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INDIVIDUAL VACCINATION EQUILIBRIUM FOR IMPERFECT

VACCINE EFFICACY AND LIMITED PERSISTENCE

FRANCESCO SALVARANI AND GABRIEL TURINICI

Abstract. We analyze a model of vaccinal campaign with imperfect vaccine efficacy
and limited persistence. We prove the existence of an equilibrium by Kakutani’s fixed
point theorem in the context of non-persistent immunity. Subsequently, we propose
and test a novel numerical method to find the equilibrium. Various issues of the model
are then discussed, among which the dependence of the optimal policy with respect
to the imperfections of the vaccine.

1. Introduction

Vaccination is a widely used epidemic control tool and its impact on the epidemic
spread has been analyzed from several perspectives.

The first approach which has been historically considered is the benevolent planner
framework (see [27, 1, 37, 42, 17, 2, 31]). It supposes that a health authority can decide
of a vaccination plan, which is then implemented. The plan optimizes the vaccination
strategy as a function of the severity of the epidemic, its medical risks and the (economic
and medical) costs associated with the vaccine. This model is suitable for compulsory
vaccination or when the individuals fully adhere to the recommendations of the author-
ity. On the contrary, when the vaccination is a choice – on a voluntary base – or when
there exist debates on the risks or costs of the vaccine, the situation is better described
by models which take into account the individual decision level. In such models, the
agents decide for themselves whether the vaccination is suitable or not, but they cannot
individually influence the epidemic propagation, which is given by the collective choice
of all other persons.

Such questions received a firm mathematical ground since the introduction of the
Mean Field Games (MFG) theory in the pioneering works by Lasry and Lions [34, 33, 35]
and by Huang, Malhamé and Caines [29, 28].

One important question of MFG is the existence of an equilibrium, namely a stable
collection of individual strategies such that nobody has any incentive to change his own
strategy.

This approach is formulated in terms of a Nash equilibrium for the whole population.
Early works in this direction include [22, 9, 26] which study the question of disease
eradication, market equilibrium and externalities in relationship with vaccination. More
recent contributions (see [5, 4, 43, 23, 41, 32]) treat the question of Nash equilibria for
a large number of individuals in relation with an epidemic model. They investigated
many aspects, such as the impact of the subjective perceptions and individual behaviors
on the equilibrium (see, for example, [15, 14, 40]), the presence of several groups having
distinct epidemic characteristics (see [25, 16, 12]), particular vaccination strategies or
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specific models about the available information at the individual level (see [10, 6, 21,
19, 20, 24, 46, 8, 18]).

The rich diversity of models mentioned above leads to natural questions about the
numerical computation of the equilibrium and the study of the sensitivity to vaccination
specificities. For this reason in this work we will consider the realistic situation of
an imperfect vaccine (see [48] for a related work). Two attributes of the vaccine are
considered:

- the persistence, which is the duration of the immunity conferred by the vaccine;
this can span from several months up to several years – see [13, 3] and the
literature within;

- the vaccine efficacy (noted VE, an input in our model), which is the theoretical
success rate (to be distinguished from the vaccine efficiency, which is the practical
observed success and is the output of the model – see [47] for a presentation of the
differences between the two). The VE can range from several percents to almost
perfect efficacy – see the meta-analysis in [39] and also [38]; other references
include [36] and [45].

As such, a first contribution of our model is to study imperfect vaccines.
On the other hand, the individual vaccine model that we propose does not have, up

to our knowledge, an explicit solution. Far from being a disadvantage, this situation
prompted us into proposing a general numerical method to find the equilibrium; this is
a second contribution of this work (see also [44] for some alternatives coming from the
physics community for general Mean Field Games). The numerical method is adapted
from general works in game theory (see Section 3) and is expected to give accurate results
in any situation when an individual chooses the right timing to perform some action (here
vaccination) with strategy-dependent costs. This procedure has been extensively tested
on our model and performs very well.

The structure of the paper is the following: the model is presented in Section 2
and the theoretical result guaranteeing the existence of an equilibrium in Section 2.3.
The numerical algorithm for finding the equilibrium is presented in Section 3 and the
numerical results in Section 4. Finally, Section 5 collects some considerations on the
pertinence and validity of our approach.

2. The model

The model studies the dynamics of an epidemic in a population. Each disease has its
own features. In what follows we will suppose that

- the infection does not cause the death of the patient and it gives permanent
immunity to those who have been infected;

- the incubation period is short when compared to the time scale of the model;
- the individuals can be vaccinated. If the vaccine is successful, the protection of

the vaccine is maximal (but possibly not total) after a time delay, it remains
high during some period and then it decreases. At the end, the individual is not
at all protected by the vaccine.

- the evolution of the epidemic can be influenced by seasonality effects.

We suppose that the time horizon T is finite, and that it can be discretized in (N +1)
(N ∈ N) time instants t0 = 0, t1 = ∆T , t2 = 2∆T, . . . , tn = n∆T, . . . , tN = T . The
population is composed of
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- susceptible individuals: Sn is the proportion of individuals in this class at time
tn;

- infected individuals: Iωn is the proportion of individuals in this class at time tn,
which have been infected at time tn−ω; moreover we denote by In the sum of all
Iωn ;

- recovered individuals upon exiting the class of infected;
- vaccinated individuals: V θ

n is the proportion of individuals that vaccinated at
time tn−θ and have not been infected since;

- failed vaccinated individuals: Fn is the proportion of individuals that vaccinated
at sime time t ≤ tn, whose vaccination failed and have not yet been infected
since.

The quantities ω and θ are counters. The first one measures the time lapse between
the infection instant and the current instant, ω = 0, 1, . . . , Ω ∈ N, whereas the second
one measures the time lapse between the vaccination instant and the current instant,
θ = 0, 1, . . . , Θ − 1, Θ ∈ N. The upper bound Θ indicates the maximal duration
of the immunity given by the vaccine. Correspondingly, V Θ is the class of vaccinated
individuals that lost the immunity given by the vaccine: since they do not vaccinate
twice, we need a specific class for describing them. Similarly, Θ is the maximum time
before recovery, and it depends on the properties of the illness itself.

The equations of the model, which conserves the total number of individuals, have
the following form:

Sn+1 = (1− βn∆T In) (Sn − Un) (2.1)

I0
n+1 = βn∆T

[
Fn + Sn +

N−1∑
θ=0

αθV
θ
n

]
In (2.2)

Iω+1
n+1 = (1− γω∆T )Iωn ω = 0, . . . ,Ω− 1 (2.3)

V 0
n+1 = (1− f) · (1− βn∆T In)Un (2.4)

V θ+1
n+1 = (1− βn∆TαθIn)V θ

n , θ = 0, . . . ,Θ− 2 (2.5)

V Θ
n+1 = (1− βn∆TαΘ−1In)V Θ−1

n + (1− βn∆T In)V Θ
n (2.6)

Fn+1 = f · (1− βn∆T In)Un + Fn (1− βn∆T In) (2.7)

with initial conditions

S0 = S0− , Iω0 = Iω0− , V θ
0 = 0, ∀θ ≥ 0, (2.8)

where

- U describes the vaccination: Un is the proportion of people vaccinated after time
tn and before tn+1; a fraction f of them will never develop any immunity and
will enter the failed vaccination class;

- the vector γ = (γ0, . . . , γΩ) ∈ (R+)Ω+1 describes how fast an infected individual
recovers and depends on the duration of the illness itself. In particular, when
γω = 0, there is no hope to recover at the next time instant; on the contrary,
when γω = 1, the individual will recover with certainty in the next time slot;

- the function β(t) quantifies how infectious is a contact between an infected in-
dividual and a susceptible one at time t. To take into account the length of the
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time interval ∆T , we work with βn∆T := β(tn) ·∆T and γω∆T := γω ·∆T . In order
to take into account the possible seasonality, β(·) is taken time-dependent, see
Section 4 for an exemple.

- The vector αθ are the time instants of a function A(·) (αθ = A(θ∆T )) with val-
ues in [0, 1]. This vector quantifies the protection given by the vaccine in terms
of the probability of infection if vaccinated. It is known that this protection is
not instantaneous, the immunity conferred by the vaccine being maximal after a
latency period. Moreover, often (as in the case of influenza vaccine) the protec-
tion is not complete, and the effects of the vaccine decrease with time. In what
follows, we suppose that there exists an upper bound Θ > 0 to the persistence of
the vaccine. Some possible candidates for the function A are shown in Figure 1.
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Figure 1. Two possible forms for the function A.

2.1. The societal cost and individual cost. Let rI and rV be the individual cost for
the illness and the vaccination respectively. We work under the meaningful assumption
that rI > rV (although the alternative rI ≤ rV may also give non-trivial problems in
particular situations, see [31]).

The total societal cost associated to the vaccination strategy U is:

J(S0, I0, U) = rI

N∑
n=0

In + rV

N−1∑
n=0

Un, (2.9)

which has to be minimized (see [27, 1, 37, 42, 17, 31]) within the set of all admissible
vaccination strategies U .

However this is not what the individuals do. They rather optimize an individual
cost function. In order to define it, we have to consider the individual dynamics (see
Figure 2 for an illustration). It takes the form of a controlled Markov chain with several
states, susceptible (S), failed vaccination (F), recovered (R), infected (indexed by the
time counter ω: I0, . . . , IΩ), and, finally, vaccinated states (indexed by the time counter
θ: V 0, . . . , V Θ).
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The Markov chain of the individual, denoted Mn, is described in terms of passage
probabilities:

P(Mn+1 = S|Mn = S) = (1− λn) (1− βn∆T In)

P(Mn+1 = I0|Mn = S) = βn∆T In

P(Mn+1 = V 0|Mn = S) = (1− f) · λn (1− βn∆T In)

P(Mn+1 = F |Mn = S) = f · λn (1− βn∆T In)

P(Mn+1 = R|Mn = IΩ) = 1

P(Mn+1 = R|Mn = Iω) = γω∆T , ω = 0, . . . ,Ω− 1

P(Mn+1 = Iω+1|Mn = Iω) = 1− γω∆T , ω = 0, . . . ,Ω− 1

P(Mn+1 = I0|Mn = V θ) = αθβ
n
∆T In, θ = 0, . . . ,Θ− 1

P(Mn+1 = V θ+1|Mn = V θ) = 1− αθβn∆T In, θ = 0, . . . ,Θ− 1

P(Mn+1 = I0|Mn = V Θ) = βn∆T In,

P(Mn+1 = I0|Mn = F ) = βn∆T In.

(2.10)

The conditions βn∆T ≤ 1, γω∆T ≤ 1, λn ≥ 0, λn ≤ 1 ensure the well-posedness of this
definition.

The conditional rates λn are derived from a probability density ξ defined on {t0, . . . , tN−1}
∪ {∞}. In practice, the individual chooses the probability distribution ξ before the dy-
namics starts. Then, he selects a random number n distributed with the aforementioned
probability ξ, which means that before the beginning of the epidemic he knows the time
tn at which he will vaccinate (unless he is already infected by that time).

There is a mapping between λ = (λn)N−1
n=0 and ξ defined by:

ξ∞ =
N−1∏
n=0

(1− λn), ξn = λn

n−1∏
k=0

(1− λk), n ≤ N − 1 (2.11)

∀n ≤ N − 1 : λn =


ξn

ξn + · · ·+ ξ∞
, if ξn + · · ·+ ξ∞ > 0

0, otherwise

. (2.12)

The cost of a vaccination strategy depends on ξ (see [32] for a similar situation). The
individual pays the price rI upon arriving in class I0 and the price rV upon arriving in
class V 0. The cost for an individual will have three components:

- the cost rI of being infected before vaccination;

- the cost rV of vaccination plus a possible cost of being infected while immunity
is still building or after the persistence period;

- the cost rV of failed vaccination plus a possible cost of being infected.
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Figure 2. Individual model.

Note that an individual may pay both prices if he vaccinates and, moreover, if he is
infected. For an individual starting at M0 = S, the total price is:

Jindi(ξ;U) = rV P
(
∪n<N{Mn+1 = V 0,Mn 6= V 0}

∣∣∣M0 = S
)

+rV P
(
∪n<N{Mn+1 = F,Mn 6= F}

∣∣∣M0 = S
)

+rIP
(
∪n<N{Mn+1 = I0,Mn 6= I0}

∣∣∣M0 = S
)
. (2.13)

This form for Jindi(ξ;U) is impractical and has to be made more explicit. One possibility
is to sum over the first passages from S to I0, V 0 of F . The following quantities are
useful for general n:

- the probability ϕV,In of infection (at time tn+1 or later) of an individual that
vaccinated in the interval [tn, tn+1], given by the formula:

ϕV,In = 1−
Θ∏
k=n

(
1− βk∆Tαk−n−1Ik

)
, (2.14)

where we introduce the coefficient α−1 = 1;

- the conditional probability of being infected (strictly) before tn+1 (of a person
that did not vaccinate)

ϕIn = P
[
∪nk=0{Mk = I}|M0 = S,Mk 6= V 0,Mk 6= F, k ≤ n

]
,
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given by the formula:

ϕIn = 1−
n∏
k=0

(
1− βk∆T Ik

)
n = 0, ..., N − 1. (2.15)

Note that the probability of being infected after the time n is

1− 1− ϕI∞
1− ϕIn

=
ϕI∞ − ϕIn
1− ϕIn

,

where

ϕI∞ = 1−
N∏
k=0

(
1− βk∆T Ik

)
.

Then, after elementary computations:

Jindi(ξ;U) = rIϕ
I
∞ξ∞ +

N−1∑
n=0

[
rIϕ

I
n + (1− ϕIn)(rV + (1− f)rIϕ

V,I
n ) + rIf(ϕI∞ − ϕIn)

]
ξn.

(2.16)
The individual cannot change Un neither Sn, Iωn nor V θ

n . He can only choose his
vaccination strategy ξ. Denote

gUn =


rIϕ

I
n + (1− ϕIn)(rV + (1− f)rIϕ

V,I
n ) + rIf(ϕI∞ − ϕIn), for n ≤ N − 1

rIϕ
I
∞ for n = N.

(2.17)
Then Jindi(ξ;U) = 〈ξ, gU 〉, where gU and ξ are seen as vectors in RN+1, and it is to be
minimized under the constraint ξ0 + · · ·+ ξN−1 + ξ∞ = 1, ξk ≥ 0. Then any probability
distribution ξ with support in {n | gUn ≤ gUk , k = 0, . . . , N} attains the minimum.

Now, for a given individual policy ξ one can ask whether the equations (2.1)-(2.8) are
obtained when all individuals follow this vaccination policy and in this case what is the
compatibility relationship between ξ and U . Supposing identical initial conditions S0−

and I0− , the compatibility relation between the two dynamics is:

Un = λnSn. (2.18)

2.2. Failed vaccination. A simplified model can be proposed to tackle the possibility
of vaccination failure. Note that, for n ≤ N − 1,

gUn = rIfϕ
I
∞ + (1− f)[rIϕ

I
n + (1− ϕIn)(rV /(1− f) + rIϕ

V,I
n )].

Therefore, since the term rIfϕ
I
∞ does not depend on n and (1− f) is an overall factor,

the cost has exactly the same minimum as that of a model without the class F when
we replace rV by rV /(1 − f). Therefore, when the efficacy 1 − f of the vaccine is not
100%, this can be treated by considering that the cost of the vaccine is multiplied by
(1− f)−1. See Section 4 for some numerical illustrations.

Note however that this is a first order approximation as, in practice, the quantities

ϕV,In depend on the precise values of Iωn and a different model with different classes will
change those values.
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2.3. Equilibrium. Consider now the following mapping: for any given probability law η
on {t0, . . . , tN−1}∪{∞} define λ by (2.12) (using ηn instead of ξn), Un, Sn, In recursively
by the relations (2.1)-(2.5) and (2.18). Denote Cη = gU .

Let J (η) be the ensemble containing all optimal individual strategies ξ that minimize
the cost 〈ξ,Cη〉.

The goal of this subsection is to deduce the existence of an equilibrium of the system,
i.e. a common strategy which is a Nash equilibrium when it is used by all agents of the
population. The following result holds.

Theorem 2.1. There exists at least one law η such that η ∈J (η) (i.e., an equilibrium).
Moreover, the mapping η 7→ Cη is continuous.

Proof. Note that any set J (η) is non void, convex and compact. We use Kakutani’s
fixed point theorem for the function J (·) defined on the simplex

ΣN+1 = {(x0, . . . , xN ) ∈ RN+1|xk ≥ 0, x0 + · · ·+ xN = 1}. (2.19)

The only hypothesis left to check is the closed graph property of J (·). Let η` be a
sequence of probability laws on {t0, . . . , tN−1} ∪ {∞} converging to η and ξ` ∈ J (η`)
converging to ξ. We have to prove that ξ ∈J (η).

We denote by S`, U `, I`, gU
`

(respectively S, U , I, gU ) the dynamics corresponding
to η` (respectively η).

Let Z be the first index such that ηZ + · · ·+η∞ = 0. We consider the non-trivial case
when Z > 1.

Consider λ` (respectively λ) the rates associated to η` (respectively η) by the for-
mula (2.12). In particular ηZ−1 > 0 and λ`Z−1 = 1.

Although η` → η as ` → ∞ we do not have that λ` → λ, but we have instead that
λ`n → λn for all n < Z. In particular λ`nS

`
n → λnSn for all n < Z. On the other hand,

since λZ−1 = 1 we have SZ = SZ−1(1− λZ−1)(1− βn∆T IZ−1) = 0 and λ`Z−1 → 1 implies

S`Z → 0; furthermore, S` being monotonically decreasing we also have S`n → 0 for any

n ≥ Z. Since all rates λ` are bounded by 1 we obtain thus that λ`nS
`
n → 0 = λnSn for

all n ≥ Z and thus ultimately λ`nS
`
n → λnSn for all n ≤ N . This, combined with the

formulas (2.1)-(2.8) and (2.18) show that U ` → U , S` → S, I` → I as `→∞. Thus we
also have Cη` → Cη; therefore the limit of any converging sequence of minimas of Cη`
is also a minima of Cη which, given its definition, proves the closed graph property of
J (·). �

Remark 2.2. The theorem reduces the existence of the equilibrium to the study of
the mapping η 7→ Cη. This mapping has a well-defined meaning for a large class of
vaccination games because the variable ξ is nothing else than the (mixed) individual
strategy and the vector Cξ collects the price of pure strategies of the individual (given
the overall epidemic propagation dynamics). We expect that this methodology can be
generalized to other situations.

3. Finding the equilibrium

The result of the Section 2.3 guarantees the existence of at least one equilibrium. But,
it does not prescribe a constructive method to find it.

For arbitrary strategy ξ, introduce the quantity E(ξ) defined as follows: consider
a situation when all individuals use the strategy ξ. Then E(ξ) is the maximum gain
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obtained by an individual if he changes unilaterally its strategy (and everybody else
remaining with the strategy ξ). In mathematical terms:

E(ξ) = 〈ξ,Cξ〉 − min
η∈ΣN+1

〈η,Cξ〉, (3.1)

where ΣN+1 is the space of all possible strategies.
Note that E(·) ≥ 0 and an equilibrium corresponds to a ξ such that 〈ξ,Cξ〉 ≤ 〈η,Cξ〉

for any other strategy η ∈ ΣN+1, which means E(ξ) = 0. The equilibrium can be
rephrased as finding a strategy ξ such that the mapping ξ 7→ E(ξ) is minimized.

The minimization of E(·) would require to compute, for instance, some gradient of
Cξ with respect to ξ which involves the introduction of several adjoint states (Lagrange
multipliers) and render the computation complex.

Another idea is simpler and intuitively more appealing: consider a candidate ξk ob-
tained at the iteration k of the procedure. Construct the cost Cξk obtained if everybody
uses the strategy ξk. An individual in this population will test whether ξk is optimal
i.e. if it is a minimum of E(·). If this is the case then the solution is ξk; otherwise the
individual will replace its strategy ξk with a strategy ξk+1, which is an adjustment of ξk
(meaning that is not too far from ξk) and which goes towards minimizing η 7→ 〈η,Cξk〉.
In practice one can choose (with ideas close to the general framework of gradient flows,
see [30] for an entry point to this literature):

ξk+1 ∈ argminη∈ΣN+1

dist(η, ξk)
2

2τ
+ 〈η,Cξk〉, (3.2)

where dist(·, ·) is some suitable distance. Then the procedure is iterated till convergence.
This idea is similar to the paradigms of “Best Reply” (see [7]) and “fictitious play” for
which some proofs of convergence exist under specific hypotheses (see [11]).

In order to keep the presentation as simple as possible, we used as distance in (3.2)
the standard euclidian distance on RN+1 although in principle other distances (such as
the 2-Wasserstein distance) may perform better.

In practice, the algorithm applied is the following:

Step 1 Choose a step τ > 0 and a starting distribution ξ1.

Set iteration count k = 1.

Step 2 Compute ξk+1 as in formula (3.2).

Step 3 If E(ξk+1) is smaller than a given tolerance then stop and exit,

otherwise set k → k + 1 and go back to Step 1.

In practice Step 2 is computed with a quadratic programming routine (quadprog in
Matlab/Gnu Octave) that can accommodate linear constraints.

Remark 3.1. The procedure proposed above can be extended in a straightforward man-
ner to any rational individual vaccination model, by replacing the vector Cξ by a time-
dependent function c( · ), where c(t) is the cost of the pure strategy consisting in vacci-
nating at the time t under the assumption that everybody follows the strategy ξ.

4. Numerical results

In order to test the model, we simulated the situation of an epidemic with several
sets of parameters, as indicated below.
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4.1. Preliminary tests. We first tested the procedure for a situation when the analytic
result is known (see [23, 32]): we used the parameters in [32, Figure 5] and obtained
that the optimum individual strategy is a mixed strategy with ξ0 = 33% probability
to vaccinate at t = 0 and ξ∞ = 67% probability to not vaccinate at all; its cost is
0.5067; this compares favorably with the analytic result which is a mixed strategy with
ξ0 = 34%, ξ∞ = 66% and a cost 0.5.

4.2. Short persistence, large efficacy. The numerical values used in this simulation
are the following: total simulation time T = 1 (one year), number of time instants:
N = 365× 3 (three times a day); recovery rate γω = γ = 365/3.2 (mean recovery time
3.2 days, Ω = 20), reproduction number R0 = 1.35, thus β = γR0; initial proportion of
susceptibles S0 = 0.94 and infected I0 = 2.0 × 10−6; relative costs rI = 1, rV = 0.005.
To take into account the seasonality of β(t) we set βmin = γ/S0 and β(t) = β for

t ≤ tβ2 := 1/2 (6 months) and then β(t) = βmin for t > tβ2 = 1/2; these parameters
model an epidemic having a duration of 6 months.

To define the persistence of the vaccine we set t1 = 5/365, t2 = 1/12 (one month,
Θ = 93) and αθ = 1 − 1[t1,t2]. The vaccine efficacy is set to 100%, i.e., we suppose a
failure rate f = 0. The step is τ = 0.1 and we performed 1000 iterations.

The results are displayed in Figures 3, 4 and 5. A good quality equilibrium is found:
the incentive to change the strategy, as measured by the function E(ξ), is more than
two orders of magnitude lower at the solution than at the initial guess. The cost of the
solution 〈ξMFG,CξMFG〉 is 0.0237.

The solution is a strategy ξMFG supported at several time instants between 0.25 and
0.43 and also having 68% of the mass at the non-vaccinating time t = ∞. Note that
the cost is adapted accordingly, reaching its minimum at all points in the support of the
solution ξMFG. Generally the vaccination occurs when In has large values, except at the
end of the epidemic (time 0.5) when people expect the epidemic to end and estimate that
their infection probability is low; the individuals have a strategic behavior, in coherence
with the model. This is coherent with the model in [6] where the vaccination rate is
taken by hypothesis incresing with the number of people infected. The two models agree
in a majority of time instants except the end of the epidemic. This behavior has been
observed in our simulations across a wide range of vaccination persistence times and
initial conditions (the results are not shown here).

It should be mentioned that the solution ξMFG, with cost 0.0237, is not the solution
that minimizes the average cost across individuals (see also equation (2.9)) which is
M(ξ) = 〈ξ,Cξ〉: for instance the strategy ξmin that vaccinates with certainty at time
t = 0.0 (unless infected by that time) has M(ξmin) = 0.005. This result is not surprising
and often appears in such contexts (see [32]). When M(ξMFG) > M(ξmin) the game is
said to have a positive cost of anarchy. It can be intuitively explained as follows: suppose
that everybody uses the strategy ξmin. The cost of an individual with strategy η will
be 〈η,Cξmin〉 and it turns out that there exists some η1 with 〈η1,Cξmin〉 < 〈ξmin,Cξmin〉.
For instance here η1 can be a pure non-vaccinator strategy whose cost is very low
8.0 × 10−6. Therefore any individual with current strategy ξmin has an incentive to
change his strategy (and use η1) by hoping that everybody else remains with the strategy
ξmin. This does not happen and everybody slides towards η1 and so on until the Nash
equilibrium ξMFG is found. In the process the cost of everybody will increase and this
is the price to pay for equilibrium.
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Figure 3. Results for Subsection 4.2. Top: the optimal converged strat-
egy ξMFG at times {t0, ..., tN−1}. The weight of the non-vaccinating pure
strategy (i.e., corresponding to time t =∞) is 68%. Bottom: the corre-
sponding cost CξMFG . The horizontal thin line corresponds to the cost
of the non-vaccinating pure strategy (CξMFG)N+1.

4.3. Long persistence, 100% efficacy. The parameters are identical as in Subsec-
tion 4.2, except the vaccine persistence time t2 which is set now to 6 months: t2 = 1/2
(Θ = 549). The convergence is quickly attained (100 iterations) and the results are
displayed in Figure 6. Although fewer people vaccinate (only 9% here, to compare with
32% in Subsection 4.2), the fact that vaccine persistence is higher improves the outcome.
The equilibrium cost becomes 0.005, almost one order of magnitude lower than in the
previous test.

4.4. Long persistence, smaller efficacy. In this Subsection, we test a situation when
the vaccine efficacy is only 50%. All other inputs are as in Subsection 4.3. The result,
not shown here because very similar to those described in the previous tests, has however
several differences:

- the probability of the non-vaccinating strategy is now 86% (i.e. 14% of people
vaccinate);

- the cost of the optimal strategy is 0.0101.
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Figure 4. Results of Subsection 4.2. Top: the evolution of the suscep-
tible class Sn; bottom: the (total) infected class In.
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Figure 5. Result of Subsection 4.2. The decrease of the incentive to
change strategy E(ξk). Note that E(ξk) does not decrease monotonically.
In fact, there is no reason to expect such a behavior, since we are not
minimizing E(·) in a monotonic fashion.
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Figure 6. Results of Subsection 4.3. Top: the optimal converged strat-
egy ξMFG. The weight of the non-vaccinating pure strategy (i.e., corre-
sponding to time t =∞) is 91%. Bottom: the corresponding cost CξMFG .
The thin orizontal line corresponds to the cost of the non-vaccinating pure
strategy (CξMFG)N+1.

Therefore the equilibrium shifts towards a bigger fraction of the population that
vaccinate (in order to compensate lower vaccine efficacy). However, the overall number
of protected people is lower (50% of 14% being smaller than 100% of 9%) which results
in a larger overall equilibrium cost (about twice larger). We tested other settings and
these conclusions were consistently obtained: the introduction of imperfect vaccines
(here lower efficacy) generates overall lower coverage rates and larger costs.

We also compared this result with result obtained by setting the cost rV → rV /(1−
f) = 0.01, f → 0. In this case the cost is 0.0103 (with 6.6% vaccinators) which is very
similar and confirms the qualitative analysis of Subsection 2.2.

4.5. Effects of the failed vaccination rate on the vaccination strategy. We ana-
lyze in this subsection the effects of the failed vaccination rate on the overall vaccination
policy. The numerical value of the vaccination cost is rV = 0.025, whereas the other
parameters are the same as in Subsection 4.4. The results are presented in Table 1.

When the failure rate f is small, the vaccination rate (1 − ξ∞) is increasing with
f . However, when the failure rate f is larger than a given value (in our numerical
simulations, when f ≥ 0.60), the vaccination rate decreases as f increases.
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Failed vaccination rate f Vaccination rate 1− ξ∞
0.00 5.04%
0.25 5.94%
0.50 7.02%
0.55 7.20%
0.60 7.29%
0.65 7.23%
0.75 5.74%
0.80 2.93%
0.85 0.00%

Table 1. Results for the Subsection 4.5. Individual vaccination policy
with respect to the failed vaccination rate of the vaccine.

The first part of this result agrees with the behavior already observed in Subsection
4.4. When the falure rate is small, the individuals tend to vaccinate more to compensate
the decrease in efficacy and therefore to contribute to and profit from the group pro-
tection. However, after a given threshold, the construction of a group protection is too
expensive, and therefore the individuals are oriented to avoid vaccination (if f = 0.85,
the vaccination rate (1 − ξ∞) is zero; in this case, the probability of being infected is
14.38%).

5. Discussion

We analyzed in this work the vaccination equilibrium in a context of rational individ-
ual vaccination choices; the situation is modeled as a Nash equilibrium with an infinity
of players. A specific focus of our work is the presence of imperfect vaccine. We pre-
sented both a theoretical approach (existence of an equilibrium via the Kakutani fixed
point theorem) and a numerical algorithm (similar to a gradient flow). Both approaches
have the advantage to use rather weak assumptions on the structure of the model and
as such we hope that they will be useful in other situations.

The model shows that the imperfections of the vaccine increase the overall cost. But
the obtained equilibrium is such that the increased vaccination rate does not compensate
the lower efficacy (or persistence) of the vaccine.

When the failure rate is below a given threshold, the cost for building a group protec-
tion is advantageous with respect to the infection cost. In this case, a higher vaccination
rate can be optimal to compensate an increase in the failure rate. However, this individ-
ual policy is far from the societal level optimal strategy, which would consist in a global
optimization of the vaccination policy. When the failure rate is above the threshold, the
vaccination rate decreases.

Several assumptions in this work may limit the applicability of the results and moti-
vate further studies:

- the individuals are supposed perfectly aware of the past, present and future
epidemic dynamics: a model with limited information may be more realistic;

- the individuals are identical. In particular the cost of the illness is exactly the
same, irrespective of age: considering several age groups may prove interesting
especially if their strategies are different;



EQUILIBRIUM IN A DELAYED VACCINATION MFG MODEL 15

- the absence of vital dynamics: the introduction of a birth/death rate into the
model can make it applicable to childhood diseases;

- the geographical heterogeneity in the propagation of the epidemic is neglected:
travels and intra/inter-community contacts may be important for the epidemic
propagation.
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Math., Acad. Sci. Paris, 343(9):619–625, 2006.

[34] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. II: Horizon fini et contrôle optimal.
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