condition at infinity.

2.1. Reminders on the Stokes problem in a bounded or an exterior domain. We
first assume that F is a bounded domain with a lipschitz boundary ∂F . In this setting, a
standard way to solve the Stokes problem (6)-(7) is to work with a generalized formulation
(see [7, Section 4]). For this, we introduce:

D(F) :=
{

u ∈ H1(F) s.t. div u = 0
}

, D0(F) :=
{

u ∈ H1
0 (F) s.t. div u = 0

}

.
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By [7, Theorem III.4.1], we have that D0(F) is the closure for the H1
0 (Ω)−norm of

D0(F) = {w ∈ C∞
c (F) s.t. divw = 0} .

We have then the following definition

Definition 2. Given u∗ ∈ H
1

2 (∂F), a vector-field u ∈ D(F) is called generalized solution
to (6)-(7) if

• u = u∗ on ∂F in the sense of traces,

• for arbitrary w ∈ D0(F), there holds:

(8)

∫

F

∇u : ∇w = 0 .

This generalized formulation is obtained assuming that we have a classical solution,
multiplying (6) with arbitrary w ∈ D0(F) and performing integration by parts. De Rham
theory ensures that conversely, if one constructs a generalized solution then it is possible
to find a pressure p such that (6) holds in the sense of distributions. Standard arguments
yield:

Theorem 3. Assume that the boundary of the fluid domain ∂F splits into (N + 1) ∈ N

lipschitz connected components Γ0,Γ1, . . . ,ΓN . Given u∗ ∈ H
1

2 (∂F) satisfying

(9)

∫

Γi

u∗ · ndσ = 0 , ∀ i ∈ {0, . . . , N},

then

• there exists a unique generalized solution u to (17)-(18);
• this generalized solution realizes

(10) inf

{
∫

F

|∇u|2, u ∈ D(F) s.t. u|∂F = u∗

}

.

Proof. Existence and uniqueness of the generalized solution is a consequence of [7, Theorem
IV.1.1]. A key argument in the proof of this reference is the property of traces that we
state in the following lemma:

Lemma 4. For arbitrary u∗ ∈ H
1

2 (∂F) satisfying (9) there holds:

• there exists ubdy ∈ D(F) having trace u∗ on ∂F ,

• for arbitrary ubdy ∈ D(F) having trace u∗ on ∂F there holds
{

u ∈ D(F) s.t. u|∂F = u∗

}

= ubdy +D0(F) .

Then, given u ∈ D(F) the generalized solution to (17)-(18) and w ∈ D0(F), the funda-
mental property (8) of u entails that:

∫

F

|∇(u+ w)|2 =

∫

F

|∇u|2 + 2

∫

F

∇u : ∇w +

∫

F

|∇w|2 ,

=

∫

F

|∇u|2 +
∫

F

|∇w|2 .
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Consequently, the norm on the left-hand side is minimal if and only if w = 0. Combining
this remark with the above lemma yields that the generalized solution to (17)-(18) is the
unique minimizer of (10) in

{

v ∈ D(F) s.t. v|∂F = u∗

}

. �

As mentioned previously, once it is proven that there exists a unique generalized solution
u to (6)-(7), it is possible to recover a pressure p so that (6)-(7) holds in the sense of
distributions. If the data are smooth (i.e. F has smooth boundaries and u∗ is smooth)
one proves also that (u, p) ∈ C∞(F).

We turn to the exterior problem as developed in [7, Section 5]. We assume now that
F = R

3 \Ba where Ba = B(0, 1/a) and we consider the Stokes problem (6) with boundary
condition

(11) u = u∗ on ∂Ba , lim
|x|→∞

u(x) = 0 ,

for some u∗ ∈ H
1

2 (∂Ba). For the exterior problem, we keep the definition of generalized
solution up to change a little the function spaces. We denote in this case:

• D(F) =
{

w|F , w ∈ C∞
c (R3) s.t. divw = 0

}

,

• D(F) is the closure of D(F) for the norm:

‖w‖D(F) =

(
∫

F

|∇w|2
)

1

2

.

We keep the definition of D0(F) as in the bounded-domain case and we construct D0(F)
as the closure of D0(F) with respect to this latter homogeneous H1-norm. We note that,
in the exterior domain case, we still have that D(F) ⊂ W 1,2

loc (F) (see [7, Lemma II.6.1]) so
that we have a trace operator on ∂Ba and an equivalent to Lemma 4.

As in the case of bounded domains, the Stokes problem (6)-(11) with boundary conditions
u∗ prescribing no flux through ∂Ba has a unique generalized solution (see [7, Theorem
V.2.1], actually the no-flux assumption is not necessary for the exterior problem). Thus,
this solution satisfies:

• ∇u ∈ L2(R3 \Ba) ,

• for any w ∈ D0(R
3 \Ba) there holds:

∫

R3\Ba

∇u : ∇w = 0.

Explicit formulas are provided when the boundary condition u∗ = v with v ∈ R
3 constant

(see [4, Section 6.2] for instance):

u(x) = Ua[v](x) :=
1

4a

(

3

|x| +
1

a2|x|3
)

v +
3

4a

(

1

|x| −
1

a2|x|3
)

v · x
|x|2 x ,(12)

p(x) = P a[v](x) :=
3

2a

v · x
|x|4 x .(13)
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We call this classical solution stokeslet in what follows. With these explicit formulas, we
remark that:

(14) |Ua[v](x)| . |v|
a|x| , |∇Ua[v](x)|+ |P a[v](x)| . |v|

a|x|2 , ∀ x ∈ R
3 \Ba ,

and we recall that the force exerted by the flow on ∂Ba reads:

(15)

∫

∂Ba

(∂nU
a[v]− P a[v]n)dσ =

6π

a
v.

For convenience, the stokeslet Ua[v] is extended by Ua[v] = v on Ba in what follows.

2.2. Stokes problem in a perforated cube. In this last subsection, we fix (N,M) ∈
(N \ {0})2, and a divergence-free w ∈ C∞

c (R3). We denote TN an open cube of width
1/N1/3 and BN

i = B(xi, 1/N) ⊂ TN for i = 1, . . . ,M. We assume further that there exists
dm satisfying

(16) min
i=1,...,M

{

dist(xi, ∂T
N),min

j 6=i
(|xi − xj |)

}

> dm >
4

N
.

We consider the Stokes problem:

(17)

{

−∆u+∇p = 0 ,
div u = 0 ,

on F = TN \
M
⋃

i=1

BN
i ,

completed with boundary conditions

(18)

{

u(x) = w(x) , on BN
i , ∀ i = 1, . . . ,M ,

u(x) = 0 , on ∂TN .

Assumption (16) entails that the BN
i do not intersect and do not meet the boundary ∂TN .

So, the set TN \⋃M
i=1B

N
i has a lipschitz boundary satisfying:

∂

[

TN \
M
⋃

i=1

BN
i

]

= ∂TN ∪
M
⋃

i=1

∂BN
i .

For any i = 1, . . . ,M, direct computations show that:
∫

∂BN
i

w · ndσ =

∫

BN
i

divw = 0.

Hence, the problem (17)-(18) is solved by applying Theorem 3 and it admits a unique
generalized solution u ∈ H1(F). We want to compare this solution with:

us(x) =
M
∑

i=1

UN [w(xi)](x− xi),

where UN is the stokeslet as defined in (12). The main result of this subsection is:
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Proposition 5. There exists a constant K independent of (N,M, dm, w) for which:

‖(u− us)‖L6(F) + ‖∇(u− us)‖L2(F) 6 K‖w‖W 1,∞(R3)

√

M

N

[

1

N
+

√

M

Ndm

]

.

Proof. We split the error term into two pieces. First, we reduce the boundary conditions
of the Stokes problem (17)-(18) to constant boundary conditions. Then, we compare the
solution to the Stokes problem with constant boundary conditions to the combination of
stokeslets us. In the whole proof, the symbol . is used when the implicit constant in our
inequality does not depend on N,M, dm and w.

So, we introduce uc the unique generalized solution to the Stokes problem on F with
boundary conditions:

(19)

{

uc = w(xi) , on BN
i , ∀ i = 1, . . . ,M ,

uc = 0 , on ∂TN .

Again, existence and uniqueness of this velocity-field holds by applying Theorem 3. We
split then:

‖(u− us)‖L6(F) 6 ‖(u− uc)‖L6(F) + ‖(uc − us)‖L6(F) ,

‖∇(u− us)‖L2(F) 6 ‖∇(u− uc)‖L2(F) + ‖∇(uc − us)‖L2(F).

To control the first term on the right-hand sides, we note that (u − uc) is the unique
generalized solution to the Stokes problem on F with boundary conditions:

{

(u− uc)(x) = w(x)− w(xi) , on BN
i , ∀ i = 1, . . . ,M ,

(u− uc)(x) = 0 , on ∂TN .

Hence, by the variational characterization of Theorem 3, ‖∇(u − uc)‖L2(F) realizes the
minimum of ‖∇w̃‖L2(F) amongst

{

w̃ ∈ H1(F) s.t. div w̃ = 0 , w̃|
∂TN

= 0 , w̃|
∂BN

i

= w(·)− w(xi) , ∀ i = 1, . . . ,M
}

.

We construct thus a suitable w̃ in this space. We set:

w̃ =

M
∑

i=1

w̃i

with, for i = 1, . . . ,M :

w̃i =
(

χN (· − xi)(w(·)− w(xi))−Bxi,1/N,2/N

[

x 7→ (w(x)− w(xi)) · ∇χN(x− xi)
])

.

We recall that χN is a chosen function that truncates between B∞(0, 1/N) and B∞(0, 2/N)
and that we denote Bxi,1/N,2/N the Bogovskii operator on the annulus A(xi, 1/N, 2/N). The
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properties of this operator are analyzed in Appendix A. The above vector-field w̃i is well-
defined as, for i = 1, . . . ,M, there holds:

∫

A(xi,1/N,2/N)

(w(x)− w(xi)) · ∇χN(x− xi)dx

=

∫

B∞(xi,2/N)\B∞(xi,1/N)

div(χN(· − xi)(w(·)− w(xi))) ,

=

∫

∂B∞(xi,1/N)

(w(x)− w(xi)) · ndσ ,

=

∫

B∞(xi,1/N)

div(w) = 0 ,

and we can apply the Bogovskii operator to x 7→ (w(·)−w(xi)) ·∇χN(·−xi) on the annulus
A(xi, 1/N, 2/N). We note that w̃i has support in B∞(xi, 2/N) so that, as dm > 4/N, the
w̃i have disjoint supports inside TN . This yields that w̃ is indeed divergence-free and fits
the required boudary conditions. Furthermore, there holds:

‖∇w̃‖L2(F) 6

[

M
∑

i=1

‖∇w̃i‖2L2(B∞(xi,2/N))

]
1

2

.

For i ∈ {1, . . . ,M} we have by direct computations:

‖∇χN (· − xi)(w(·)− w(xi))‖2L2(B∞(xi,2/N)) .
‖w‖2W 1,∞

N3
,

‖χN (· − xi)∇(w(·)− w(xi))‖2L2(B∞(xi,2/N)) .
‖w‖2W 1,∞

N3
,

and, by applying Lemma 15:

‖∇Bxi,1/N,2/N

[

x 7→ (w(x)− w(xi)) · ∇χN(x− xi)
]

‖2L2(B∞(xi,2/N))

. ‖x 7→ (w(x)− w(xi)) · ∇χN (x− xi)‖2L2(B∞(xi,2/N))

.
‖w‖2W 1,∞

N3
.

Gathering all these inequalities in the computation of w̃ yields finally:

‖∇w̃‖L2(F) .
√
M

‖w‖W 1,∞

N
3

2

.

The variational characterization of generalized solutions to Stokes problems entails that we
have the same bound for (u−uc). At this point, we argue that the straightforward extension
of u and uc (by w and w(xi) on the BN

i respectively) satisfy (u− uc) ∈ H1
0 (T

N) ⊂ L6(TN)
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so that

‖u− uc‖L6(F) 6 ‖u− uc‖L6(TN ) . ‖∇(u− uc)‖L2(TN )

.

(

‖∇(u− uc)‖2L2(F) +M
‖w‖2W 1,∞

N3

)
1

2

.
√
M

‖w‖W 1,∞

N
3

2

.

We emphasize that, by a scaling argument, the constant deriving from the embedding
H1

0 (T
N) ⊂ L6(TN) does not depend on N so that it is not significant to our problem.

We turn to estimating uc − us. Due to the linearity of the Stokes equations, we split

uc =
M
∑

i=1

uc,i,

where uc,i is the generalized solution to Stokes problem on F with boundary conditions:
{

uc,i = w(xi) , on ∂BN
i ,

uc,i = 0 , on ∂TN ∪⋃j 6=i ∂B
N
j .

We have then

(20) ‖∇(uc − us)‖L2(F) 6

M
∑

i=1

‖∇(uc,i − UN [w(xi)](· − xi))‖L2(F).

Similarly, we expand :

us =

M
∑

i=1

Ui , where Ui(x) = UN [w(xi)](x− xi) , ∀ x ∈ R
3.

For i ∈ {1, . . . ,M} we extend uc,i by 0 on R
3 \TN and BN

j for j 6= i. The extension we still

denote by uc,i satisfies uc,i ∈ H1(R3 \ BN
i ) and is divergence-free. In particular, we have

uc,i ∈ D(R3 \BN
i ). Consequently, uc,i − Ui ∈ D(R3 \BN

i ) and:

‖∇(uc,i − Ui(· − xi))‖2L2(F) 6

∫

R3\BN
i

|∇uc,i(x)−∇Ui(x)|2dx

6

∫

R3\BN
i

|∇uc,i|2 − 2

∫

R3\BN
i

∇uc,i : ∇Ui +

∫

R3\BN
i

|∇Ui|2 .

To compute the product term, we apply that uc,i and Ui = UN [w(xi)](·−xi) have the same

trace on ∂BN
i and that Ui is a generalized solution to the Stokes problem on R

3 \BN
i . So,

integrals of the form
∫

R3\BN
i
∇Ui : ∇w (for w ∈ D(R3 \ BN

i )) depend only on the trace of

w on ∂BN
i . This entails that:

∫

R3\BN
i

∇uc,i : ∇Ui =

∫

R3\BN
i

|∇Ui|2 ,
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and we have:

(21) ‖∇(uc,i − UN (· − xi))‖2L2(F) 6

∫

R3\BN
i

|∇uc,i|2 −
∫

R3\BN
i

|∇Ui|2 .

To conclude, we find a bound from above for
∫

R3\BN
i

|∇uc,i(x)|2dx =

∫

F

|∇uc,i(x)|2dx.

As uc,i is a generalized solution to a Stokes problem on F , this can be done by constructing
a divergence-free w̄i satisfying the same boundary condition as uc,i. We define:

w̄i = χdm/4(· − xi)Ui −Bxi,dm/4,dm/2

[

x 7→ Ui(x) · ∇χdm/4(x− xi)
]

where χdm/4 := χ4/dm (with the family of truncation functions of the introduction) As
previously, we have here a divergence-free function which satisfies the right boundary con-
ditions because χdm/4(· − xi) = 1 on BN

i (since dm/4 > 1/N) and vanishes on all the other
boundaries of ∂F (since the distance between one hole center and the other holes or ∂TN

is larger than dm − 1/N > dm/2). Again, similarly as in the computation of w̃i we apply
the properties of the Bogovskii operator Bxi,dm/4,dm/2 and there exists an absolute constant
K for which:

‖∇w̄i‖2L2(F) 6

∫

R3\BN
i

|χdm/4(· − xi)∇Ui|2

+K

(
∫

A(xi,dm/4,dm/2)

|∇Ui(x)|2 + |∇χdm/2(x− xi)⊗ Ui(x)|2dx
)

As we have the same bound for uc,i, we plug the right-hand side above in (21) and get:

‖∇(uc,i − Ui)‖2L2(F) .

∫

A(xi,dm/4,dm/2)

|∇Ui(x)|2dx

+

∫

A(xi,dm/4,dm/2)

|∇χdm/4(x− xi)⊗ Ui(x)|2dx .

With the explicit decay properties for Ui (see (14)) and ∇χdm/4 we derive:
∫

A(xi,dm/4,dm/2)

(

|∇Ui(x)|2 + |∇χdm/4(x− xi)⊗ Ui(x)|2
)

dx .
‖w‖2W 1,∞

N2dm
.

Combining these bounds for i = 1, . . . ,M in (20) we get:

‖∇(uc − us)‖L2(F) 6
M‖w‖W 1,∞

N
√
dm

.

By similar arguments, we also have:

‖uc − us‖L6(F) = ‖uc − us‖L6(TN ) 6

M
∑

i=1

‖uc,i − Ui‖L6(R3\BN
i )
.
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As uc,i, Ui ∈ D(R3 \BN
i ) and uc,i, Ui share the same value on ∂BN

i , there holds uc,i −Ui ∈
D0(R

3 \BN
i ) and we may use the classical inequality (see [7, (II.6.9)]):

‖uc,i − Ui‖L6(R3\BN
i )

. ‖∇uc,i −∇Ui‖L2(R3\BN
i )

, ∀ i = 1, . . . ,M ,

(again the constant arising from this embedding does not depend on N by a standard
scaling argument). This yields again the bound:

‖(uc − us)‖L6(F) 6
M‖w‖W 1,∞

N
√
dm

,

and ends the proof of our proposition. �

3. Proof of Theorem 1 – Uniform estimates

From now on, we fix a sequence of data (vNi , hN
i )i=1,...,N associated to (BN

i )i=1,...,N that
satisfy (A0) for arbitrary N ∈ N and such that (A1)–(A5) hold true with

j ∈ L2(Ω) , ρ ∈ L∞(Ω) .

Because of assumption (A0), the existence result of the previous section applies so that
there exists a unique generalized solution uN ∈ H1(FN) to (1)-(2). In what follows, we
extend implicitly uN by its boundary values on the ∂BN

i :

uN =

{

uN , in FN ,
vNi , in BN

i , for i = 1, . . . , N .

As the BN
i do not overlap and do not meet ∂Ω, it is straightforward that these velocity-

fields yield a sequence in H1
0 (Ω) of divergence-free vector-fields. Moreover, we have the

property:

‖∇uN‖L2(FN ) = ‖∇uN‖L2(Ω).

Our target result reads:

Theorem 6. The sequence of extended generalized solutions (uN)N∈N converges weakly in
H1

0 (Ω) to ū satisfying

(B1) ū ∈ H1
0 (Ω) ,

(B2) div ū = 0 on Ω ,

(B3) for any divergence-free w ∈ C∞
c (Ω) we have:

(22)

∫

Ω

∇ū : ∇w = 6π

∫

Ω

[j − ρū] · w .

Theorem 1 is a corollary of this theorem as (B1)-(B2)-(B3) corresponds to the generalized
formulation of the Stokes-Brinkman system (3)-(4). The remainder of the paper is devoted
to the proof of this result. In this section, we prove that uN is bounded in H1

0 (Ω), extract
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a subsequence weakly converging to some ū and justify that it remains then to prove that
ū satisfies (B3). The two next sections are devoted to the computations of integrals:

Iw =

∫

Ω

∇ū : ∇w

for a fixed but arbitrary divergence-free w ∈ C∞
c (Ω).

So, we first compute uniform bounds on uN by applying the variational characterization
of solutions to the Stokes problem (10). Given N ∈ N, we set:

vN(x) =

N
∑

i=1

∇×
(

χN (x− hN
i )

2
vNi × (x− hN

i )

)

=:

N
∑

i=1

vi(x).

Then, vN ∈ C∞
c (R3) is the curl of a smooth potential vector so that div vN = 0 . Because

of assumption (A2), there exists a N0 ∈ N such that:

NdNmin > 4 , ∀N > N0.

Let N > N0 from now on. Because χN has support in B∞(0, 2/N) we have that Supp vi ⊂
B∞(hN

i , 2/N) and the (vi)i=1,...,N have disjoint supports. Because χN is 1 on B(0, 1/N) ⊂
B∞(0, 1/N) we derive further that, for i ∈ {1, . . . , N} :

vi(x) = 0 , on ∂FN ∪
⋃

j 6=i

BN
j ,

vi(x) = ∇×
(

1

2
vNi × (x− hN

i )

)

= vNi , on BN
i .

By combination, we obtain:

vN(x) = vNi , on BN
i , ∀ i = 1, . . . , N ,

vN(x) = 0 , on ∂FN .

We have then by Theorem 3 that:

(23) ‖∇uN‖L2(FN ) 6 ‖∇vN‖L2(FN ) =

(

N
∑

i=1

‖∇vi‖2L2(R3)

)
1

2

.

For arbitrary N ∈ N and i ∈ {1, . . . , N}, there holds:

|∇vi(x)| . |∇χN(x− hN
i )||vNi |+ |∇2χN (x− hN

i )||vNi ||x− hN
i |

. N
(

|∇χ(N(x− hN
i ))|+ |∇2χ(N(x− hN

i ))|
)

|vNi | .
Consequently, by a standard scaling argument:

∫

R3

|∇vi(x)|2dx .
1

N

(
∫

R3

|∇χ(|y|)|2 + |∇2χ(|y|)|2dy
)

|vNi |2 .
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Then, for N > N0, we combine the previous computation into:

‖∇vN‖2L2(FN ) .
1

N

N
∑

i=1

|vNi |2 .

Note that χ is fixed a priori so that all constants depending on χ may be considered as
non-significant. Assumption (A1) then yields that there exists E∞ < ∞ so that:

(24)

(

1

N

N
∑

i=1

|vNi |2
)

1

2

6 E∞ , ∀N > N0.

By (23) the norm of uN in H1
0 (Ω) is also bounded by E∞. We keep the symbol E∞ to denote

the above bound in what follows.

As uN is bounded in H1
0 (Ω), it is weakly-compact and we denote by ū a cluster-point for

the weak topology. It is straightforward that ū satisfies div ū = 0 on Ω. So ū satisfies (B1)
and (B2) of our theorem. The remainder of the proof consists in showing that it satisfies
(B3) also. Indeed, we remark that ρ is the density of a probability measure. Hence ρ > 0
on Ω. By a simple energy estimate one may then show that, given j ∈ L2(Ω), there exists
at most one ū ∈ H1

0 (Ω) that satisfies simultaneously (B1)-(B2)-(B3). A direct corollary
of this remark is that, if we prove that (B3) is satisfied by ū we have uniqueness of the
possible cluster point to the sequence (uN)N∈N and the whole sequence converges to this ū
in H1

0 (Ω)− w.

4. Proof of Theorem 1 – Computations for finite N

From now on, we assume that uN converges weakly to ū in H1
0 (Ω) (we do not relabel the

subsequence for simplicity) and we fix a divergence-free w ∈ C∞
c (Ω). We aim to compute

the scalar product:
∫

Ω

∇ū : ∇w.

By definition, we have:
∫

Ω

∇ū : ∇w = lim
N→∞

IN with IN =

∫

Ω

∇uN : ∇w , ∀N ∈ N .

As classical, we want to apply the equation satisfied by uN in order to compute IN in a
way that makes possible to use the assumption on the convergence of the empiric measures
SN . To do this, we fix an integer δ > 4, we construct, for fixed N, a suitable test-function
ws (depending actually on δ and N) so that

• we make an error of order 1/
√
δ by replacing w with ws in IN ,

• replacing w with ws in IN we prove that,
∫

Ω

∇uN : ∇ws → 6π

∫

Ω

(j − ρū) · w + error ,

when N → ∞, with an error of size 1/
√
δ.
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As δ can be taken arbitrary large, this will yield the expected result.

We explain now the construction of ws. The integer δ > 4 is fixed in the remainder of
this section. For a given N ∈ N, applying the construction in Appendix B, we obtain
(TN

κ )κ∈Z3 a covering of R3 with cubes of width 1/N1/3 such that denoting:

ZN
δ :=

{

i ∈ {1, . . . , N} s.t. dist

(

hN
i ,
⋃

κ∈Z3

∂TN
κ

)

<
1

δN1/3

}

,

there holds:

(25)
1

N

∑

i∈ZN
δ

(1 + |vNi |2) 6 12

δ

1

N

N
∑

i=1

(1 + |vNi |2) 6 12(1 + |E∞|2)
δ

.

Moreover, for N > Nw, for a Nw depending only on w and Ω, keeping only the indices
KN such that TN

κ intersect Supp(w), we obtain a covering (TN
κ )κ∈KN of Supp(w) such that

all the cubes are included in Ω (see the appendix for more details). We assume N > Nw

from now on. We emphasize that we do not make precise the set of indices KN . The only
relevant property to our computations is that

(26) #KN 6 N |Ω| .
This inequality is derived by remarking that the TN

κ are disjoint cubes of volume 1/N that
are all included in Ω. Associated to this covering, we introduce the following notations.
For arbitrary κ ∈ KN , we set

IN
κ := {i ∈ {1, . . . , N} s.t. hN

i ∈ TN
κ } , MN

κ := #IN
κ ,

and IN :=
⋃

κ∈KN IN
κ . Because of assumption (A3), there exists M∞ ∈ N such that:

(27) MN
κ 6 M∞ , ∀κ ∈ KN , ∀N ∈ N .

In brief, the set of indices {1, . . . , N} contains the three important subsets:

• the subset IN contains all the indices that are ”activated” in our computations,
• the subset ZN

δ contains the indices that are close to boundaries of the partition,
• the subset {1, . . . , N} \ IN contains indices that are not activated.

We emphasize that ZN
δ contains indices that can be in both IN and its complement.

We construct then ws piecewisely on the covering of Supp(w). Given κ ∈ KN , we set:

(28) ws
κ(x) =

∑

i∈IN
κ \ZN

δ

UN [w(hN
i )](x− hN

i ) , ∀ x ∈ R
3 ,

and
ws =

∑

κ∈KN

ws
κ1TN

κ

We note that ws /∈ H1
0 (FN) because of jumps at interfaces ∂TN

κ . It will be sufficient for our

purpose that ws ∈ H1(T̊N
κ ) for arbitrary κ ∈ KN . In a cube T̊N

κ the test function ws is thus
a combination of stokeslets centered in the hN

i that are contained in the cell. We delete
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from this combination the centers that are too close to ∂TN
κ (namely 1/(δN1/3) close to

∂TN
κ ). We proceed by proving that we make a small error by replacing w with ws in IN :

Proposition 7. There exists K ∈ (0,∞) and Nδ ∈ N depending only on δ and w for
which, given N > Nδ, there holds:

(29)

∣

∣

∣

∣

∣

∫

Ω

∇uN : ∇w −
∑

κ∈KN

∫

TN
κ

∇uN : ∇ws

∣

∣

∣

∣

∣

6 K

(

1√
δ
+

1

N
1

6

+
1√

Ndmin

)

.

Proof. We proceed in several steps by introducing different intermediate test-functions. In
this proof, we use symbol . to denote inequalities with constants that do not depend on
N and δ.

First step: Construction of auxiliary test-functions. For arbitrary κ ∈ KN , we

consider the Stokes problem on T̊N
κ \⋃i∈IN

κ \ZN
δ
BN

i with boundary conditions:

(30)

{

u(x) = w(x) , on ∂BN
i for i ∈ IN

κ \ ZN
δ ,

u(x) = 0 , on ∂TN
κ .

We note that this problem enters the framework of Section 2.2. Indeed, let denote:

dκm := min
i∈IN

κ \ZN
δ

{

dist(hN
i , ∂T

N
κ ) ,min

j 6=i
|hN

i − hN
j |
}

Because we deleted the indices of ZN
δ , we have that:

dκm > min

(

dNmin,
1

δN
1

3

)

.

In particular, for N sufficiently large depending only on δ ( N > Nδ = max(N0, (4δ)
3/2))

the dκm satisfy assumption (16) uniformy in κ ∈ KN . We remark that making Nδ larger
than δ3, we have also that, for N > Nδ, there holds:

1

δN
1

3

>
1

N
2

3

.

Consequently, we apply below that not only assumption (16) is satisfied, but also:

(31)
1

Ndκm
6 max

(

1

NdNmin

,
1

N
1

3

)

, ∀N > Nδ .

So, for N > Nδ the arguments developed in Section 2.2 entail that there exists a unique

generalized solution to the Stokes problem on T̊N
κ \⋃i∈IN

κ \ZN
δ
BN

i with boundary condition

(30). We denote this solution by w̄κ. We keep notation w̄κ to denote its extension to Ω (by

w on the holes and by 0 outside T̊N
κ ). As T̊N

κ ⊂ Ω, we obtain a divergence-free w̄κ ∈ H1
0 (Ω).

We then add the w̄κ into:

w̄ =
∑

κ∈KN

w̄κ .

To summarize, this vector field satisfies:
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• w̄ ∈ H1
0 (Ω),

• div w̄ = 0 on Ω,
• w̄ = w(x) on BN

i for all i ∈ IN \ ZN
δ .

We correct now the value of w̄ on the BN
i when i ∈ ZN

δ ∪ ({1, . . . , N} \ IN ) in order that
it fits the same boundary conditions as w on FN . We set:

w̃ =
∑

i∈ZN
δ

[

χN (· − hN
i )w −BhN

i ,1/N,2/N [x 7→ w(x) · ∇χN(x− hN
i )]
]

+
∏

i∈ZN
δ

(1− χN (· − hN
i ))w̄ +

∑

i∈ZN
δ

BhN
i ,1/N,2/N [x 7→ w̄(x) · ∇χN(x− hN

i )] .

Briefly, one may interpret the construction of w̃ as follows. The sum on the first line
creates a divergence-free lifiting of the boundary conditions prescribed by w on the ∂BN

i

for i ∈ ZN
δ . On the second line is a divergence-free truncation of w̄ that creates a vector-

field vanishing on ∪i∈ZN
δ
BN

i . We remark that this vector-field is well defined because, by
similar computations as we did in the proof of Proposition 5, we have:
∫

A(hN
i ,1/N,2/N)

w̄(x)·∇χN (x−hN
i )dx =

∫

A(hN
i ,1/N,2/N)

w(x)·∇χN(x−hN
i )dx = 0 , ∀ i ∈ ZN

δ .

Hence, we may apply the Bogovskii operator which lifts the divergence term in the brackets
with a vector-field vanishing on the boundaries of A(hN

i , 1/N, 2/N) that we extend by 0 on
R

3 \A(hN
i , 1/N, 2/N). When i ∈ {1, . . . , N}\ (IN ∪ZN

δ ) we have that hN
i is in the 1/δN1/3

core of the cube TN
κ that contains him. Moreover the index of this cube is not in KN . As

N > Nδ, we have then B(hN
i , 1/N) ⊂ TN

κ where there already holds that w̄(x) = w(x) = 0.
Consequently, there is nothing to correct on these holes. This is the reason why they do
not appear in the above construction.

Direct computations show that div w̃ = 0 on Ω. On the other hand, because N >
N0, the family of balls (B∞(hN

i , 2/N))i=1,...,N are disjoint and included in Ω. Hence, the
truncations that we perform in w̃ do not perturb the value of w̄ neither on the BN

i for
i ∈ {1, . . . , N} \ ZN

δ nor on ∂Ω. This remark entails that

• for i ∈ IN \ ZN
δ :

w̃(x) = w̄(x) = w(x) , on BN
i ,

• for i ∈ ZN
δ :

w̃(x) = χN(x− hN
i )w(x) = w(x) , on BN

i ,

• for i ∈ {1, . . . , N} \ (IN ∪ ZN
δ ):

w̃(x) = w̄(x) = 0 = w(x) , on BN
i ,

• w(x) = 0 , on ∂Ω.



22 M. HILLAIRET

Consequently, by restriction, there holds that w − w̃ ∈ H1
0 (FN) is divergence-free. As

uN is a generalized solution to a Stokes problem on FN we have thus:
∫

FN

∇uN : ∇(w − w̃) = 0.

We rewrite this identity as follows:

(32)

∫

Ω

∇uN : ∇w =
∑

κ∈KN

∫

TN
κ

∇uN : ∇ws − E1 −E2 ,

with :

E1 =
∑

κ∈KN

∫

TN
κ

∇uN : ∇(ws
κ − w̄κ) ,

E2 =

∫

Ω

∇uN : ∇(w̄ − w̃) .

Second step: Control of error term E1. For arbitrary κ ∈ KN , we apply Proposition
5 to w̄κ and its corresponding combination of stokeslets (namely, the restriction ws

κ of ws

to T̊N
κ ). By construction, dκm satisfies the requirement dκm > 4/N for N > Nδ. We have

thus:

‖∇(ws
κ − w̄κ)‖L2(TN

κ ) .

√

MN
κ

N

(

1

N
+

√

MN
κ

Ndκm

)

‖w‖W 1,∞ .

Note here that #(IN
κ \ ZN

δ ) 6 #IN
κ = MN

κ . Consequently, introducing this last bound in
the computation of E1 and applying a standard Cauchy-Schwarz inequality together with
(26)-(27) yields:

|E1| .
∑

κ∈KN

‖∇uN‖L2(TN
κ )

√

MN
κ

N

(

1

N
+

√

MN
κ

Ndκm

)

‖w‖W 1,∞ ,

.

(

∑

κ∈KN

‖∇uN‖2L2(TN
κ )

)
1

2 √
M∞

(

1

N
+

√

M∞

Ndκm

)

‖w‖W 1,∞ .

Here, we note again that, by construction, the TN
κ are disjoint and included in Ω so that

(

∑

κ∈KN

‖∇uN‖2L2(TN
κ )

)
1

2

6 ‖∇uN‖L2(Ω).

Applying the uniform bound for uN in H1
0 (Ω) we conclude then that:

|E1| . E∞

(√
M∞

N
+

M∞

√

Ndκm

)

‖w‖W 1,∞ ,
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and, introducing (31), that:

(33) |E1| . E∞M∞

(

1

N
1

6

+
1

√

NdNmin

)

‖w‖W 1,∞ .

Second step: Control of error term E2. As for the second term, we replace w̃ by its
explicit construction. We remark that because the supports of the (χN(· − hN

i ))i∈{1,...,N}

are disjoint (as dNmin > 4/N for N > N0) we have:

1−
∏

i∈ZN
δ

(1− χN(x− hN
i )) =

∑

i∈ZN
δ

χN (x− hN
i ) , ∀ x ∈ Ω.

Consequently, we split:

w̄ − w̃ =
∑

i∈ZN
δ

[

χN(· − hN
i )w̄ −BhN

i ,1/N,2/N [x 7→ w̄(x) · ∇χN(x− hN
i )]
]

−
∑

i∈ZN
δ

[

χN(· − hN
i )w −BhN

i ,1/N,2/N [x 7→ w(x) · ∇χN(x− hN
i )]
]

.

By direct computations and application of Lemma 15 to the Bogovskii operatorBhN
i ,1/N,2/N ,

we find Ei
2 ∈ L2(B∞(hN

i , 2/N)), i ∈ ZN
δ , for which:

∇ (w̄ − w̃) =
∑

i∈ZN
δ

Ei
21B∞(hN

i ,2/N) ,

and such that:

‖Ei
2‖2L2(B∞(hN

i ,2/N)) .
1

N
‖w‖2W 1,∞ +N2‖w̄‖2L2(B∞(hN

i ,2/N)) + ‖∇w̄‖2L2(B∞(hN
i ,2/N)) .

Introducing these bounds in the computation of E2, and reproducing similar computations
as for E1, we derive:

|E2| 6
∑

i∈ZN
δ

∫

B∞(hN
i ,2/N)

|∇uN ||Ei
2| ,

6





∑

i∈ZN
δ

‖∇uN‖2L2(B∞(hN
i ,2/N))





1

2





∑

i∈ZN
δ

‖Ei
2‖2L2(B∞(hN

i ,2/N)))





1

2

,

. E∞





∑

i∈ZN
δ

‖Ei
2‖2L2(B∞(hN

i ,2/N)))





1

2

,
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where we applied again that the (B∞(hN
i , 2/N))i∈ZN

δ
are disjoint and cover a subset of Ω.

To complete the proof, it remains to compute:

∑

i∈ZN
δ

‖Ei
2‖2L2(B∞(hN

i ,2/N))

6
∑

i∈ZN
δ

1

N
‖w‖2W 1,∞ +N2‖w̄‖2L2(B∞(hN

i ,2/N)) + ‖∇w̄‖2L2(B∞(hN
i ,2/N)) .

We recall that, by choice of the covering (see (25)), we have:

(34)
∑

i∈ZN
δ

1

N
.

1

δ
(1 + |E∞|2).

Consequently, there holds:

∑

i∈ZN
δ

1

N
‖w‖2W 1,∞ .

‖w‖2W 1,∞

δ
(1 + |E∞|2) .

To compute the terms depending on w̄ we apply again Proposition 5 in order to write
w̄ = ws + l.o.t. To this end, we remark that given i ∈ ZN

δ we have that hN
i is in the

1/(δN1/3)-neighborhood of some ∂TN
κ then either B∞(hN

i , 2/N) ⊂ TN
κ or B∞(hN

i , 2/N)
intersects other cubes. In that second case, as the diameter of B∞(hN

i , 2/N) is much
smaller than the one of a cube TN

κ , we have that B∞(hN
i , 2/N) may intersect at most

2 ”successive” cubes in the covering of R3, in all directions, and thus at most 8 cubes.
Consequently:

‖w̄‖2L2(B∞(hN
i ,2/N)) 6 8 sup

κ∈KN

‖w̄κ‖2L2(B∞(hN
i ,2/N)∩TN

κ ) ,

‖∇w̄‖2L2(B∞(hN
i ,2/N)) 6 8 sup

κ∈KN

‖∇w̄κ‖2L2(B∞(hN
i ,2/N)∩TN

κ ) .

As w̄ = 0 on any cube TN
κ whose index κ /∈ KN , the corresponding indices κ do not appear

in these latter supremums. If B∞(hN
i , 2/N) ∩ TN

κ 6= ∅ then we may introduce ws
κ

‖∇w̄κ‖2L2(B∞(hN
i ,2/N)∩TN

κ ) . ‖∇(w̄κ − ws
κ)‖2L2(TN

κ ) + ‖∇ws
κ‖2L2(B∞(hN

i ,2/N)) ,

N2‖w̄κ‖2L2(B∞(hN
i ,2/N)∩TN

κ ) . N2‖(w̄κ − ws
κ)‖2L2(B∞(hN

i ,2/N)∩ TN
κ ) +N2‖ws

κ‖2L2(B∞(hN
i ,2/N)) .

We compute the terms involving ws
κ by using the explicit formula (28) and the expansion

of stokeslet (14). Remarking that for N > N0 the distance between hN
j and B∞(hN

i , 2/N)

is larger than dNmin/2 (for arbitrary j ∈ IN
κ \ZN

δ ) and recalling that there are at most MN
κ

indices in IN
κ \ ZN

δ we derive the bound:

|ws
κ(x)| .

MN
κ

NdNmin

‖w‖W 1,∞ , |∇ws
κ(x)| .

MN
κ

N |dNmin|2
‖w‖W 1,∞ , ∀ x ∈ B∞(hN

i , 2/N) ,
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and consequently:

‖∇ws
κ‖2L2(B∞(hN

i ,2/N)) .
|MN

κ |2
N5|dNmin|4

‖w‖2W 1,∞ .
|M∞|2
N

‖w‖2W 1,∞ ,

N2‖ws
κ‖L2(B∞(hN

i ,2/N)) .
|MN

κ |2
N3|dNmin|2

‖w‖2W 1,∞ .
|M∞|2
N

‖w‖2W 1,∞ .

where we appliedNdNmin > 4 and (27). For the remainder terms, we apply again Proposition
5 yielding:

‖∇(w̄κ − ws
κ)‖2L2(TN

κ ) .
MN

κ

N

(

1

N
+

√

MN
κ

Ndκm

)2

‖w‖2W 1,∞ .
|M∞|2
N

‖w‖2W 1,∞ ,

and, by combining Hölder inequality together with the bound in L6(TN
κ ) obtained in Propo-

sition 5:

N2‖(w̄κ − ws
κ)‖2L2(B∞(hN

i ,2/N)∩TN
κ ) 6 N2|B∞(hN

i , 2/N)| 23‖(w̄κ − ws
κ)‖2L6(B∞(hN

i ,2/N)∩TN
κ ) ,

. ‖(w̄κ − ws
κ)‖2L6(T̊N

κ \
⋃

j∈IN
κ \ZN

δ
BN

j )
,

.
MN

κ

N

(

1

N
+

√

MN
κ

Ndκm

)2

‖w‖2W 1,∞ .
|M∞|2
N

‖w‖2W 1,∞ .

Gathering these computations and applying (34), we obtain that for N > Nδ:

∑

i∈ZN
δ

1

N
‖w‖2W 1,∞ +N2‖w̄‖2L2(B∞(hN

i ,2/N)) + ‖∇w̄‖2L2(B∞(hN
i ,2/N))

.
1

δ
‖w‖2W 1,∞|M∞|2(1 + |E∞|2),

so that:

(35) |E2| .
M∞

√
δ
‖w‖W 1,∞(1 + |E∞|2) 3

2 .

Combining (33) and (35) in (32), we obtain the expected result. �

5. Proof of Theorem 1 – Asymptotics N → ∞
In this section, we end the proof of Theorem 1 keeping the notations introduced in the

previous section. A straightforward corollary of Proposition 7 reads :

Corollary 8. There exists K ∈ (0,∞) such that for arbitrary δ > 4, there holds:

lim sup
N→∞

∣

∣

∣

∣

∣

∫

Ω

∇uN : ∇w −
∑

κ∈IN

∫

TN
κ

∇uN : ∇ws

∣

∣

∣

∣

∣

6
K√
δ
.

So in this section, we prove the following proposition:
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Proposition 9. There exists K ∈ (0,∞) such that, for arbitrary δ > 4, there holds:

lim sup
N→∞

∣

∣

∣

∣

∣

∑

κ∈IN

∫

TN
κ

∇uN : ∇ws − 6π

∫

Ω

(j − ρū) · w
∣

∣

∣

∣

∣

6
K√
δ
.

This will end the proof of Theorem 1. Indeed, combining the above corollary and propo-
sition, we obtain that there exists K which does not depend on δ such that, for arbitrary
δ > 4:

lim sup
N→∞

∣

∣

∣

∣

∫

Ω

∇uN : ∇w − 6π

∫

Ω

(j − ρū) · w
∣

∣

∣

∣

6
K√
δ
.

As

lim
N→∞

∫

Ω

∇uN : ∇w =

∫

Ω

∇ū : ∇w ,

and δ can be made arbitrary large, this entails that

∫

Ω

∇ū : ∇w = 6π

∫

Ω

(j − ρū) · w ,

and we obtain that ū satisfies (B3).

We give now a proof of Proposition 9. From now on δ is fixed larger than 4 and we
assume, with the conventions of the previous section, that:

N > max(N0, Nw, Nδ) .

For such a N, we denote:

ĨN =
∑

κ∈KN

∫

TN
κ

∇uN : ∇ws =
∑

κ∈KN

∫

TN
κ

∇uN : ∇ws
κ.

First, let fix κ ∈ KN and simplify

ĨNκ :=

∫

TN
κ

∇uN : ∇ws
κ .

By definition, we have that:

ws
κ(x) =

∑

i∈IN
κ \ZN

δ

UN [w(hN
i )](x− hN

i ) , ∀ x ∈ R
3 ,
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so that, introducing the associated pressures x 7→ PN [w(hN
i )](x − hN

i ), we obtain (recall
that uN is divergence-free and constant on the BN

i ):

ĨNκ =

∫

TN
κ

∇uN : ∇ws
κ ,

=
∑

i∈IN
κ \ZN

δ

∫

TN
κ \BN

i

∇uN(x) : [∇UN [w(hN
i )](x− hN

i )− PN [w(hN
i )](x− hN

i )I3]dx ,

=
∑

i∈IN
κ \ZN

δ

(

∫

∂BN
i

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· vNi dσ

+

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· uN(x)dσ

)

,

=
∑

i∈IN
κ \ZN

δ

INi,int + INi,ext ,

where, we denoted:

INi,int =

∫

∂BN
i

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· vNi dσ ,

INi,ext :=

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· uN(x)dσ .

Recalling that (UN , PN) is the solution to the Stokes problem in the exterior of a ball of
radius 1/N , and that vNi is constant on ∂BN

i , we have an explicit value for the interior
integral whatever the value of the index i (see (15)):

INi,int =
6π

N
w(hN

i ) · vNi .

For the other term, we apply that the diameter of TN
κ is small so that we may approximate

uN on ∂TN
κ by a constant. Namely, we choose:

ūN
κ =

1

|[TN
κ ]2δ|

∫

[TN
κ ]2δ

uN(x)dx,

where [TN
κ ]2δ is the 1/(2δN1/3) neighborhood of ∂TN

κ inside T̊N
κ . At this point, we remark

that we have actually two notations for the same quantity. Indeed, a simple draw shows
that introducing xN

κ the center of TN
κ , we have:

T̊N
κ = B∞

(

xN
κ ,

1

2N1/3

)

while [TN
κ ]2δ = A

(

xN
κ ,

1− 1/δ

2N1/3
,

1

2N1/3

)

.
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So, we replace:

INi,ext =

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· ūN
κ dσ

)

+

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

· (uN(x)− ūN
κ )dσ .

For the first term on the right-hand side of this last identity, we apply that the flux
through hypersurfaces of the normal stress tensor is conserved by solutions to the Stokes
problem so that, applying (15), we have:

∫

∂TN
κ

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

dσ

)

= −
∫

∂BN
i

{

∂nU
N [w(hN

i )](x− hN
i )− PN [w(hN

i )](x− hN
i )n

}

dσ

= −6π

N
w(hN

i ).

Finally, we obtain:

(36) ĨNκ =
6π

N

∑

i∈IN
κ \ZN

δ

(w(hN
i ) · vNi − w(hN

i ) · ūN
κ ) + Errκ

with:

Errκ =

∫

∂TN
κ







∑

i∈IN
κ \ZN

δ

∂nU
N [w(hN

i )](· − hN
i )− PN [w(hN

i )](· − hN
i )n







· (uN − ūN
κ )dσ .

We control this error term with the following lemma:

Lemma 10. There exists a constant Cδ depending only on δ such that,

|Errκ| 6
Cδ

N
5

6

‖∇uN‖L2(TN
κ ) , ∀κ ∈ KN .

Proof. For N > max(N0, Nw, Nδ), we have that

[T κ
N ]2δ ⊂ TN

κ \
⋃

i∈IN
κ \ZN

δ

BN
i .

Indeed, BN
i = B(hN

i , 1/N) and, for i ∈ IN
κ \ ZN

δ we have that hN
i is 1/(δN1/3) far from

∂TN
κ . These centers are thus 1/(2δN1/3) far from [T κ

N ]2δ which is larger than 1/N since
N > (4δ)3/2. In particular all the stokeslets in ws

κ satisfy:

(37)

{

∆UN [w(hN
i )](x− hN

i )−∇PN [w(hN
i )](x− hN

i ) = 0 ,

divUN [w(hN
i )](x− hN

i ) = 0 ,
on [T κ

N ]2δ .
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Consequently, we split

∂[T κ
N ]2δ = ∂TN

κ ∪ ∂TN
κ,δ

where

∂TN
κ,δ = {x ∈ TN

κ s.t. dist(x, ∂TN
κ ) = 1/(2δN1/3)} .

We remark then that for any divergence-free v ∈ H1([TN
κ ]2δ) satisfying

{

v = uN − ūN
κ , on ∂TN

κ ,

v = 0 , on ∂TN
κ,δ ,

integrating by parts Errκ and applying (37), we have:

Errκ =

∫

[TN
κ ]2δ







∑

i∈IN
κ \ZN

δ

∇UN [w(hN
i )](· − hN

i )







: ∇v ,

so that:

(38) |Errκ| 6







∑

i∈IN
κ \ZN

δ

‖∇UN [w(hN
i )](· − hN

i )‖L2([TN
κ ]2δ)







‖∇v‖L2([TN
κ ]2δ) .

Let choose a suitable v in order to apply this estimate. We recall that we introduced xN
κ

the center of TN
κ and that we remarked that

TN
κ = B∞

(

xN
κ ,

1

2N1/3

)

, [TN
κ ]2δ = A

(

xN
κ ,

(1− 1/δ)

2N1/3
,

1

2N1/3

)

.

So, we introduce ζδ ∈ C∞(R3) such that

ζδ(x) = 0 in B∞

(

0,
1− 1/δ

2

)

and ζδ(x) = 1 outside B∞

(

0,
1

2

)

and we set

v(x) = ζδ(N
1/3(x− xN

κ ))(u
N(x)− ūN

κ )

−BxN
κ ,(1−1/δ)/(2N1/3),1/(2N1/3)[x 7→ (uN(x)− ūN

κ ) · ∇[ζδ(N
1/3(x− xN

κ ))]] .

Again v is well-defined as one shows by direct computations that the argument of the
Bogovskii operator has mean zero onA(xN

κ , (1−1/δ)/(2N1/3), 1/(2N1/3)). Applying Lemma
15, we have then that there exists a constant Cδ depending only on δ for which:

‖∇v‖L2([TN
κ ]2δ) 6 Cδ

[

‖∇uN‖L2([TN
κ ]2δ) +N

1

3‖uN(x)− ūN
κ ‖L2([TN

κ ]2δ)

]

.

Here we note that the ūN
κ is exactly the mean of uN on [TN

κ ]2δ. Consequently, applying the
Poincaré-Wirtinger inequality in the annulus [TN

κ ]2δ with the remark on the best constant
as in Lemma 13 we obtain finally that:

(39) ‖∇v‖L2([TN
κ ]2δ) 6 Cδ‖∇uN‖L2([TN

κ ]2δ) .
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As for the stokeslet, we make again the remark that for any i ∈ IN
κ \ ZN

δ the minimum
distance between hN

i and [TN
κ ]2δ is larger than 1/(2δN1/3). Hence, applying the expansion

(14) of the stokeslet UN [w(hN
i )] we obtain that

‖∇UN [w(hN
i )](· − hN

i )‖L2([TN
κ ]2δ) 6

(
∫ ∞

1/(2δN1/3)

dr

N2r2

)
1

2

|w(hN
i )|

6

√
2δ

N
5

6

|w(hN
i )| .

This entails that:

(40)
∑

i∈IN
κ \ZN

δ

‖∇UN [w(hN
i )](· − hN

i )‖L2([TN
κ ]2δ) 6

√
2δMN

κ

N
5

6

‖w‖L∞ .

Combining (39) and (40) in (38) yields the expected result. �

Summing (36) over κ, we obtain that:

ĨN =
6π

N

∑

κ∈KN

∑

i∈IN
κ \ZN

δ

(w(hN
i ) · vNi − w(hN

i ) · ūN
κ ) + Err

=
6π

N

∑

i∈IN\ZN
δ

w(hN
i ) · vNi − 6π

N

∑

κ∈KN

∑

i∈IN
κ \ZN

δ

w(hN
i ) · ūN

κ + Err.(41)

where
Err =

∑

κ∈KN

Errκ.

Hence, applying Lemma 10, a Cauchy-Schwarz inequality and remarking again that the
(TN

κ )κ∈KN form a partition of a subset of Ω with a number of elements satisfying (26), we
have:

(42) |Err| 6 Cδ

∑

κ∈KN

‖∇uN‖L2(TN
κ )

N5/6
6

Cδ

N
1

3

‖∇uN‖L2(Ω) 6
CδE∞

N
1

3

.

So the asymptotics of ĨN is given by the two first terms on the right-hand side of (41). We
make precise these asymptotics in the two following lemmas:

Lemma 11. There exists a constant K independent of δ for which:

lim sup
N→∞

∣

∣

∣

∣

∣

∣

6π

N

∑

i∈IN\ZN
δ

w(hN
i ) · vNi − 6π

∫

Ω

j(x) · w(x)dx

∣

∣

∣

∣

∣

∣

6
K

δ
.

Proof. As w ∈ C∞
c (Ω) and (TN

κ )κ∈KN is a covering of Supp(w) we have by assumption (A5)
that:

∫

Ω

j(x) · w(x)dx = lim
N→∞

N
∑

i=1

w(hN
i ) · vNi = lim

N→∞

∑

i∈IN

w(hN
i ) · vNi .
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Hence, our proof reduces to find a uniform bound on
∑

i∈IN

w(hN
i ) · vNi −

∑

i∈IN\ZN
δ

w(hN
i ) · vNi =

∑

i∈ZN
δ

w(hN
i ) · vNi .

However, for large N, there holds:
∣

∣

∣

∣

∣

∣

1

N

∑

i∈ZN
δ

w(hN
i ) · vNi

∣

∣

∣

∣

∣

∣

6





1

N

∑

i∈ZN
δ

|vNi |2




1

2





1

N

∑

i∈ZN
δ

|w(hN
i )|2





1

2

.

Here, we apply (25) that has guided our choice for the covering (TN
κ )κ∈KN :





1

N

∑

i∈ZN
δ

|vNi |2


 6
12

δ

(

1 + |E∞|2
)

,





1

N

∑

i∈ZN
δ

|w(hN
i )|2



 6
12

δ

(

1 + |E∞|2
)

‖w‖2L∞ .

Combining these two estimates, we obtain:

lim sup
N→∞

∣

∣

∣

∣

∣

∣

1

N

∑

i∈ZN
δ

w(hN
i ) · vNi

∣

∣

∣

∣

∣

∣

6
12

δ

(

1 + |E∞|2
)

‖w‖L∞ .

�

Lemma 12. There exists a constant K independent of δ for which:

lim sup
N→∞

∣

∣

∣

∣

∣

∣

6π

N

∑

κ∈KN

∑

i∈IN
κ \ZN

δ

w(hN
i ) · ūN

κ − 6π

∫

Ω

ρ(x)ū(x) · w(x)dx

∣

∣

∣

∣

∣

∣

6
K√
δ
‖w‖L∞ .

Proof. As in the previous proof, let first complete the sum by reintroducing the ZN
δ indices:

(43)
1

N

∑

κ∈KN

∑

i∈IN
κ \ZN

δ

w(hN
i ) · ūN

κ =
1

N

∑

κ∈KN

∑

i∈IN
κ

w(hN
i ) · ūN

κ + ẼrrN

where:

ẼrrN =
1

N

∑

κ∈KN

∑

i∈IN
κ ∩ZN

δ

w(hN
i ) · ūN

κ .

For the first term on the right-hand side of (43), we remark that:

1

N

∑

κ∈KN

∑

i∈IN
κ

w(hN
i ) · ūN

κ =

(

1−
(

1− 1

δ

)3
)−1

∑

κ∈KN

∫

[TN
κ ]2δ





∑

i∈IN
κ

w(hN
i )



 · uN .



32 M. HILLAIRET

So, we introduce:

σN =

(

1−
(

1− 1

δ

)3
)−1

∑

κ∈KN





∑

i∈IN
κ

w(hN
i )



 1[TN
κ ]2δ ,

for which:
1

N

∑

κ∈KN

∑

i∈IN
κ

w(hN
i ) · ūN

κ =

∫

Ω

σN(x) · uN(x)dx.

On the one-hand, we note that:

‖σN‖L1(Ω) 6
1

N

∑

κ∈KN

MN
κ ‖w‖L∞ ,

where
∑

κ∈KN MN
κ 6 N, so that:

‖σN‖L1(Ω) 6 ‖w‖L∞ .

Complementarily, because of assumption (A3), we also have :

‖σN‖L∞(Ω) 6

(

1−
(

1− 1

δ

)3
)−1

sup
κ∈KN

MN
κ ‖w‖L∞

6

(

1−
(

1− 1

δ

)3
)−1

M∞‖w‖L∞ ,

and σN is bounded in all Lq-spaces.

On the other hand, for any v ∈ C∞
c (Ω) we have

∫

Ω

σN(x) · v(x)dx =
1

N

∑

κ∈KN

∑

i∈IN
κ

w(hN
i ) · v̄Nκ

with

v̄Nκ =
1

|[T κ
N ]2δ|

∫

[Tκ
N ]2δ

v(x)dx.

We remark that, for any i ∈ IN
κ , hN

i is inside TN
κ whose diameter is 1/N1/3. This entails:

∣

∣v̄Nκ − v(hN
i )
∣

∣ .
1

N1/3
‖∇v‖L∞ .

Gathering these identities for all indices i in all the cubes TN
κ , we infer :

∣

∣

∣

∣

∣

∫

Ω

σN (x) · v(x)dx− 1

N

∑

i∈IN

w(hN
i ) · v(hN

i )

∣

∣

∣

∣

∣

.
1

N1/3
‖∇v‖L∞‖w‖L∞ .

Consequently, assumption (A4) implies that:

lim
N→∞

∫

Ω

σN (x) · v(x)dx =

∫

Ω

ρ(x)w(x) · v(x)dx ,
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and σN ⇀ ρw weakly in Lq(Ω) for arbitrary q ∈ (1,∞). Combining then the weak
convergence of σN in L2(Ω) and the strong convergence of uN in L2(Ω) (up to the extraction
of a subsequence), we have:

lim
N→∞

∫

Ω

σN · uN =

∫

Ω

ρw · ū.

As for the remainder term, we introduce:

σ̃N =

(

1−
(

1− 1

δ

)3
)−1

∑

κ∈KN





∑

i∈IN
κ ∩ZN

δ

|w(hN
i )|



1[TN
κ ]2δ .

so that:

|ẼrrN | 6
∫

Ω

σ̃N (x)|uN(x)|dx .

With similar arguments as in the previous computations, we have, applying (25):

‖σ̃N‖L1(Ω) 6
1

N
#ZN

δ ‖w‖L∞ 6
1

δ
‖w‖L∞(1 + |E∞|2).

Furthermore, we have:
‖σ̃N‖L∞(Ω) . δM∞‖w‖L∞ .

Consequently, by interpolation, we obtain:

‖σ̃N‖L4/3(Ω) .
|M∞|1/4√

δ
‖w‖L∞(1 + |E∞|2) 3

4 .

As uN is bounded in L4(Ω) by sobolev embedding, this yields that:

|ẼrrN | . |M∞|1/4√
δ

‖w‖L∞(1 + |E∞|2) 7

4 , ∀N ∈ N,

and there exists a constant K depending only on E∞,M∞ and ‖w‖L∞ for which:

lim sup
N→∞

|ẼrrN | 6 K√
δ
.

This ends the proof. �

Appendix A. Auxiliary technical lemmas

We recall here several standard lemmas that help in the above proofs.

First, we recall the Poincaré-Wirtinger inequality [7, Theorem II.5.4] which states that
for arbitrary lipschitz domain F , there holds:

∥

∥

∥

∥

u− 1

|F|

∫

F

u(x)dx

∥

∥

∥

∥

L2(F)

6 CPW‖∇u‖L2(F) .

We extensively use this inequality when F is an annulus. In this case, a standard scaling
argument entails the following remark on the constant CPW :
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Lemma 13. Given (x, λ, a) ∈ R
3 × (0,∞) × (0, 1) there exists a constant Ca depending

only on a (and expecially not on (x, λ)) for which :
∥

∥

∥

∥

u− 1

|A(x, aλ, λ)|

∫

A(x,aλ,λ)

u(x)dx

∥

∥

∥

∥

L2(A(x,aλ,λ))

6 Caλ‖∇u‖L2(A(x,aλ,λ)) .

Second, we focus on the properties of the Bogovskii operators B. This means we are
interested in solving the divergence problem:

(44) div v = f , on F ,

whose data is f and unknown is v. We recall the result due to M.E. Bogovskii (see [7,
Theorem III.3.1]):

Lemma 14. Let F be a lipschitz bounded domain in R
3. Given f ∈ L2(F) such that

∫

F

f(x)dx = 0 ,

there exists a solution v := BF [f ] ∈ H1
0 (F) to (44) such that

‖∇v‖L2(F) 6 C‖f‖L2(F)

with a constant C depending only on F .

In the case of annuli, the above result yields the following lemma by a standard scaling
argument:

Lemma 15. Let (x, λ, a) ∈ R
3 × (0,∞)× (0, 1). Given f ∈ L2(A(x, aλ, λ)) such that

∫

F

f(x)dx = 0 ,

there exists a solution v := Bx,aλ,λ[f ] ∈ H1
0 (A(x, aλ, λ)) to (44) such that

‖∇v‖L2(A(x,aλ,λ)) 6 Ca‖f‖L2(A(x,aλ,λ)),

with a constant Ca depending only on a (and especially neither on f nor on (x, λ)) .

Appendix B. Proof of a covering lemma

This appendix is devoted to the construction of coverings that are adapted to the empiric
measures SN . We prove the following general lemma:

Lemma 16. Let (N, d) ∈ [N∗]2, d > 2, and µ ∈ M+(R
3) a positive bounded measure. There

exists (TN
κ )κ∈Z3 a covering of R3 with disjoint cubes of width 1/N1/3 such that denoting

CN
d :=

{

x ∈ R
3 s.t. dist

(

x,
⋃

κ∈Z3

∂TN
κ

)

<
1

(d+ 1)N1/3

}
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there holds

(45) µ(CN
d ) 6

6

d
µ(R3).

In Section 4, we apply the previous lemma with N ∈ N
∗, d = δ − 1 and

µ :=
1

N

N
∑

i=1

(1 + |vNi |2)δhN
i
,

to obtain a covering (TN
κ )κ∈Z3 satisfying (25). Assuming then N > [dist(Suppw,R3 \

Ω)/4]−3, we obtain that the subcovering (TN
κ )κ∈KN containing only the cubes that intersect

Supp(w) is made of cubes TN
κ that are included in the 1/N1/3 neighborhood of Supp(w)

(as TN
κ has diameter 1/N1/3). By direct computations, we obtain then that, for κ ∈ KN ,

the distance between TN
κ and R

3 \ Ω is strictly positive so that TN
κ ⊂ Ω.

Proof. By a standard scaling argument, it suffices to prove the result for N = 1. Let d > 2.
First, for arbitrary k = (k1, k2, k3) ∈ Z

3 we set:

T̃k =

[

k1
d
,
k1 + 1

d

[

×
[

k2
d
,
k2 + 1

d

[

×
[

k3
d
,
k3 + 1

d

[

These cubes with tildas and index k are cubes of width 1/d. We call them ”small cubes.”
It is straightforward that (T̃k)k∈Z3 forms a partition of R3. For arbitrary

κ = (k1, k2, k3) + {0, . . . , d− 1}3 ,
we set then:

Tκ =
⋃

k∈κ

T̃k =

[

k1
d
,
k1
d

+ 1

[

×
[

k2
d
,
k2
d

+ 1

[

×
[

k3
d
,
k3
d

+ 1

[

.

These cubes without tildas and with index κ are cubes of width 1. We call them ”large
cubes”. We introduce then the 1/d-neighborhood of the boundary of this large cube:

[Tκ]d :=
⋃

k∈∂κ

T̃k .

where

∂κ = {k ∈ {k1, k1 + d− 1} × {k2, . . . , k2 + d− 1} × {k3, . . . , k3 + d− 1}}
∪ {k ∈ {k1, . . . , k1 + d− 1} × {k2, k2 + d− 1} × {k3, . . . , k3 + d− 1}}
∪ {k ∈ {k1, . . . , k1 + d− 1} × {k2, . . . , k2 + d− 1} × {k3, k3 + d− 1}}

(which means taking the small cubes whose indices are in the boundary of κ). We remark
that we may split [Tκ]d into 6 subsets corresponding to the top, bottom, left, right, front
and back faces of the cube Tκ. For instance, the bottom face of [Tκ]d reads:

⋃

k∈{k1,...,k1+d−1}×{k2,...,k2+d−1}×{k3}

T̃k .
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For arbitrary kℓ = ℓ(1, 1, 1) , with ℓ ∈ {0, . . . , d− 1} we also denote

Kℓ =
{

κ = (kℓ + π + {0, . . . , d− 1}3) , π ∈ dZ3
}

We emphasize that Kℓ is a set made of sets (corresponding to large cubes). Any set Kℓ

corresponds to a partition of Z3 and then to a covering of R3 with disjoint large cubes.

Given ℓ ∈ {0, . . . , d− 1} we consider now

Cℓ
d =

{

x ∈ R
3 s.t. dist

(

x,
⋃

κ∈Kℓ

∂Tκ

)

<
1

(d+ 1)N1/3

}

.

We remark that, for fixed ℓ there holds:

Cℓ
d ⊂

⋃

κ∈Kℓ

[Tκ]d.

We denote ∂Kl the set of indices k such that T̃k contributes to this 1/d-neigborhood.
Setting ∂Kl =

⋃ {∂κ, κ ∈ Kℓ} , we have thus:

Cℓ
d ⊂

⋃

k∈∂Kl

T̃k .

We can decompose this union of small cubes by regrouping together the cubes that belong
to left / right / top /bottom / front / back faces of large cubes. For instance, the indices
k of small cubes belonging to bottom faces of large cubes satisfy

k ∈ Z
2 × {ℓ+ dZ} .

For two different ℓ and ℓ′ in {0, . . . , d− 1} the same index k cannot belong to the bottom
faces of two different cubes in the coverings Kℓ and Kℓ′ of R

3. We have the same proper-
ties for top / right / left / front / back faces. Consequently, in the family of coverings

(Kℓ)ℓ∈{0,...,d−1} one small cube T̃N
k belongs at most once to a top / bottom / right / left /

front / back face of a large cube so that:

(46) any k ∈ Z
3 belongs to at most 6 different ∂Kl .

Let now introduce the measure µ. For any k ∈ Z
3, we denote:

µ̃k = µ(T̃k),

and we consider the sum:

Rem :=
∑

ℓ∈{0,...,d−1}

µ(Cℓ
d).

With the previous definitions, we have:

Rem 6
∑

ℓ∈{0,...,d−1}

∑

k∈∂Kℓ

µ̃k.
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Because of (46), we have then that any k ∈ Z
3 appears at most 6 times in this sum.

Consequently:

Rem 6 6
∑

k∈Z3

µ̃k 6 6µ(R3) .

The measure µ being positive, this implies that one of the terms in the sum defining Rem
is less than Rem/d. In other words, there exists at least one ℓ0 ∈ {0, . . . , d− 1} such that:

µ(Cℓ0

d ) 6
6

d
µ(R3) .

The covering (Tκ)κ∈Kℓ0
is then made of disjoint cubes of width 1 satisfying (45). We have

obtained the required covering of R3. �
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