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Finite deformations of an initially stressed cylindrical shell
under internal pressure

P.B. Gonçalves, D. Pamplona, S.R.X. Lopes

Civil Engineering Department, Pontifical Catholic University, Rio de Janeiro, Brazil
This paper investigates the large deformations of an extended thick cylindrical tube under internal pressure, with emphasis on the static
nonlinear behavior and instabilities of the shell. Thick elastic tubes that undergo large elastic deformations under internal pressure can
exhibit novel instabilities. After some deformation, part of the tube becomes highly deformed taking the form of a bulge, while the
remainder appears almost unchanged. This local instability phenomenon corresponds to a limit point along the nonlinear equilibrium
path. After the onset of these highly nonuniform deformations, the local bulge initially grows with a marked decrease in internal pressure
while the rest of the tube unloads. First, a detailed experimental analysis is carried out involving different geometries and initial axial
forces and the influence of the axial force and of the internal pressure on the critical pressure is investigated. The shell used in the
experiments is composed of an isotropic, homogeneous and hyperelastic rubber, which is modeled as a Mooney–Rivlin incompressible

material, described by two elastic constants. These constants are obtained by comparing the experimental and numerical solutions for the
shell under axial tension. The governing shell equations are solved numerically using the finite-element method, using the program
ABAQUS. The experimental results are, as shown in the paper, in satisfactory agreement with the numerical analysis.

Cylindrical shell; Thick shell; Finite deformations; Hyperelastic material; Local buckling; Large deformations
1. Introduction

Rubber structures are common in several engineering
applications and everyone is familiar with some of the
physical properties of this class of polymers called
elastomers. They are capable of being stretched to several
times their original length with relatively small applied
forces and, when the force is released, they retract rapidly
to the unstressed length with heat transfer on rebound very
close to zero. Also, under moderately large deformations,
after unloading, they present no permanent deformation as
he extension process and, when they are fully
hey exhibit very high tensile strength and
ese properties are all observable on the
level.
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The linear constitutive relations valid for the small-strain
regime can be sometimes extended to the large displace-
ment small strain case but can lead to unrealistic results
when large deformations are present. In such cases,
elasticity in the fully nonlinear range must be employed.
Seminal contributions in this field include the papers by
Rivlin and co-workers [1,2]. His work on the mechanics of
rubber (in the 1940s and 1950s) established the basis of
finite-elasticity theory. An historical account of large-
deformation theory and applications to about 1953 has
been given by Truesdell [3]. This has been followed by the
classical work of Green and Adkins [4] on nonlinear
elasticity. Historically, the large deformations observed in
rubber-like materials under several loading conditions
motivated researchers over decades to express the asso-
ciated nonlinear elastic behavior through hyperelastic
models [5]. Among the hyperelastic models, strain invariant
based Mooney–Rivlin model [6,7] is the oldest one. One of
the simplest constitutive models is the neo-Hookean model,



which involves only one elastic constant. Most constitutive
relations perform well up to moderate extension range, but
cannot represent the strain-hardening behavior typically
exhibited by rubbers at very large strain levels [8].
Subsequently, Hart-Smith [9], Alexander [10] and Arruda
and Boyce [11], among others, proposed improved models
to include a larger class of deformations. Furthermore,
stretch-based models such as those proposed by Ogden
[12,13] were also formulated.

The analysis of thin hyperelastic cylindrical shells has
been a problem of continued interest. The investigation of
the equilibrium and stability of thin cylindrical tubes under
uniform pressure loading or loads acting along the
boundaries has been examined theoretically, for instance,
by Corneliussen and Shield [14]; Alexander [15], Haughton
and Ogden [16,17]; Ratner [18]; Li and Steigmann [19],
Haseganu and Steigmann [20]; Chen [21]; Haughton [22]
and Gent [23]. The number of experimental contributions
to this class of problems is rather small compared with the
theoretical and numerical ones. Among the experimental
investigations in this field the publications of Green and
Adkins [4], Alexander [15], Pamplona and Bevilacqua [24],
Pamplona et al. [25,26] and Vangerko and Treolar [37]
should be mentioned. When the thickness of the cylindrical
tube is small, it can be modeled as an ideal membrane
subjected only to in-plane normal and shearing forces.
When the membrane becomes thicker, flexural effects
cannot be disregarded in the analysis and the structure
must be modeled as a shell or a three-dimensional solid
body.

The analysis of large deformations of hyperelastic thick
shells is not so common, nevertheless there are some
important publications such as the ones by Kyriakides and
Chang [27,28] and, more recently, the works by Tang et al.
[29] and Haussy and Ganghoffer [30] where the theory of
thick hyperelastic shells was used for the modeling of
carotid arteries and aneurysms, respectively.

Elastomeric thick shells are load adaptive, as they
change their geometry to accommodate external loads
with the minimum variation in stress levels, and, therefore,
may be an efficient engineering solution in many practical
fields. In most of these applications the nonlinearities of
deformation and material response are rather important.
This work investigates the nonlinear behavior of extended
thick cylindrical shells suitably supported, both numeri-
cally and experimentally. In the numerical formulation of
the problem, the shell material is considered to be
incompressible, homogenous, and isotropic and it is
modeled as a Mooney–Rivlin incompressible material,
described by two elastic constants. This is in agreement
with the physical characteristics of the rubber shells used in
the experimental investigation. To analyze the large
deformations of the tube, elasticity in the fully nonlinear
range is considered in terms of a hyperelastic strain
potential together with a consistent constitutive law and
implemented in a finite-element (FE) code. In the experi-
mental analysis several geometries and loading cases were
2

investigated and these results were compared with the
numerical results obtained by using the commercial
program ABAQUS [31,32]. This FE code offers a good
library of FE and constitutive laws for the large-deforma-
tion analysis of shells. This has been here used, together
with the Newton–Raphson algorithm and the Riks
continuation method, to obtain the pre- and post-bifurca-
tional behavior of the shell under axial tension and internal
uniform pressure.
When rubber structures are subjected to certain simple

deformations, an unstable condition is reached at a certain
critical point. Recently, Gent [8] presented a review of
several examples of nonuniform deformations in rubber
structures as a result of an inherent elastic instability.
Among these problems is the inflation of extended
cylindrical tubes under increasing internal pressure. An
interesting feature exhibited by inflated thick shells, which
can be observed both numerically and experimentally, is
the initiation and propagation of localized instability. As
the tube is inflated, it first expands radially in a practically
uniform manner until a maximum internal pressure is
reached. At this limit pressure the cylindrical configuration
becomes unstable and a local bulge appear somewhere
along the length of the shell. After the onset of buckling,
there is a sudden decrease in pressure as the bubble
or aneurysm grows, reaching a lower bound at large
deflections. This behavior is known in literature as
localization [33]. This behavior was first predicted by
Mallock [34] and observed in thick hyperelastic membranes
by, among others, Kyriakides and Chang [27,28], who
analyzed this problem both theoretically and experi-
mentally. In some situations, the tube first presents a
global instability mode similar to an Euler column followed
by the formation of the local bulge. An analytical solution
for this local instability considering thin-walled tubes
can be found in Gent [23]. This work is a natural exten-
sion to thick shells of the previous paper by the authors
on the finite deformations and instabilities of a thin
cylindrical membrane under axial tension and internal
pressure [26].

2. Problem formulation

2.1. Material identification

Consider a long and thick cylindrical tube of hyper-
elastic, homogeneous, isotropic and incompressible materi-
al (latex). In its undeformed state, the shell has an external
radius R, length L and thickness H. The material of this
shell is considered to be, based on the experimental results,
homogeneous, isotropic and incompressible. The experi-
ments were conducted on commercially available rubber
latex tubes. Six shells with different geometries were used.
Their geometric characteristics were measured in the
Institute of Metrology of the Catholic University
(ITUC—PUC-Rio) and the results are presented in
Table 1.



Among the more efficient approaches to describe the
thermo-dynamical behavior of rubber-like solids are the
general concepts of statistical mechanics and the con-
tinuum mechanics standpoint, which is phenomenological.
Adopting the phenomenological approach, isotropic
hyperelastic materials are conveniently represented in
terms of a strain energy density w. Assuming the complete
recoverability after deformation, the strain energy density
depends only on the final state of strain and in no way on
the loading history. Thus given an undeformed reference
state, the strain is characterized by the principal stretches
l1, l2 and l3 or, alternatively, by the strain invariants I1, I2
and I3, that is:

w ¼ wðl1; l2; l3Þ ¼ wðI1; I2; I3Þ. (1)

The three strain invariants of the deformation field can be
written in terms of the principal stretches li (i ¼ 1, 2, 3) as

I1 ¼ l21 þ l22 þ l23,

I2 ¼ ðl1l2Þ
2
þ ðl2l3Þ

2
þ ðl1l3Þ

2,

I3 ¼ ðl1l2l3Þ
2. ð2Þ

Volume changes in rubber-like materials are very small
[35] and the simplifying assumption of incompressibility is
usually adopted. Thus the constraint

I3 ¼ 1, (3)
Table 1

Shell geometric parameters

Specimen External radius Thickness Length

R (mm) H (mm) L (mm)

B200 2.42 1.22 80

B204 5.90 2.95 324

B205 6.09 2.19 318

B207 6.95 3.13 318

B209 8.36 2.09 318

B210 9.33 3.58 317

Fig. 1. Experimental analysis of a thick shell under increasing

3

is identically satisfied throughout the material. The strain
energy density is then considered as a function of I1 and I2
only. Hence, the theoretical representation of the behavior
of a hyperelastic incompressible material is given by the
definition of the function w(I1, I2).
There are several constitutive laws in literature particu-

larly adapted to the representation of elastomers. Rivlin [7]
has proposed the following polynomial form for the energy
density function:

w ¼
X

m;n

Cmn I1 � 3ð Þ
m I2 � 3ð Þ

n, (4)

also known as the Mooney–Rivlin strain energy density
function because the first order polynomial function

w ¼ C1 I1 � 3ð Þ þ C2 I2 � 3ð Þ, (5)

has first been introduced by Mooney [6]. Eq. (5) is a
function of two constants, C1 and C2. This is probably one
of the most used densities in FE codes.
A simplified form of Eq. (5)

w ¼ C1 I1 � 3ð Þ, (6)

known as the neo-Hookean strain density function has also
been extensively used in literature.
Another constitutive law used is that due to Ogden

[12,13]. In this case the strain energy density function is
given by

w ¼
X3

n¼1

mnðl
an

1 þ lan

2 þ lan

3 � 3Þ

an

, (7)

where li are the extensions in the principal directions and
mn and an are constants of the material.
The S4R shell quadrilateral, general finite deformation

element defined in the ABAQUS menu with four nodes and
four integration points was shown to be the best element
for this problem and will be used in the present numerical
analysis.
In order to establish the shell constitutive law, the shell

was first subjected to increasing axial tension loads, as
axial tension. Sequence of photos illustrating a typical test.
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Table 2

Elastic constants of the shell material

Neo-Hookean C1 ¼ 0.201906MPa C2 ¼ 0MPa

Mooney–Rivlin C1 ¼ 0.087167MPa C2 ¼ 0.150843MPa

Ogden m ¼ 1.55886MPa a ¼ 0.403913
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Fig. 3. Comparison of the experimental results for a thick shell under

increasing axial tension with the FE results, using three different

constitutive laws.
illustrated in Fig. 1. For each value of the known axial load
the relative extension of the shell, DL/L, was measured.
Here L is the initial length of the shell. The results from
three independent analyses are plotted in Fig. 2, together
with the average values which are used as the true
experimental values to obtain the relevant material elastic
constants. As observed here all analyses led to the same
nonlinear relation between P and DL/L. The same shell
under axial tension was analyzed numerically using the
software ABAQUS. For this, the S4R shell element,
together with the three constitutive laws given in
Eqs. (2)–(4), was used and convergence studies were
carried out. The final mesh had 2785 elements and 2458
nodes. Using ABAQUS and the experimental results of
Fig. 2, the material constants for each constitutive model
were calculated using an error minimization procedure and
are given in Table 2. This experimental procedure for the
determination of the elastic constants had already been
used successfully by Pamplona et al. [25] in the analysis of
liquid filled membranes. It should be pointed out that this
is in fact a biaxial test since the deformations in the two
principal directions of the tube are considered.

Finally, using these constants, the load–axial displace-
ment curve for each constitutive law was obtained using the
FE program and the results compared with the experi-
mental ones. Good agreement was observed between the
experimental and numerical results, as shown in Fig. 3.
4

Due to its simplicity and good correlation between
experimental and numerical results for the present material
in this deformation range, Mooney–Rivlin constitutive law
was selected for the following parametric analysis.

3. Experimental analysis of the shell under axial tension and

increasing pressure

In order to understand and check the general behavior
and accuracy of the parametric analysis presented herein,
the experimental analysis of the shell initially stressed and
submitted to increasing pressure is carried out. The results
for shell B210 (R/H ¼ 2.63, L/R ¼ 34—see Table 1) are
shown in Figs. 4–6, for increasing values of initial axial
extension DL/L. In Fig. 4, for DL/L ¼ 0 (shell initially
unstressed), as the pressure increases, the shell deflects
laterally as a long imperfect column until it reaches a
critical pressure and a bubble forms nearly in the middle of
the specimen. At this critical point there is a sudden drop in
pressure, from 13.0� 10�2MPa (Pcr) to 7.0� 10�2MPa
(Pfinal), indicating the existence of a limit point instability.
However, the position of the bubble, which, theoretically,
should be in the middle of the shell, may differ from one
specimen to another. This is probably due to the effects of
initial material and geometric imperfections.

3.1. Initial axial tension effects

When the shell is initially under a given axial tension, the
global buckling mode is no longer observed and the shell
remains in a vertical axi-symmetric configuration until it
reaches the critical point, as shown in Figs. 5 and 6 for
increasing axial tension. Again the shell reaches a limit
point characterized by the formation of a bubble followed



Fig. 4. Experimental analysis of an initially unstressed thick cylindrical shell under increasing internal pressure. Specimen B210. Pressure, P, in

(10�2MPa). (a) Initial configuration, (b) P ¼ 7.0 and (c) post-critical configuration, R/H ¼ 2.63, L/R ¼ 34.

Fig. 5. Sequence of equilibrium configurations. Shell under constant axial tension, DL/L ¼ 0.16, and increasing internal pressure. Specimen B210.

Pressure, P, in (10�2MPa). (a) Initial configuration, (b) P ¼ 7.0 and (c) post-critical configuration. R/H ¼ 2.63, L/R ¼ 34.
by a sudden drop in the internal pressure. However, a
decrease in the critical load, Pcr, from 13.0 to
11.4� 10�2MPa is observed as the initial extension ratio
DL/L increases from 0 to 0.32. On the other hand, the final
pressure after the onset of the unstable buckling (Pfinal)
remains practically the same, 7.0� 10�2MPa.

In order to understand the influence of the geometric
parameters and initial axial tension on the experimental
results, several tests were carried out for the shell
geometries shown in Table 1. Figs. 7–9 illustrate the
behavior of shells B204, B205 and B207, respectively. Each
figure shows the initial and critical states of the shell for
increasing values of the initial axial tension. In each case,
5

the global behavior is similar to the one observed
previously for shell B210. In all cases, the critical pressure
decreases with the initial axial tension. However, the
bubble localization for the same specimen may vary with
the value of DL/L, as observed in Figs. 7–9. The variation
of the experimental critical load with the initial axial
tension is illustrated in Fig. 10 for five shell specimens,
where the value of the ratio R/H is shown in inset for each
specimen. The results of this parametric analysis show that
the critical load decreases with the radius to thickness ratio.
This is better observed in Fig. 11 where the critical load is
plotted as a function of R/H for three different values of
DL/L.



Fig. 6. Sequence of equilibrium configurations. Shell under constant axial tension, DL/L ¼ 0.32, and increasing internal pressure. Specimen B210.

Pressure, P, in (10�2MPa). (a) Initial configuration, (b) P ¼ 7.0 and (c) post-critical configuration. R/H ¼ 2.63, L/R ¼ 34.

Fig. 7. Recorded equilibrium configurations for specimen B204. Pressure, P, in (10�2MPa).
A short shell with a much smaller diameter (shell B200:
D ¼ 4.84mm, H ¼ 1.22mm, L ¼ 80mm, R/H ¼ 2.0,
L/R ¼ 34) was also analyzed. Fig. 12 illustrates the
behavior of the initially unstressed shell for increasing
pressure. The same global behavior shown previously for
the other shells is observed. Again at the critical point the
shell deflects laterally like a column as the bubble appears.
However, for this geometry (shorter shell), the bubble
extends over the entire length of the shell. The results for
the same shell under increasing initial axial tension are
shown in Fig. 13. For this shell specimen the bubble or
aneurysm appeared near the lower support. This seems to
be due the local disturbances caused by the air injector that
had a diameter slightly higher than the inner diameter of
6

this tube. This illustrates the importance of local imperfec-
tion on the bubble localization. In the present case the
length of the bubble just after the onset of buckling
decreases with increasing initial axial tension. More details
of the experimental analysis can be found in Xavier [36].

4. Numerical results—stability analysis

In order to understand the nonlinear behavior of the
shell and reproduce numerically the overall behavior
observed in the experimental analysis, a detailed para-
metric analysis of the inflation of the extended thick tube is
carried out using the FE software ABAQUS. The shell
element S4R is used to discretize the shell and Riks



Fig. 9. Recorded equilibrium configurations for specimen B207. Pressure, P, in (10�2MPa).

Fig. 8. Recorded equilibrium configurations for specimen B205. Pressure, P, in (10�2MPa).
modified method is employed to obtain the nonlinear
equilibrium path. First, a convergence study was carried
out to obtain the best mesh and number of elements.

Fig. 14 illustrates the numerical results for initial and
critical configurations for shell B210 with DL/L ¼ 0.16. A
mesh with 1230 nodes and 1215 elements was used in this
analysis. The critical pressure obtained numerically,
11.88� 10�2MPa, was 95% of the experimental one,
12.0� 10�2MPa. On comparing with Fig. 5, a good
agreement between the numerical and experimental results
can be observed.

Now the influence of the shell geometric parameters on
the nonlinear equilibrium path and critical load of the shell
is analyzed. First, the influence of the shell thickness is
studied. Here a shell with DL/L ¼ 0.16, L ¼ 317mm and
7

R ¼ 9.33mm is considered and the thickness varies from
1.0 to 3.58mm. The nonlinear equilibrium paths are shown
in Fig. 15 where the internal pressure is plotted as a
function of the maximum radial displacement, Urmax.
Initially the tube response is relatively stiff and almost
linear. As the pressure increases the shell stiffness decreases
and a limit point is reached after which the internal
pressure decreases as the maximum radius increases,
reaching a local minimum. In a pressure-controlled
experiment the descending post-critical path is unstable.
This is in agreement with the experimental results where,
during inflation, the tube experienced a sudden expansion
which was followed by a corresponding decrease in the
internal pressure due to the sudden increase in internal
volume, reaching a lower bound pressure associated with
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Fig. 12. Selected equilibrium configurations of an unstressed cylindrical

short shell under increasing pressure. Specimen B200. Pressure, P, in

(10�2MPa). (a) Initial configuration, (b) P ¼ 7.0, (c) P ¼ 13.8 and (d)

post-critical configuration.
large deformations. This behavior is known in literature as
localization [33]. It was first predicted by Mallock [34] and
observed in thick hyperelastic membranes by, among
others, Kyriakides and Chang [27,28]. Also shown in
Fig. 15 are the experimental values obtained for Pcr and Pfinal

obtained for shell B210, which agree quite well with the
numerical results. This behavior is typical of a softening,
imperfection sensitive system. The results in Fig. 15 also show
that, as the shell thickness increases (R/H decreases), i.e. H

increases, the stiffness of the shell increases, increasing the
critical load. This is also in agreement with the experimental
results reported in Fig. 12. Fig. 16 shows a comparison of the
nonlinear equilibrium path for shell B207, L ¼ 317mm and
DL/L ¼ 0.16, with the experimental results obtained for Pcr

and Pfinal. Excellent agreement is observed not only for the
value of the critical load but also for the corresponding
maximum radial deformation, which occurs in the middle of
the bubble.

The influence of the shell radius on its nonlinear
behavior is now analyzed, considering a shell with
8

DL/L ¼ 0.16, L/L ¼ 200mm and H ¼ 2mm. The shell
radius varies from 3.0 to 10.0mm. The shell nonlinear
equilibrium paths are shown in Fig. 17 for different values
of R, where a load–displacement response similar to that
shown in Fig. 15 is observed. The variation of the critical
load as a function of the shell external radius is illustrated
in Fig. 18, for DL/L ¼ 0.16, L ¼ 200mm and H ¼ 2.0mm.
There is a sharp decrease in the critical load as the radius
increases. For an increase of 30% in the shell external
radius, there is a decrease of 34% in the critical pressure.
The influence of the shell initial length on its nonlinear

behavior is now analyzed, considering a shell with
DL/L ¼ 0.16, R ¼ 5.5mm, H ¼ 2mm (R/H ¼ 2.75) and
L varying from 50 to 200mm. The results of this
parametric analysis are shown in Figs. 19 and 20. As the
initial length of the tube increases, the critical load
increases, approaching asymptotically a maximum value.
This means that, as the length increases, the two portions
of the tube away from the bubble have little effect on the
onset of instability, as illustrated in Fig. 21.
The numerical results also show that the localization and

number of bubbles may vary depending on the system
parameters and imperfections. The imperfection sensitivity
analysis and long-term behavior of the stressed thick shell
are currently being analyzed.

5. Conclusions

In this work the finite deformations of a thick isotropic
circular cylindrical shell subjected to a finite extension and
gradually filled with air are investigated both numerically
and experimentally. Theoretical and, particularly, experi-
mental investigations of thick shells under variable pressure



Fig. 13. Recorded equilibrium configurations for specimen B200 under increasing axial tension. Pressure, P, in (10�2MPa).

Fig. 14. Numerically obtained deformation pattern for specimen B210 with DL/L ¼ 0.16. (a) P ¼ 0, initial equilibrium configuration, shell under axial

tension, (b) Pcr ¼ 11.88, post-critical configuration (P� 10�2MPa).
and axial tension are scarce in the literature. Nonetheless,
this is a problem of importance in many engineering
fields, including some relevant biomedical problems. The
9

agreement of the experimental and numerical results,
especially for relatively low values of the extension ratio
DL/L, is rather encouraging and indicates that the present
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formulation can satisfactorily model the deformation field
under consideration. Also, the experimental results pre-
sented here, covering a large collection of cases, can be
used as a benchmark for future theoretical and numerical
works in this area. For shell under initial axial tension, the
local instability phenomenon (localization) was observed
during the experiments and parametric numerical analysis:
at a certain load level the shell loses its stability forming a
local bubble along its length. This type of buckling mode is
a characteristic of thick shells under internal pressure and
may explain certain instability phenomena as localized
buckling in tubes and aneurysms. For shells without
initial axial tension, a more complex instability mode is
observed. First, the shell deflects laterally as a long
imperfect column until it reaches a critical pressure and a
bubble forms nearly in the middle of the specimen. The
critical pressure is a function of the shell geometry and
initial axial tension.
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Fig. 21. Post-buckling deformation of a hyperelastic thick shell with

undeformed radius R ¼ 3.0mm.
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