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Abstract

We consider a model with an infinite number of states of nature, von

Neumann - Morgenstern utilities, where agents have different probabil-

ity beliefs and where short sells are allowed. We show that no-arbitrage

conditions, defined for finite dimensional asset markets models, are not

sufficient to ensure existence of equilibrium in presence of an infinite num-

ber of states of nature. However, if the individually rational utility set U
is compact, we obtain an equilibrium. We give conditions which imply the

compactness of U . We give examples of non-existence of equilibrium when

these conditions do not hold.
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1 Introduction

In finite dimensional markets with short-selling, conditions on agents’ utilities

insuring the existence of equilibria (or equivalent to the existence of equilib-

ria) are well understood. In particular they can be interpreted as no-arbitrage

conditions. In an uncertainty setting, where agents have different beliefs and

different risk aversions, as originally shown by Hart (1974), the no-arbitrage

condition may be interpreted as compatibility of agent’s risk adjusted beliefs.

There is a huge literature on sufficient and necessary conditions for the exis-

tence of equilibria in the line of Hart’s model, where the market is complete.

In finite dimension, one can refer, for instance to Page (1987), Werner (1987),

Nielsen (1989), Page and Wooders (1995, 1996), Allouch (1999), Allouch et alii

(2000), Won and Yannelis (2008).

When the number of assets is infinite, and the market is complete, the no-

arbitrage condition used for finite dimension do not imply existence of equi-

librium. The standard assumption is to assume that the individually rational

utility set is compact ( see e.g. Cheng (1991), Brown and Werner (1995), Dana

and Le Van (1996), Dana et al (1997), Dana and Le Van (2000), Le Van and

Truong Xuan (2001)).1

In this paper, we consider a model with an infinite number of states of nature, a

finite number of agents and Von Neumann - Morgenstern utilities with different

expectations.

More precisely, we consider a model where the utility of agent i is

U i(xi) =
∞∑
s=1

πi
su

i(xis)

where πi is her belief and xi is her consumption. The commodity space is lp(π)

with p ∈ {1, 2, . . . ,+∞}. 2

1Chichilnisky and Heal (1993) give a condition which implies the boundedness of the in-

dividually rational feasible set in L2. Since the feasible set is closed, it is therefore weakly

compact in L2.
2We use the model proposed by Hart. Investors are interested only in their wealth in the

second period. We suppose that the market is complete with an asset system r1, r2, . . . , rk, . . . .

For each portfolio z = (z1, z2, . . . , zk, . . . ), the wealth or investor if state s occurs is

ws =
∑
k

zkrks .

Her expected utility is:

V (w1, w2, . . . , ws, . . . ) =
∑
s

πsu(ws).

Since the market is complete, the choice of portfolio is equivalent to the choice of wealth.

As in Hart’s pioneer paper, we consider the expected utility function on wealth.
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When the number of states is infinite, the no-arbitrage condition (à la

Werner or à la Dana-Le Van) only ensures the boundedness of the individ-

ually rational utility set. We give examples where this condition is satisfied and

no equilibrium exists. The strategy is therefore to give assumptions which im-

ply the compactness of the individually rational utility set and hence existence

of equilibrium. Our conditions might be considered as among the weakest since

we give also examples of non existence of equilibrium when these conditions do

not hold.

The paper is organized as follows. In Section 2, we set up the model and

define the equilibrium. In section 3, we introduce no-arbitrage conditions and

give conditions for the existence of equilibrium. Proofs are put in Section

Appendix, Section 4. We mention that our methods of proofs are inspired

by the ones in Le Van and Truong Xuan (2001). However, their model rules

out the risk-neutral agents. That is not the case in our model.

2 The model

There are m agents indexed by i = 1, . . . ,m. The belief of agent i in state s is

πi
s ≥ 0, and

∑∞
s=1 π

i
s = 1 . Let us denote by π the mean probability 1

m

∑
i π

i.

We first assume:

A0: πi is equivalent to πj for any i, j i.e. there exists a number h > 0 such

that h ≤ πi
s

πj
s
≤ 1

h for all i, j, s.3

Under A0, without loss of generality, one can assume that πi
s > 0 for any i,

any s. In this paper, we always suppose that the condition A0 is satisfied and

πi
s > 0 for any i, any s.

The consumption set of agent i is Xi = lp(π) with p ∈ {1, 2, . . . ,+∞} and

agent i has an endowment ei ∈ lp(π). We assume that for each agent i there

exists a concave, strictly increasing, differentiable 4 function ui : R → R , such

that, for any i, the function

U i(xi) =

∞∑
s=1

πi
su

i(xis)

is real-valued for any xi ∈ Xi.

Agent i has lp(π) as consumption set, ei as initial endowment and U i as

utility function, with i = 1, . . . ,m.

Definition 1 An equilibrium is a list
(
(x∗i)i=1,...,m, p∗)

)
such that x∗i ∈ Xi for

every i and p∗ ∈ lq+(π) \ {0} and

3With A0, the consumptions set of the agents belong to same topological space lp(π).

We observe that when all agents have the same belief as in Cheng (1991), then A0 is satisfied.
4For simplicity, we assume differentiability. The results still hold by using super-gradients.

But the proofs will become tedious.
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(i) For any i, U i(x) > U i(x∗i) ⇒
∑∞

s=1 p
∗
sxs >

∑∞
s=1 p

∗
se

i
s,

(ii)
∑m

i=1 x
∗i =

∑m
i=1 e

i.

Definition 2 A quasi-equilibrium is a list
(
(x∗i)i=1,...,m, p∗)

)
such that xi∗ ∈ Xi

for every i and p∗ ∈ lq+(π) \ {0} and

(i) For any i, U i(x) > U i(x∗i) ⇒
∑∞

s=1 p
∗
sxs ≥

∑∞
s=1 p

∗
se

i
s,

(ii)
∑m

i=1 x
∗i =

∑m
i=1 e

i.

In this paper, since the consumption set is the whole space, and the utility

functions U i are continuous, any quasi-equilibrium is an equilibrium (see e.g.

Geistdoerfer-Florenzano (1982), Proposition 3).

Define

ai = inf
x
ui′(x) = ui′(+∞),

bi = sup
x

ui′(x) = ui′(−∞).

Let I1 be the set of indexes i such that ai < bi, and I2 be the set of indexes

such that ai = bi. I1 is the set of risk averse agents, I2 is the set of risk neutral

ones.

We now give some definitions.

Definition 3 1. The individually rational attainable allocations set A is de-

fined by

A = {(xi) ∈ (lp(π))m |
m∑
i=1

xi =

m∑
i=1

ei and U i(xi) ≥ U i(ei) for all i}.

2. The individually rational utility set U is defined by

U = {(v1, v2, ..., vm) ∈ Rm | ∃x ∈ A s.t U i(ei) ≤ vi ≤ U i(xi) for all i}.

3 No-arbitrage condition and existence of equilib-

rium

We will first strengthen the definition of useful vectors introduced by Werner.

We then introduce a notion of no-arbitrage price based on these strong useful

vectors.

A vector w is strongly useful for agent i if, for any xi ∈ Xi, we have

(i)

∞∑
s=1

πi
su

i(xis + λws) ≥
∞∑
s=1

πi
su

i(xis), ∀λ ≥ 0,

and (ii)

∞∑
s=1

πi
su

i(xis + λws) >

∞∑
s=1

πi
su

i(xis) for some λ > 0.
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It is easy to check that a vector w is strongly useful for agent i if, and only if

∀xi ∈ Xi, ∃λ̄ > 0, ∀λ ≥ λ̄,

∞∑
s=1

πi
su

i(xis + λws) >

∞∑
s=1

πi
su

i(xis).

This condition turns out to be equivalent to

∞∑
s=1

πi
su

i′(xis)ws > 0, ∀xi ∈ Xi.

Following Dana and Le Van [8], we now introduce a no-arbitrage condition.

(NA) There exist (x̄i)mi=1 ∈ ΠiX
i, such that

λiπi
su

i′(x̄is) = λjπj
su

j′(x̄js) = λkakπ
k
s , ∀s, ∀i ∈ I1,∀j ∈ I1, ∀k ∈ I2,

and

∀i ∈ I1, a
i < inf

s
ui′(x̄is) < sup

s
ui′(x̄is) < bi.

Observe that if we define a price p ∈ l∞+ (π) by

∀s, ps = λiπi
su

i′(x̄is) = λkakπ
k
s , i ∈ I1, k ∈ I2

then we have p · w > 0 for any strongly useful vector w.

Condition (NA) is useful to prove the boundedness of U . That is the state-
ment of the following proposition. The proof is given in Appendix.

Proposition 1 If (NA) holds, then U is bounded.

The next proposition and its corollary give sufficient conditions to obtain

(NA).

Proposition 2 Assume either ui′(−∞) = +∞ for all i ∈ I1 or ui′(+∞) = 0

for all i ∈ I1. Then (NA) holds if, and only if, πi = πj, for any i ∈ I2, any

j ∈ I2.

The following corollary is immediate.

Corollary 1 If I2 = ∅, then (NA) holds if

(i) either ui′(−∞) = +∞ for all i ∈ I,

(ii) or ui′(+∞) = 0 for all i ∈ I.

In the case of finite number of states, condition (NA) implies compactness of

U .
In infinite dimension, with a vector space L as commodity space, Brown

and Werner [4], Dana, Le Van and Magnien [10] assume the compactness of U
and get existence of equilibrium with prices in L′. In our model if the number
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of states is finite, condition (NA) implies compactness of U and is a sufficient

condition for the existence of equilibrium (see e.g. Dana and Le Van [8]). In

this paper, the number of states is infinite, we give an example which shows

that (NA) is not sufficient to ensure existence of equilibrium if the conditions

in Corollary 1 do not hold. We exhibit a model with two agents. Agent 1 has

a1 = 0, b1 < +∞. Agent 2 has a2 > 0, b2 = +∞. The assumptions of Proposi-

tions 4 and 6 are clearly not satisfied. We still have (NA) but no equilibrium

exists in this model.

Example 1 Consider an economy with two agents (i = 1, 2), with endowments

equal to 0. The probabilities are equivalent: π1
s =

(
1
2

)s
, π2

s = 1
Sα

1−αs

2s , where

1 < α < 1, and Sα =
∑

s
1−αs

2s .

The reward utilities satisfy

u1′(x) = b1, ∀x ≤ 0,

u1′(+∞) = 0,

u1(0) = 0,

u2′(x) = a2, ∀x ≥ 0,

u2′(−∞) = +∞,

u2(0) = 0.

There exists z > 0 with u1′(z) < b1. Let x1s = z, ∀s. Since u2′(−∞) = +∞,

there exists x2s < 0 which satisfies

u2′(0) = (1− αs)u2′(x2s).

One can check that

λπ1
su

1′(x1s) = π2
su

2′(x2s),∀s,

with λ = u2′(0)
u1′(z) ×

1
Sα

. Since

0 = u1′(+∞) < u1′(z) = u1′(x1s) < b1,

a2 = u2′(0) <
u2′(0)

1− αs
= u2′(x2s) < u2′(−∞) = +∞,

no-arbitrage condition (NA) is satisfied.

We now show that no equilibrium exists. Assume there exists an equilibrium

(p, (x1, x2)) with x1s = xs = −x2s. We have

∀s, λ1π
1
su

1′(xs) = λ2π
2
su

2′(−xs),

or λπ1
su

1′(xs) = π2
su

2′(−xs), with λ =
λ1

λ2
.
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For all s:

λ′ 1

2s
u1′(xs) =

1− αs

2s
u2′(−xs),

or equivalently

λ′ = (1− αs)
u2′(−xs)

u1′(xs)
,∀s

with λ′ = λSα. Since
∑

s psxs = 0 and ps > 0 for any s, one must have s0 with

xs0 ≤ 0. In this case

λ′ = (1− αs0)
a2

b1
,

and for any s ̸= s0, xs > 0. We then obtain

u2′(−xs0+1)

u1′(xs0+1)
>

u2′(0)

u1′(0)
=

a2

b1

since xs0+1 > 0. Now, because 1 − αs0+1 > 1 − αs0 we obtain, on the one one

hand:

λ′ = (1− αs0+1)
u2′(−xs0+1)

u1′(xs0+1)

> (1− αs0)
u2′(−xs0+1)

u1′(xs0+1)

> (1− αs0)
a2

b1

and on the other hand

λ′ = (1− αs0)
a2

b1

which is a contradiction. Then there exists no equilibrium.

We now state our main results. Their proofs are given in Appendix. The

ideas are to prove that the set A is l1(π)-compact and hence the set U is also

compact when bi = +∞ for all i, and when ai = 0 for every i and bi < +∞ for

some i, the set A is not necessary l1(π)-compact but the set U is still compact.

Theorem 1 Suppose one of these two conditions holds:

(i) ai = 0 for every i.

(ii) bi = +∞ for every i.

Then there exists an equilibrium with equilibrium price in lq(π) with 1
p+

1
q =

1, 1 ≤ p ≤ +∞.

Theorem 2 Suppose that I2 ̸= ∅. Suppose that these two conditions hold:

(i) ai = 0 for every i ∈ I1.
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(ii) bi = +∞ for every i ∈ I1.

Then we have

NA ⇔ ∃ Equilibrium.

The equilibrium price is in lq(π) with 1
p + 1

q = 1, 1 ≤ p ≤ +∞.

We can be surprised that in presence of risk-neutral agents we have to impose

ui′(+∞) = 0 and ui′(−∞) = +∞ for any agent i ∈ I1. We give two examples

with two agents, one of them is risk neutral while the second one is risk averse.

In Example 2, the risk averse agent has the marginal utility at −∞ equal to

+∞. In Example 3, her the marginal utility at +∞ is 0. In both examples,

there exists no equilibrium.

Example 2 Consider an economy with two agents (i = 1, 2), with endowments

equal to 0. The probabilities are equivalent: π1
s =

(
1
2

)s
, π2

s = 1
Sα

1−αs

2s , where

1 < α < 1, and Sα =
∑

s
1−αs

2s . Agent 1 is risk neutral.

The reward utilities satisfy

u1′(x) = 1, ∀x ∈ R,

u2′(x) = a2, ∀x ≥ 0,

u2′(−∞) = +∞,

u2′(x) > a2, ∀x < 0.

Assume there exists an equilibrium (p, (x1, x2)). Then x1s = −x2s = xs for any

s. There exists λ > 0 such that

λ

2s
u1′(xs) =

1− αs

Sα2s
u2′(−xs)∀s

⇔ u2′(−xs) = λ
Sα

1− αs
∀s.

Since
∑

s psxs = 0 and ps > 0 for all s, there exists xs0 ≤ 0, i.e −xs0 ≥ 0.

Then

a2 = λ
Sα

1− αs0

and ∀s ̸= s0, xs > 0. Hence u2′(−xs0+1) > a2. This implies

λ
Sα

1− αs0+1
> λ

Sα

1− αs0
⇒ αs0+1 > αs0 .

A contradiction.
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Example 3 Agent 2 is risk neutral. The reward utilities satisfy

u1′(x) = b1, ∀x ≤ 0,

u1′(+∞) = 0,

u1′(x) < b1, ∀x > 0,

u2′(x) = 1, ∀x ∈ R.

Assume there exists an equilibrium (p, (x1, x2)). Then x1s = −x2s = xs for any

s. There exists λ > 0 such that

u1′(xs) = λ
1− αs

Sα
∀s.

Since
∑

s psxs = 0 and ps > 0 for all s, there exists xs0 ≤ 0, i.e −xs0 ≥ 0.

Then

b1 = λ
1− αs0

Sα

and ∀s ̸= s0, xs > 0. Hence u1′(xs0+1) < b1. This implies

λ
1− αs0+1

Sα
< λ

1− αs0

Sα
⇒ αs0+1 > αs0 .

A contradiction.

Remark 1 When there are short-sales constraints, the allocation set A is com-

pact in lp(π) for any p. Indeed, suppose we have short-sales constraints xis ≥ cs

for every i, s, with c = (c1, c2, . . . , cs, . . . ) ∈ lp(π). We also have for every

(x1, x2, . . . , xm) which belongs to A:

xis = es −
∑
j ̸=i

xjs ≤ es −
∑
j ̸=i

cs ≤ |es|+ (m− 1)|cs|.

A is hence compact for the product topology. Suppose that the sequence (x1(n), x2(n), . . . , xm(n))

belong to A converges to (x1, x2, . . . , xm) for the product topology when n tends

to infinity. We have for every i,

cs ≤ xis ≤ |es|+ (m− 1)|cs|.

This implies that (x1, x2, . . . , xm) ∈ lp(π). The set of individually rational al-

locations A is compact in lp(π). That implies the compactness of U and the

existence of a quasi-equilibrium. This explain why in our paper we assume no

short-sales constraints.

Concluding remarks (a) In our model with an infinitely countable number

of states of nature, the sufficient conditions for the existence of an equilibrium

are:
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(i) Either the marginal utilites at +∞ equal zero for all the agents,

(ii) or the marginal utilites at −∞ equal +∞ for all the agents.

We give examples where agents do not satisfy the conditions above. Their

utility functions satisfy the no-arbitrage condition à la Werner. However there

is no equilibrium.

(b) Our sufficient conditions differ from the ones in Le Van and Truong Xuan

(Assumption H4) [16], and Daher, Martins-da-Rocha, Vailakis, [11] (Assump-

tion S4). Put in our model, these conditions are stronger than ours. Indeed,

they imply, for our model, that for all the agents, the marginal utilities at +∞
equal zero and the marginal utilities at −∞ equal +∞.

4 Appendix

Proof of Proposition 1

Take any NA-price p. There exists (xi), λ1, λ2, . . . , λm positive such that

for all i, s: ps = λiπi
su

i′(xis).

(i) For i, j ∈ I2 we have λiaiπi
s = λjajπj

s, ∀s. Take the sum we have:

∞∑
s=1

λiaiπi
s =

∞∑
s=1

λjajπj
s.

This implies λiai = λjaj , hence πi = πj .

(ii) We firstly prove that the exists C > 0 such that:

∑
i∈I1

∞∑
s=1

πi
s|xis| ≤ C.

Define e′ = e−
∑

i∈I2 x
i =

∑
i∈I1 x

i ∈ l1(π).

For i ∈ I1, since ai < infs u
i′(xis) ≤ sups u

i′(xis) < bi, we have xi ∈ l∞(π).

Observe that p ∈ l∞(π).

Choose η > 0 such that

ai < ui′(xis)(1 + η) < bi for

for all i ∈ I1. Then we define the price q as follows: ∀i, j ∈ I1,

qs = ps(1 + η) = λiπi
su

i′(xis)(1 + η) = λjπj
su

j′(xjs)(1 + η).

It follows that, for each i ∈ I1, there exist zi such that ∀s, qs = λiπi
su

i′(zis).

Observe that ai < infs u
i′(zis) ≤ sups u

i′(zis) < bi, so zi ∈ l∞(π). Observe also

that ∀s, ps < qs.

10



Denote

x+ : =

{
x if x > 0,

0 if x ≤ 0

x− : =

{
−x if x < 0,

0 if x ≥ 0

Observe that x = x+−x−, |x| = x++x− and u(x) = u(x+)+u(−x−)−u(0).

Now we fix N ∈ N. For i ∈ I1, from the concavity of the utility function ui

we have

λi
N∑
s=1

πi
su

i(xis)− λi
N∑
s=1

πi
su

i(xi+s ) ≥ λi
N∑
s=1

πi
su

i′(xis)(x
i
s − xi+s ),

λi
N∑
s=1

πi
su

i(zis)− λi
N∑
s=1

πi
su

i(−xi−s ) ≥ λi
N∑
s=1

πi
su

i′(zis)(z
i
s + xi−s ).

Therefore,

λi
N∑
s=1

πi
su

i′(zis)x
i−
s ≤ λi

N∑
s=1

πi
s[u

i(zis) + ui(xis)− ui(xi+s )− ui(−xi−s )]

−λi
N∑
s=1

πi
su

i′(zis)z
i
s + λi

N∑
s=1

πi
su

i′(xis)x
i+
s − λi

N∑
s=1

πi
su

i′(xis)x
i
s.

Define U i
N (x) :=

∑N
s=1 π

i
su

i(xs). Note that limN→∞ U i
N (x) = U i(x). The

above inequality implies

N∑
s=1

qsx
i−
s ≤ λi[U i

N (zi) + U i
N (xi)− U i

N (xi)− U i
N (0)]

−
N∑
s=1

qsz
i
s +

N∑
s=1

psx
i+
s −

N∑
s=1

psx
i
s

≤ λi[U i
N (zi) + U i

N (xi)− U i
N (xi)− U i

N (0)]

−
N∑
s=1

pisx
i
s −

N∑
s=1

qsz
i
s +

N∑
s=1

psx
i+
s

= Ci
N +

N∑
s=1

psx
i+
s

where Ci
N = λi[U i

N (zi) + U i
N (xi)− U i

N (xi)− U i
N (0)]−

∑N
s=1 p

i
sx

i
s −

∑N
s=1 qsz

i
s.

Observe that since xi et zi belong to l∞(π), the limit limN Ci
N exists.

Hence, ∀i
N∑
s=1

(qs − ps)x
i−
s ≤ Ci

N +

N∑
s=1

psx
i
s.

11



Thus, we have∑
i∈I1

N∑
s=1

(qs − ps)x
i−
s ≤

∑
i∈I1

Ci
N +

∑
i∈I1

N∑
s=1

psx
i
s =

∑
i∈I1

Ci
N +

N∑
s=1

pse
′
s.

Since e′ ∈ l1(π),
∑

i∈I1 C
i
N +

∑N
s=1 pse

′
s converges. Now let N tends to

infinity. Notice that U i
N (x) → U i(x) for all x, and recall that U i(xi) ≥ U i(ei),

with xi, zi ∈ l∞(π). We then have

lim sup
N→∞

Ci
N ≤ λi[U i(zi) + U i(xi)− U i(ei)− U i(0)]−

∞∑
s=1

qsz
i
s −

∞∑
s=1

psx
i
s =: Ci.

Thus, ∑
i∈I1

∞∑
s=1

(qs − ps)x
i−
s ≤

∑
i∈I1

Ci +

∞∑
s=1

pse
′
s =: C1 +

∞∑
s=1

pse
′
s.

We also have∑
i∈I1

∞∑
s=1

(qs − ps)(x
i+
s − xi−s ) =

∑
i∈I1

∞∑
s=1

(qs − ps)x
i
s =

∞∑
s=1

(qs − ps)e
′
s

which implies∑
i∈I1

∞∑
s=1

(qs − ps)x
i+
s =

∞∑
s=1

(qs − ps)e
′
s +

∑
i∈I1

∞∑
s=1

(qs − ps)x
i−
s

≤ C1 +

∞∑
s=1

pse
′
s +

∞∑
s=1

(qs − ps)e
′
s

= C1 +

∞∑
s=1

qse
′
s.

Thus for i ∈ I1
∞∑
s=1

(qs − ps)|xis| ≤ 2C1 +

∞∑
s=1

(ps + qs)e
′
s

= 2C1 + (2 + η)

∞∑
s=1

pse
′
s

= 2C1 + (2 + η)

∞∑
s=1

pses − (2 + η)
∑
i∈I2

∞∑
s=1

psx
i
s

= 2C1 + (2 + η)
∞∑
s=1

pses − (2 + η)
∑
i∈I2

λiai
∞∑
s=1

πi
sx

i
s

= 2C1 + (2 + η)

∞∑
s=1

pses − (2 + η)
∑
i∈I2

λiU i(xi)

≤ 2C1 + (2 + η)

∞∑
s=1

pses − (2 + η)
∑
i∈I2

λiU i(ei)

= C2,
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then

η

∞∑
s=1

ps|xis| ≤ C2.

Let µi := infs u
i′(x̄is) > 0, and µ := mini µi. Then

∑∞
s=1 ps|xis| ≥ µ

∑∞
s=1 π

i
s|xis|

which implies for all i ∈ I1
∞∑
s=1

πi
s|xis| ≤ D1

with D1 = C2/(ηµ).

For I2 we have:

∞∑
s=1

πI
s |
∑
i∈I2

xis| ≤
∞∑
s=1

πI
s |es|+

∑
i∈I1

∞∑
s=1

πi
s|xis|

≤ D2

with D2 =
∑∞

s=1 π
I
s |es|+ |I1|D1.

We take C = max{D1, D2}.
(iii) By Jensen inequality, the utility set U is bounded.

Proof of Proposition 2

(i) Consider the case where I2 = ∅.
(a) Assume ui′(−∞) = +∞, for any i. Let z satisfy a1 < u1′(z). For i > 1,

let

ζis =
π1
s

πi
s

u1′(z), ∀s.

Then 1
hu

1′(z) ≥ ζis ≥ hu1′(z). One can find λi s.t. ζis
λi ≥ αi > ai. Define

ui′(xis) =
ζis
λi

, ∀s.

Then

ai < αi ≤ ui′(xis) ≤
1

λih
u1′(z),∀s

Since bi = +∞, we have xi ∈ l∞(π). Obviously

λiπi
su

i′(xis) = π1
su

1′(z), ∀s.

(b) Assume ui′(+∞) = 0 for all i. Let z satisfy 0 < u1′(z) < b1. Define ζis
as before. We have ζis ≤ 1

hu
1′(z). Choose λi s.t.

ζis
λi ≤ βi < bi. Then define xis as before. Using the same arguments, we have

λiπi
su

i′(xis) = π1
su

1′(z), ∀s.

(ii) Now we consider the case where I2 ̸= ∅. If (NA) holds, let p be a

(NA)-price. There exists (xi), λ1, λ2, . . . , λm positive such that for all i, s we

13



have ps = λiπi
su

i′(xis).

For i, j ∈ I2 we have λiaiπi
s = λjajπj

s, ∀s. Take the sum we have:

∞∑
s=1

λiaiπi
s =

∞∑
s=1

λjajπj
s.

This implies λiai = λjaj , hence πi = πj .

Conversely, assume that πk = πl = π′, ∀k ∈ I2, ∀l ∈ I2. Assume 1 ∈ I2. For

i ∈ I2, i ̸= 1, choose λi such that λiai = a1.

Consider the case ui′(−∞) = +∞,∀i ∈ I1.

For i ∈ I1, define ζis:

1

h
a1 ≥ ζis =

a1π1
s

πi
s

≥ a1h

There exists λi s.t.
ζis
λi

≥ αi > ai

and

ai < ui′(xis) =
ζis
λi

≤ 1

h
a1.

Since bi = +∞, we have xi ∈ l∞(π). Obviously

λiπi
su

i′(xis) = π1
su

1′(z), ∀s.

We use the same argument as before if ui′(+∞) = 0,∀i ∈ I1.

Proofs of Theorems 1, 2

The proofs require many intermediary steps.

Claims 1, 2 and 3 are required for the proof of Claim 4.

Claim 1 Assume A0. Our model has an equilibrium if we add the assumption

that U is compact. If Xi is lp(π) with 1 ≤ p < +∞ then the equilibrium price

p∗ is in lq(π), 1
p + 1

q = 1. If p = +∞, then p∗ ∈ l1(π).

Proof : Since U is compact andXi is lp(π) there exists an equilibrium ((x∗i), p∗)

(see Dana and al [9]) with x∗i ∈ lp(π).

When 1 ≤ p < +∞, the price p∗ belongs to lq(π). When p = ∞ we will

show that the equilibrium price belongs to l1(π). The equilibrium price can be

written as p∗ + ϕ where p∗ ∈ l1(π) and ϕ is a purely finitely additive function.

For any i, the equilibrium allocation x∗i solves the problem:

max

∞∑
s=1

πi
su

i(xis),

s.t.

∞∑
s=1

p∗sx
i
s + ϕ(xi) =

∞∑
s=1

p∗se
i
s + ϕ(ei).

14



From Theorem V.3.1, page 91, in Arrow-Hurwicz-Uzawa in [2], for any i,

there exists ζi > 0 s.t.

∞∑
s=1

πi
su

i(x∗is )− ζi(

∞∑
s=1

p∗sx
∗i
s + ϕ(x∗i)) ≥

∞∑
s=1

πi
su

i(xs)− ζi(

∞∑
s=1

p∗sxs + ϕ(xi)).

Suppose that ϕ ̸= 0. Since ϕ ≥ 0, then ϕ(1) > 0 , with 1 = (1, 1, 1, . . .).

Define xi(N) as:

xis(N) = x∗is with s = 1, 2, . . . , N,

xis(N) = x∗is − 1 with s ≥ N + 1.

Observe that xi(N) ∈ l∞(π). We have:

∞∑
s=1

πi
su

i(x∗is )−ζi(

∞∑
s=1

p∗sx
∗i
s +ϕ(x∗i)) ≥

∞∑
s=1

πi
su

i(xis(N))−ζi(

∞∑
s=1

p∗sx
i
s(N)+ϕ(xi(N)))

⇒∑
s≥N+1

πi
su

i(x∗is )−ζi(
∑

s≥N+1

p∗sx
∗i
s +ϕ(x∗i)) ≥

∑
s≥N+1

πi
su

i(x∗is −1)−ζi(
∑

s≥N+1

p∗s(x
∗i
s −1)+ϕ(x∗i−1))

⇒∑
s≥N+1

πi
su

i(xi∗s )−
∑

s≥N+1

πi
su

i(x∗is − 1)− ζi
∑

s≥N+1

p∗s ≥ ζi(ϕ(x∗i)− ϕ(x∗i − 1)) = ζiϕ(1).

Let N → ∞, the left-hand-side converges to 0. This implies ϕ(1) ≤ 0: a

contradiction. Hence ϕ = 0.

Claim 2 A closed, bounded set B in l1(π) is compact if and only if B satisfies

the following property: For all ϵ > 0, there exists N ∈ N such that for all x ∈ B

we have ∑
s≥N

πs|xs| < ϵ.

Proof : Suppose that B is compact and there exists a subsequence {x(n)}n of

B, ϵ > 0 such that
∞∑
s=n

πs|xs(n)| > ϵ, ∀n.

Without loss of generality, we can assume that x(n) converges to x in l1(π) or

∥x(n)− x∥l1(π) → 0.
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By choosingN large enough such that ∥x(n)−x∥l1(π) < ϵ
2 and

∑
s≥n πs|xs| <

ϵ
2 for all n ≥ N . And for all n ≥ N we have

∞∑
s=n

πs|xs| ≥
∞∑
s=n

πs|xs(n)| −
∞∑
s=n

πs|xs(n)− xs|

> ϵ− ϵ

2
=

ϵ

2
.

A contradiction.

Now we suppose that for any ϵ > 0, there exists N such that ∀x ∈ B,∑∞
s=N πs|xs| < ϵ.

We have to prove that for any sequence x(n) ∈ B, there exists a convergent

subsequence of x(n) in l1(π).

SinceB is bounded in l1(π), there exists a > 0 such that, ∀ x ∈ B,
∑

s≥1 πs|xs| ≤
a.

Since {x(n)}n belong to a compact set for the product topology, there exists

a subsequence {x(nk)}k which converges to x for the product topology. In

particular for all s, xs(nk) converges to xs when k → ∞.

Fix ϵ > 0. We will prove that for k, l big enough, ∥x(nk)− x(nl)∥l1(π) < ϵ.

Choose N > 0 such that for all x ∈ B,
∑

s≥N πs|xs| < ϵ
4 . Choose M such that

for all nk > M we have
∑M

s=1 πs|xs(nk) − xs| < ϵ
4 . For all nk ≥ N0, nl ≥ N0

where N0 = max{N,M} we have
∑N0

s=1 πs|xs(nk)−xs(nl)| ≤
∑N0

s=1 πs|xs(nk)−
xs|+

∑N0
s=1 πs|xs(nk)− xs| < ϵ

2 .

Then

∑
s≥1

πs|xs(nk)− xs(nl)| ≤
N0−1∑
s=1

πs|xs(nk)− xs(nl)|+
∑
s≥N0

πs|xs(nk)|+
∑
s≥N0

πs|xs(nl)|

< ϵ

Hence {x(nk)}k is a Cauchy sequence, then it converges in l1(π) topology. So

B is compact in l1(π) topology.

The following claim is a corollary of Claim 2.

Claim 3 1. A closed, bounded set B in l1(π) is compact for l1(π)-topology if

and only if it is compact for the weak topology σ(l1(π)), l∞(π)).

2. A closed, bounded set B in lp(π), p > 1 is compact for l1(π).

Proof : 1. Since Lemma 2 is equivalent to the Dunford-Pettis criterion, the

result follows.

2. For p > 1, a closed bounded set is σ(lp(π), lq(π))-compact. But it is also

σ(l1(π), l∞(π))-compact, since lp(π) ⊂ l1(π) and l∞(π) ⊂ lq(π). Apply state-

ment 1.
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Claim 4 Assume A0. If bi = +∞ for all i, then the allocation set A is l1(π)-

compact. The set U is also compact.

Proof : The idea of the proof is that, if the attainable allocation sequence does

not belong to a weakly compact set, then for some state s, there will be an

agent i such that xis tends to +∞ and an agent j such that xjs tends to −∞.

Then by reducing xis and increasing xjs, the value of U i(xi) does not diminish

very much. Because bj = +∞, the value of U j(xj) will become very large,

even tends to infinity, and that leads us to a contradiction with the bounded

property of U .
Assume the contrary: A is not compact. Then from Claim 2, there exists

a sequence {(x1(n), x2(n), ..., xm(n))}n ⊂ A, an agent i and a constant ϵ > 0

such that

∀ n,

∞∑
s=n

πi
s|xis(n)| > ϵ.

Denote for all k, vk := lim supn→∞ Uk(xk(n)).

By Proposition 1, A is bounded in l1(π). We can suppose, without loss gen-

erality, that
∑∞

s=n π
i
s|xis(n)| → ci > 0 when n → ∞. This implies limn

∑∞
s=n π

i
sx

i+
s (n)−

limn
∑∞

s=n π
i
sx

i−
s (n) = ci. The limits of these two sums exist because xi ∈ l1(π).

We know that
∑

j ̸=i x
i
s(n) = es − xis(n). So, for every s, ∃j such that xjs(n) ≤

−xi
s(n)−|es|
m−1 . Since there is a finite number of agents j ̸= i, we can assume that,

for simplicity, there exist i and j which satisfy two properties:

(i) ∃ Ei
n ⊂ N ∩ {s ≥ n}, xis > 0 for all s ∈ Ei

n and

lim
n

∑
s∈Ei

n

πi
sx

i
s(n) = ci > 0.

(ii) For all s ∈ Ei
n

xjs(n) ≤ −xis(n)− |es|
m− 1

.

With each M > 0, define the set Si
n ⊂ Ei

n as follows

Si
n = {s : xis(n) > |es|+M(m− 1)}.

We have an observation: limn
∑

Ei
n\Si

n
πi
sx

i
s(n) = 0. Indeed

lim
n→∞

∑
s∈Ei

n\Si
n

πi
sx

i
s(n) ≤

∑
s∈Ei

n\Si
n

πi
s (|es|+M(m− 1))

≤
∞∑
s=n

πi
s|es|+M(m− 1)

∞∑
s=n

πi
s

17



which tends to zero, since e ∈ l1(π).

Hence we have Si
n ̸= ∅ for all n big enough, and

lim
n→∞

∑
s∈Si

n

πi
sx

i
s(n) = ci.

We have

xjs(n) ≤
|es| − xis(n)

m− 1
< −M.

Since πi and πj are equivalent, we can assume that limn
∑

s∈Si
n
πj
sxis(n) = cj >

0. Notice that these limits do not depend on M .

Define α := min(vk, vi − ui′(0)ci

m−1 ) − 1, (k = 1, . . . ,m). Define Aα the set of

(xk) ∈ l1(π) satisfies Uk(xk) ≥ α ∀k and
∑

xk = e. Using the same proof

as in Proposition 1, we show there exists C > 0 such that U j(xj) < C for all

(x1, . . . , xm) ∈ Aα. Notice that our sequence (xk(n)) ∈ Aα for n large enough.

Since bj = +∞ we can choose M very big such that

vj +
uj′(−M)cj

m− 1
> C.

Now consider the sequence (y1(n), y2(n), . . . , ym(n)) defined as follows

yis(n) := xis(n)−
xis − |es|
m− 1

+M with s ∈ Si
n,

yjs(n) := xjs(n) +
xis − |es|
m− 1

−M with s ∈ Si
n.

Let yks = xks with every k ̸= i, j or s /∈ Si
n.

Notice that
∑

i y
i(n) = e, and yis(n) ≤ xis(n), y

j
s(n) ≥ xjs(n) for all s. We

will prove that {U l(yl(n))}l=1,m is bounded below by α, but U j(yj(n)) is not

bounded above by C. And this is a contradiction.

Indeed,

U i(yi(n))− U i(xi(n)) =
∑
s∈Si

n

πi
s(u

i(yis(n))− ui(xis(n)))

≥
∑
s∈Si

n

πi
su

i′(xis(n)−
xis(n)− |es|

m− 1
+M)(−xis(n)− |es|

m− 1
+M)

≥
∑
s∈Si

n

πi
su

i′(M)(− xis(n)

m− 1
) + ui′(M)(

|es|
m− 1

+M)
∑
s∈Si

n

πi
s

≥ −ui′(M)

m− 1

∑
s∈Si

n

πi
sx

i
s(n) + ui′(M)(

|es|
m− 1

+M)
∑
s∈Si

n

πi
s.

When n → ∞, the second term of the right hand side term in the inequality

above tends to zero while first term tends to −ui′(M)ci

m−1 . Thus,

lim sup
n→∞

U i(yi(n)) ≥ vi − ui′(M)ci

m− 1
≥ vi − ui′(0)ci

m− 1
> α.
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For n large enough, Uk(yk(n)) is bounded below by α,∀k ̸= j. Then we can

estimate the limit of U j(yj(n)) when n → ∞,

U j(yj(n))− U j(xj(n)) =
∑
s∈Si

n

πj
s(u

j(yjs(n))− uj(xjs(n)))

≥
∑
s∈Si

n

πj
su

j′(xjs(n) +
xis(n)− |es|

m− 1
−M)(

xis(n)− |es|
m− 1

−M)

≥
∑
s∈Si

n

πj
su

j′(−M)(
xis(n)− |es|

m− 1
−M)

≥ uj′(−M)

m− 1

∑
s∈Si

n

πj
sx

i
s(n)−Muj′(−M)

∑
s∈Si

n

πj
s −

uj′(−M)

m− 1

∑
s∈Si

n

|es|πj
s.

Take the limit

lim sup
n→∞

U j(yj(n)) ≥ vj +
uj′(−M)cj

m− 1
> C.

A contradiction. Hence A is l1(π)-compact.

The proof of Claim 6 requires Claim 5

Claim 5 Suppose that A is bounded and (v1, v2, . . . , vm) is in the closure of

U . Suppose that there exists a sequence {x(n)}n ⊂ A such that there exists i

such that limn U
i(xi(n)) > vi, and for all j ̸= i , limn U

j(xj(n)) ≥ vj. Then

(v1, v2, . . . , vm) ∈ U .

Proof : Fix t ∈ N arbitrarily. Let C > 0 be the upper bound of A in l1(π), we

know that |xjt (n)| < C

πj
t

for all j and all n. Fix some j. We define the sequence

{yk(n)}k=1,...,m as follows

yk(n) = xk(n) if k ̸= i, j,

yis(n) = xis(n) if s ̸= t,

yit(n) = xit(n)− ϵ,

yjt (n) = xjt (n) + ϵ.

For k ̸= i, j, limn U
k(yk(n)) = vk. And we have

U i(yi(n))− U i(xi(n)) = πi
t(u

i(yit(n))− ui(xit(n)))

≥ πi
t(−ϵ)ui′(xit(n)− ϵ) ≥ −ϵπi

tu
i′(−C

πi
t

− ϵ)

and

U j(yj(n))− U j(xj(n)) = πj
t (u

j(yjt (n))− uj(xjt (n)))

≥ πj
t ϵu

j′(xjt (n) + ϵ) ≥ ϵπj
tu

j′(
C

πj
t

+ ϵ).

19



Since lim infn U
i(xi(n)) > vi, by choosing ϵ small enough, the sequence {y(n)}n

will satisfy lim infn U
i(yi(n)) > vi and lim infn U

j(yj(n)) > vj .

By induction we can find a sequence {zk(n)}n ⊂ A which satisfies limn U
k(zk(n)) >

vk for all k = 1, 2, . . . ,m. Hence (v1, v2, . . . , vm) ∈ U .

Claim 6 Assume A0. If ai = 0 for all i, then U is compact.

Proof : Since the (NA) condition holds, from Proposition 1, we know that U is

bounded. We will prove that U is closed. Suppose that (v1, . . . , vm) belong to

the closure of U and the sequence {x(n)}n ⊂ A such that limn U
i(xi(n)) = vi.

If the sequence {x(n)}n belongs to a compact set of l1(π), without loss of

generality, we can suppose that limn x
i(n) = xi in this topology. Since U i is

continuous, we have U i(xi) ≥ vi for all i. Thus (v1, . . . , vm) ∈ U .
If the sequence {x(n)}n does not belong to a compact set, we can suppose

that there exists c > 0 such that for an agent i

lim
n→∞

∞∑
s=n

πi
s|xis(n)| = c.

As in the proof of Claim 4, we can choose a pair (i, j) which satisfies the

two properties:

(i) ∃ Ei
n ⊂ N ∩ {s ≥ n}, xis > 0 for all s ∈ Ei

n and

lim
n

∑
s∈Ei

n

πi
sx

i
s(n) = ci > 0.

(ii) For all s ∈ Ei
n

xjs(n) ≤ −xis(n)− |es|
m− 1

.

With each M > 0, define the set Si
n ⊂ Ei

n as follows

Si
n = {s : xis(n) > |es|+M(m− 1)}.

We have an observation: limn
∑

Ei
n\Si

n
πi
sx

i
s(n) = 0. Indeed

lim
n→∞

∑
s∈Ei

n\Si
n

πi
sx

i
s(n) ≤

∑
s∈Ei

n\Si
n

πi
s (|es|+M(m− 1))

≤
∞∑
s=n

πi
s|es|+M(m− 1)

∞∑
s=n

πi
s

which tends to zero, since e ∈ l1(π).

Hence we have Si
n ̸= ∅ for all n big enough, and

lim
n→∞

∑
s∈Si

n

πi
sx

i
s(n) = ci.
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We have

xjs(n) ≤
|es| − xis(n)

m− 1
< −M.

Since πi and πj are equivalent, we can assume that limn
∑

s∈Si
n
πj
sxis(n) = cj >

0. Notice that these limits do not depend on M .

Define α := min(vk, vi − ui′(0)ci

m−1 ) − 1, (k = 1, . . . ,m). Define Aα the set of

(xk) ∈ l1(π) satisfies Uk(xk) ≥ α ∀k and
∑

xk = e. From Proposition 1 we

know that there exists C > 0 such that U j(xj) < C for all (x1, . . . , xm) ∈ Aα.

Notice that our sequence (xk(n)) ∈ Aα for n large enough. Fix ϵ > 0. Since

ui′(+∞) = 0 we can choose M > 0 such that ui′(M) < (m− 1)ϵ/c. By similar

arguments as in the proof of Claim 4, we can construct the sequence (yk(n))

such that:

lim
n→∞

U i(yi(n)) ≥ vi − ui′(M)ci

m− 1

lim
n→∞

U j(yj(n)) ≥ vj +
uj′(−M)cj

m− 1

lim
n→∞

Uk(yk(n)) = vk for all k ̸= i, j

with ci, cj > 0 and ci < c and ci and cj do not depend on M .

So, for n large enough, U i(yi(n)) > vi − ϵ, and for all k ̸= i, j, Uk(yk(n)) >

vk − ϵ whereas limn U
j(yj(n)) = vj + uj′(−M)cj

m−1 > vj + uj′(0)cj

m−1 > vj . Let ϵ → 0

and by applying Claim 5, we have (v1, v2, . . . , vm) ∈ U . Proof of Theorem

1

This is a direct consequence of Claims 4, 6 and 1.

The proof of the last theorem, Theorem 2, requires Claims 7 and 8.

Claim 7 Assume A0. Assume that there is only one risk neutral agent, I2 =

{i0}. If ai = 0 and bi = +∞ for all i ∈ I1, then (NA) holds, and U is compact.

Proof : Condition (NA) holds as a direct consequence of Claim 1. Now we

prove that U is compact.

Suppose that the feasible sequence {xn} satisfies limn U
i(xin) = vi for every

i. We prove that (v1, . . . , vm) ∈ U .
First case, the sequence {xn} belongs to a compact set, we have (v1, v2, . . . , vm)

belongs to U .
Second case, the sequence {xn} does not belong to a compact set. By using

the same arguments in the proof of Proposition 4, there exist i and j which

satisfy two properties:
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(i) ∃ Ei
n ⊂ N ∩ {s ≥ n}, xis > 0 for all s ∈ Ei

n and

lim
n

∑
s∈Ei

n

πi
sx

i
s(n) = ci > 0.

(ii) For all s ∈ Ei
n

xjs(n) ≤ −xis(n)− |es|
m− 1

.

If j ̸= i0, since bj = +∞, by using the same arguments in the proof of Propo-

sition 4 we have a contradiction.

This implies j = i0. Hence i ̸= i0, and we have ai = 0. By using the same

arguments in the proof of Proposition 6, we have (v1, . . . , vm) ∈ U .
Hence U is compact.

Claim 8 Let f1, . . . , fn, be n vectors in lp(π), and p ∈ l∞(π). Take any x ∈
lp(π) such that p · x = p ·

∑
i f

i. Then there exists x1, . . . , xn in lp(π) such that∑
i x

i = x and p · xi = p · f i for all i.

Proof : This is true for n = 1. Suppose that the claim is true for n− 1. Take

any x1 such that p · x1 = p · f1. We have p · (x− x1) = p ·
∑n

i=2 f
i. Using the

hypothesis of induction, there exists x2, . . . , xn such that
∑n

i=2 x
i = x−x1 and

p · xi = p · f i for all i.

Proof of Theorem 2

In the proof of Proposition 2, we have πi = πj = πI and λia
i = λja

j = ζ,

for all i, j ∈ I2. For x
I ∈ l1(π) satisfying xI =

∑
i∈I2 x

i, with xi ∈ l1(π), define

U I(xI) =
∑
i∈I2

λiU
i(xi).

We consider now the economy EI with |I1| + 1 agents, |I1| agents who are

risk averse, with endowment ei, utility function U i, and the last agent (denoted

by I) with endowment eI =
∑

i∈I2 e
i, utility function U I . It is easy to verify

that agent I is risk neutral, with

U I(xIs) = ζ

∞∑
s=1

πI
sx

I
s,

and the new economy satisfies (NA) condition. By Claim 7, this economy has

a compact rational utility set and have an equilibrium, denote by (p∗, x∗). For

all i ∈ I1, x
∗i is the solution to

max

∞∑
s=1

πi
su

i(xis)

s.t.

∞∑
s=1

p∗sx
i
s =

∞∑
s=1

p∗se
i
s.
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and x∗I is the solution to

maxU I(xI)

s.t.
∞∑
s=1

p∗sx
I
s =

∞∑
s=1

p∗se
I
s.

If U I(xi) > U I(x∗I), then p∗ · xi > p∗ · eI .
By the same arguments in the proof of Claim 1, there exists λ∗

i > 0, λI > 0

such that for i ∈ I1, p
∗
s = λiπ

i
su

i′(x∗is ). For I, we have p∗s = ζπI
s = λia

iπI
s ,

∀i ∈ I2, ∀s. The function U I is strictly increasing, so

p∗ · x∗I = p∗ · e∗I = p∗ ·
∑
i∈I2

ei.

By Claim 8, for all i ∈ I2 there exist x∗i ∈ lp(π) such that
∑

i∈I2 x
∗i = x∗I , and

p∗ · x∗i = p∗ · ei, ∀i.
Fix i ∈ I2. Take x

i such that U i(xi) > U i(x∗i). We prove that p∗ ·xi > p ·ei.
Indeed, we have

U i(xi) =

∞∑
s=1

aiπi
sx

i
s =

1

λi

∞∑
s=1

λia
iπi

s =
1

λi

∞∑
s=1

p∗sx
i
s.

Hence U i(xi) > U i(x∗i) implies p∗ · xi > p∗ · x∗i = p∗ · ei.
From Claim 1, the equilibrium price p∗ is in lq(π) with 1 ≤ p < +∞,

1
p + 1

q = 1 and if p = +∞, then p∗ ∈ l1(π). We have proved that (p∗, (x∗i)i) is

an equilibrium of the model.

Conversely, suppose that the model has an equilibrium, then by using Propo-

sition 2, we have (NA). The proof of Theorem 2 is complete.
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