
HAL Id: hal-01302477
https://hal.science/hal-01302477v1

Submitted on 24 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A proof-based approach to detect vulnerabilities in C
programs

Amel Mammar, Pengfei Liu

To cite this version:
Amel Mammar, Pengfei Liu. A proof-based approach to detect vulnerabilities in C programs. SERP
2011 : International Conference on Software Engineering Research and Practice, Jul 2011, Las Vegas,
United States. pp.464 - 470. �hal-01302477�

https://hal.science/hal-01302477v1
https://hal.archives-ouvertes.fr

A Proof-Based Approach to Detect Vulnerabilities in C programs

Amel Mammar1, Liu Penfei2
1Institut Telecom SudParis, CNRS/SAMOVAR, Paris, France

amel.mammar@it-sudparis.eu
2INRIA, Phoenix / Bordeaux-Sud, Talence, France

Pengfei.Liu@inria.fr

Abstract— This paper presents a formal approach to detect
vulnerabilities in a C program using the B formal method.
Vulnerabilities denote faults that may be introduced uninten-
tionally into programs making them behave incorrectly. Such
faults (or programing errors) may lead to unpredictable be-
havior and even worse well-motivated attackers may exploit
them later to cause real damage. Basically, the proposed
approach consists in translating the vulnerable aspects of
a C program into a B specification. On this B specification
proof and model checking activities are performed in order
to detect the presence or absence of vulnerabilities. Com-
pared to the existing vulnerability detection techniques, a
proof-based approach permits to eliminate false alarms and
denial of service attacks.

Keywords: Security; Vulnerability detection; Mapping rules; B
formal method; Proofs; Model Checking.

1. Introduction
Software vulnerabilities are programming mistakes or

bugs that compilers fail to detect. Buffer and arithmetic
overflows are well-known examples of vulnerabilities. With
the fast proliferation of complex, open and distributed sys-
tems, such software vulnerabilities become a real issue that
needs to be fixed since these systems are often used in
critical domains like transportation, finance, politics, etc;
which makes attackers more and more motivated to cause
important damage by exploiting these security breaches [6].
Above all, software defects are expensive, according to a
2002 National Institute of Standards and Technology study,
software errors cost the U.S. economy an estimated 59.5
USD billion annually [15].

To detect software vulnerabilities, several techniques have
been developed [12], [11]. Roughly speaking, these tech-
niques can be classified into two classes: static and dynamic
analysis. Each one has its own particular strengths, however
one technique is not sufficient to deal with all the possible
errors. In general, several techniques must be applied to
detect a larger range of vulnerabilities. The main drawback
of static techniques is the high number of false positives
they can produce, whereas dynamic techniques suffer from
denial of service since the detection is performed at program

run-time. A more detailed description of these existing
techniques is given in Section 7.

In this paper, we propose a formal approach, based on
the B method, to detect vulnerabilities in a C program. Our
approach consists in converting the C program into a B spec-
ification on which it is possible to perform correctness proof
and model checking activities to detect programming bugs
or errors. By converting a C program into a B specification,
we generate the necessary and sufficient information about
the C vulnerable statements. To deal with a buffer overflow
for instance, we generate information about the size of the
buffer and also the size of the data it holds at any time.

The rest of the paper is structured as follows. The vulner-
abilities we consider in this paper are presented in Section
2. The B method is introduced in Section 3. Then, Section 4
gives an overview of the proposal which is described in detail
in Section 5. The actual detection of vulnerabilities using
proof and model checking activities is described in Section
6. Section 7 presents the related work and a comparison
with our approach. Finally, we conclude and present some
potential future work.

2. Software vulnerabilities
In [16], several types of vulnerabilities are described

together with their countermeasures and how we deal with
them using the B method. These vulnerabilities include
buffer overflows and different arithmetic overflows and
underflows but also format string vulnerabilities. For the
sake of space, this paper only presents buffer overflows and
arithmetic vulnerabilities.

Buffer overflows. To store the content of variables and
buffers, a program reserves a specific amount of memory
space. A buffer overflow occurs when a program attempts
to put more data in a buffer than it can hold. A buffer is a
sequential section of memory allocated to contain anything
from a character string to an array of integers. Writing
outside the bounds of a block of allocated memory can
corrupt data, crash the program, or cause the execution of
malicious code. Buffer overflows are the favorite exploit for
hackers.

1

Arithmetic vulnerabilities. These vulnerabilities occur
when a calculation produces a value that is greater in
magnitude than a given register or storage location can store
or represent. Each integer type in C has a fixed minimum
and maximum values that depend on the type’s machine
representation, whether the type is signed or unsigned, and
the type’s width (e.g., 16-bits vs. 32-bits). At a high level,
integer vulnerabilities arise because the programmer does not
take into account the maximum and minimum values. Over
one hundred C integer vulnerabilities have been publicly
identified to date, some of which have resulted in serious
disasters such as rocket malfunction.

3. Overview of the B method

Introduced by J. R. Abrial [1], B is a formal method for
safe project development. B specifications are organized into
abstract machines. Each machine encapsulates state variables
on which operations are expressed. The set of the possible
states of the system are described using an invariant. The
invariant is a predicate in a simplified version of the ZF-
set theory, enriched with many relational operators. Opera-
tions are specified in the Generalized Substitution Language
(GSL) which is similar to the DijkstraŠs guarded command
notation. A substitution is like an assignment statement. It
allows us to identify which variables are modified by the
operation, while avoiding mentioning which ones are not.
The generalization allows the definition of non-deterministic
and preconditioned substitutions. Refinement is the process
of transforming a specification into a less abstract one. A
refinement can operate on an abstract machine or another
refinement component. In B, we distinguish behavioral and
data refinement. In this paper, we only use behavioral refine-
ment that aims at eliminating non-determinism and coming
close to the control structures used in the chosen target
programming language. Behavioral refinement includes, for
example, weakening of preconditions, the replacement of
parallel substitution with a sequence one, etc. To ensure the
correctness of a B specification, a set of proof obligations
is generated for each B component. At the abstract level,
these proofs aim at verifying that the invariant of the
system is satisfied after the execution of each operation. Of
course, such an invariant is assumed to be satisfied before
an operation is executed. For each a given invariant Inv
and an operation op whose precondition and substitution
are P and S respectively, the following proof obligation is
raised: (Inv ∧ P) ⇒ [S]Inv. Notation "[S]Inv" denotes
the predicate obtained by applying the substitution S to
the variables of Inv. Refinement proofs permit us to check
the correctness of each concrete operation with respect to
its abstraction. We assume that readers are familiar with B
method and more details can be found in [1].

4. Overview of the approach to detect
vulnerabilities

Our method to deal with vulnerabilities using the B
method includes four phases (See Figure 1):

• In a first step, the C code is transformed into an abstract
form. To this end, we have defined a sub-set of the C
language that include the declarations of buffers and
arithmetic data. More details can be found in [16].

• From the abstract representation of the C code, a B
formal specification is automatically generated. The B
specification contains information about the vulnerable
elements of the code. In case of a buffer for instance,
we consider its size and also the size of the data it holds
at any time.

• To detect the presence/absence of vulnerabilities, proof
obligations are generated using the proof obligations
generator (POG) of AtelierB. The prover of AtelierB is
then used to discharge them. The failure of the prover
to automatically demonstrate a goal (the proof) can be
due to two different reasons: either it lacks tactics and
needs human help and intervention or the goal is false.

• To be sure that an unproved goal corresponds to a
vulnerability, we use the model-checker PROB [22]
in order to exhibit a state that satisfies the opposite
(complement) of this goal. This means that the goal is
really false.

The following section describes the generation of a B speci-
fication from a C program in order to detect vulnerabilities.

5. Generation of a B model from a C
program

In this section, we describe how it is possible to use
the B method to detect vulnerabilities in a C program.
Our method is based on extracting information about the
vulnerable functions or data that are used in the program.

5.1 The subset of ANSI C
Our approach considers a subset of the ANSI C language

satisfying the following assumptions:
- the ANSI-C program has been already preprocessed,

e.g., all the #define directives are expanded (inline ex-
pansion).

- the supported C types are primitive integer and array.
- function calls are expanded (inline expansion), the return

statement is replaced by an assignment (if the function
returns a value).

- all the arithmetic operations contain two operands,
that is, they are of the form (z := x op y). Multi-
operand operations are transformed into binary operations
by introducing temporary variables. For instance, operation
(a = a1 + a2 + a3) is replaced by the following two
binary operations: atemp = a1 + a2, a = atemp + a2. This

2

.....

C code in
a conrete
format

Syntactical analysis

C code in
an abstract
format

B translation

B specification

Proof activity
success: safe codefail: vulnerable code?

Model-Checking activity

ProB Model-Checker

contreexample:
vunerable code

No contreexample:
the prover needs help

Fig. 1

DETECTING C VULNERABILITIES USING THE B METHOD

transformation is necessary in order to detect any arithmetic
overflow. Indeed, multi-operand operations may mask some
overflows like in statement (x = maxint + 1 − 1) where
the sub-assignment (x = maxint + 1 produces an overflow
while its equivalent (x = maxint) does not.

- the declaration of variables, buffers and files,
- the predefined C functions like input/output functions

(printf , scanf , etc.) and also the functions on buffers
(strcpy, strncpy) and files (fscanf , fgets),

- the assignment, the sequence and the choice (IF) state-
ments.

A complete grammar of the subset of ANSI C supported
by the proposed approach to detect vulnerabilities is pro-
vided in [16]. Hereafter, we describe how we obtain the B
model from a C program written according to this subset.

5.2 The B model architecture
Recall that our objective is not to build an equivalent

B model for a C program. Indeed, our goal is to build
an abstraction of a C program by extracting the useful
information to detect vulnerabilities that may be present in a
C program. Figure 2 depicts the architecture of the B model
that we derive from a C program. The B model we derive
from a C program is composed of two B components:

- At the abstract level, a B machine is defined. It contains
the variables of the C program and an invariant to state
the types of these variables but also to express that the
C program we would like to build should not contain any
vulnerability, that is, all the variables are in their respec-
tive ranges. An operation Main is specified to model the
behavior part of the C program. This operation consists of
a non-deterministic substitution that states that some values
are assigned to variables according to the invariant. In other
words, the operation represents the behavior of a C program
that assigns values to its variables without producing any
vulnerability.

- At the refinement level, a B component that refines the
first one is created. The refined operation Main of this
component contains the translation of the instructions of the

Buffer declaration size_buff

char buff[N] N

char buff[N]="hello_world" N

char buff[] 1
char buff[] = {′a′,′ b′,′ c′} 3
char *buff ="hello_world" 11

Table 1

DEFINITION OF THE SIZE OF A BUFFER

C program we are dealing with. By this way, the refinement
proofs will demonstrate that the refinement component is
conform to its abstract specification, that is, it does not
contain any vulnerability.

In the following sections, we present some translation
rules to derive a B model from a C program.

5.3 Translation of buffers
To detect buffer overflows, we have to generate informa-

tion about the maximum size of each declared buffer and
also the amount of the data that it contains at any time. This
information is stored in two integer B variables buffer_max
and buffer_used defined as follows:

Constants buffer_max
Properties buffer_max=size_buff
Variables buffer_used
Invariant buffer_used ∈ NAT ∧ buffer_used ≤ buffer_max

where size_buff is the size of the declared buffer that
is defined according to a set of rules described in [16].
Hereafter, Table 1 gives some examples on how size_buff
is obtained.

Variable buffer_used, initialized to 0, is updated each
time a new variable is assigned to the buffer. In [16], we
have defined a set of rules that generate a B substitution
for each C instruction that modifies the value of the buffer.
Table 2 gives some examples.

Substitution (CHOICE buffer_used := 1 OR
buffer_used := buffer_max END) means that we have
to deal with limit cases, that is, the buffer may contain data

3

#include <...>

void main(...){
 char ...
 int
 strcopy(...);

 z=x+y
}

Machine code
Constants ...
Properties
Variables v1, ...vn
Invariant I
Initialisation ...
Operations
 Main=
 Begin
 v1,...vn:(I)
 End
EndRefinement code_r

Refines code
Variables v1, ...vn
Initialisation ...
Operations
 Main=
 Begin
 s1;...,sn
 End
End

Refines

Fig. 2

ARCHITECTURE OF THE B SPECIFICATION

Buffer assignment B substitution on buffer_used

char buff[N]="hello_world" buffer_used := 11;
gets(buff)
fscanf(file_name, ”%s”,&buff)
scanf(”%s”,&buff)

CHOICE buffer_used := 1
OR buffer_used := buffer_max
END

fgets(buff, size, fp)
read(fd, buff, size)

buff_used := size

strcpy(dest_buff, source_buff) dest_buff_used := source_buff_used

strncpy(dest_buff, src_buff, size) dest_buff_used := size

Table 2

B TRANSLATION OF C INSTRUCTIONS ON BUFFERS

of minimum or maximum size, this size may be especially
equal buffer_max to simulate a potential attacker. To
detect a potential vulnerability at each point of the program,
we have to add the following B substitution after each
assignment on variable buffer_used

ASSERT (buffer_used ≤ buffer_max) THEN
skip

END

5.4 Translation of arithmetic data
To detect arithmetic vulnerabilities, we have to verify

whether the value assigned to a given variable goes beyond
the scope of its type. To do this, we have to memorize
the minimum xmax and maximum xmin values that each
variable x can represent. Table 3 gives some examples on
how these variables are defined according to the different
types of the C language:
For each declared variable x, we generate the following
invariant to state that its value must belong to the range
of its type: (x ∈ xmin .. xmax). To detect vulnerabilities,
we have also to translate each C instruction that modifies
variable x. To get a value from a user, function scanf()

Type declaration xmin xmax

signed short int x −32767 32767
unsigned short int x 0 65535
Signed int x -MAXINT MAXINT
Unsigned int x 0 2*MAXINT+1

Table 3

MINIMUM AND MAXIMUM VALUES OF SOME C ARITHMETIC TYPES

is the most common one. Since we have to consider the
worst case, each C instruction scanf(”format”,&x) is
translated into the following B substitutions: CHOICE x :=
xmin OR x := xmax END. Other arithmetic operations,
like additions, subtractions, multiplications and assignments
are straightforwardly translated into B since they are all
supported by similar operators with equivalent semantics.
As for buffers, after each assignment of variable x, we have
to add the following B substitution in order to detect any
vulnerability: ASSERT (x ∈ xmin .. xmax) THEN skip
END.

4

5.5 Translation of C control structures into B

So far, we have seen how to translate declarations (buffer
and arithmetic data) and basic C instructions into B. How-
ever, a C code may include control structures like conditional
(IF) and sequential structures. The C control structures we
consider in this paper are described by the following BNF
grammar:

Instruction ::=
/ ∗ assignment ∗ /

| varID = expression
/ ∗ Sequencing ∗ /

| Instruction1; Instruction2

/ ∗ choice ∗ /
| if (expression) { Instruction1 } else { Instruction2 }

Since the B method supports all the above C control struc-
tures with the same semantics, the choice, assignment and
sequencing instructions are mapped straightforwardly into
the IF, assignment and sequencing substitutions respectively
of the B language.

5.6 Illustrative example

To illustrate our approach, let us apply the different trans-
lation rules we have defined on the following C program:

#include <stdio.h>
void main(){

FILE *fp;
char tmp[40], buff[20];
fp = fopen("example.txt", "r");
fgets(tmp,30,fp); strcpy(buff,tmp);
puts(buff); short int x,y;
scanf("%h",&x); y=x+2; y=x;}

which is translated into:

MACHINE Example
CONSTANTS tmpmax, buffmax

PROPERTIES tmpmax = 40 ∧ buffmax = 20

VARIABLES tmpused, buffused, x, y
INVARIANT

tmpused ∈ NAT ∧ tmpused ≤ tmpmax ∧
buffused ∈ NAT ∧ buffused ≤ bufmax ∧
x ∈ 0..32767 ∧ y ∈ 0..32767

INITIALISATION tmpused, buffused, x, y := 0, 0, 0, 0
OPERATIONS

Main = BEGIN
tmpused, buffused, x, y :

(tmpused ∈ NAT ∧ tmpused ≤ tmpmax ∧
buffused ∈ NAT ∧ buffused ≤ bufmax ∧
x ∈ 0..32767 ∧ y ∈ 0..32767)

END
END

and

REFINEMENT Example_Ref
REFINES Example
VARIABLES tmpused, buffused, x, y
INITIALISATION tmpused, buffused, x, y:=0, 0, 0, 0
OPERATIONS

Main = BEGIN
/*translation of fgets(tmp,30,fp)*/

tmpused := 30;

ASSERT (tmpused ≤ tmpmax) THEN skip END;
/*translation of strcpy(buff,tmp)*/

buffused := tmpused;

ASSERT (buffused ≤ buffmax) THEN skip END;
/*translation of scanf("%h",&x)*/

CHOICE x := 0 OR x := 32767 END;
y := x + 2;

ASSERT (y ∈ 0..32767) THEN skip END;
y := x;

ASSERT (y ∈ 0..32767) THEN skip END
END

END

6. Vulnerability detection
In this section, we discuss how it is possible to detect

vulnerabilities thanks to refinement proofs but also using the
PROB tool. To demonstrate the absence of vulnerabilities, we
have to discharge all the specification proofs of the abstract
component but also those of the refinement component:

1. Specification proofs: these proofs aim at demonstrating
that operation Main, defined in the first abstract level, is
correct. We have to prove that this operation re-establishes
the invariant: Inv ⇒ [V1, . . . Vn : (Inv)]Inv where Vi and
Inv denote respectively the variables and the invariant of the
abstract component. This proof is obvious and automatically
discharged.

2. Refinement proofs: these proofs aim at demonstrating
that the refinement of operation Main does not contradict
or violate its abstraction. In other words, we have to prove
that the refined operation also re-establishes the invariant:
Inv ⇒ [S]Inv where S denotes the B translation of the
instructions defined in the C program. When establishing
these proofs, two cases are possible:

- the proof is discharged (automatically or interactively):
this case means that the program is correct and does not
contain any vulnerability.

- the prover of AtelierB fails to discharge the proof:
this case means that the prover fails to prove a given goal
(Predicate) G. Since the complexity of these proofs is very
low, such a failure denotes an invariant violation in general,
that is, the occurrence of a vulnerability in the corresponding
C program. To be sure that this potential vulnerability is a
real one, we use the model checking functionality of the
PROB tool as a plugins in order to check that the invariant
is really violated by finding, for instance, a state that does
not satisfy predicate G or contradicts the global invariant.

Let us illustrate this approach on the previous example.
For the abstract component Example, the POG of Ate-
lierB generates 3 proof obligations that are all automati-
cally discharged as expected. However for the refinement

5

component Example_Ref , the POG also produces six
proof obligations but it succeeds to perform only five of
them. The remaining proof obligation is related to invariant
(buff_used ≤ buff_max): (30 ≤ buff_max) which is
obviously false. Let us remark that the prover did not point
out that invariant (yy ∈ 0..32767) is also violated. The
reason is that the semantics of the ASSERT substitution
considers its predicate as true to continuous the remaining
substitutions. As predicate (30 ≤ buff_max) is not ful-
filled, any invariant becomes true (false ⇒ Inv is always
true). This feature is very interesting in our case since it
permits an incremental vulnerability detection. Now, let us
replace substitution (tmpused := 30) by (tmpused := 10).
The POG generates the following unproved proof related
to invariant (yy ∈ 0..32767): (xx + 2 ∈ 0..32767). To be
sure that this formula is not valid. We use PROB model
checker in order to find a state that satisfies its complement
(xx + 2 /∈ 0..32767). Figure 3 depicts the answer of
PROB model checker for the query of finding a state that
satisfies the last predicate. Since, a state that violates our
goal (xx+2 ∈ 0..32767) is found, we can conclude that the
instruction (y := x + 2) is vulnerable.

7. Related work
To deal with vulnerabilities, several techniques have been

developed. We present hereafter those related to buffers and
arithmetic data:

- Buffer overflows vulnerabilities: the techniques to detect
buffer overflows can fall into two categories: static and
dynamic. According to the dynamic technique, the buffer
overflow is avoided by restricting the access to the memory
of an application. This method primarily relies on a safe
code being preloaded before an application is executed. This
preloaded component can either provide safer versions of the
standard unsafe functions, or it can ensure that the return
addresses of the functions are not overwritten. StackGuard
[5] is an example of the tools following such a method. It
places a canary word next to the return address whenever
a function is called. If the canary word has been altered
when the function returns, we are sure some attempt has
been made on the overflow buffers. In that case, it responds
by emitting an alert message and halting the program. This
technique is also used by StackShield1, SFI [20], libsafe2 and
GCC. Another approach developed by Arash Baratloo et. al.
[2] consists in replacing unsafe library functions with safe
implementations. However, run-time solutions always incur
some performance penalty(StackGuard reports performance
overhead up to 40% [7]). The other problem with run-time
solutions is that while they may be able to detect or prevent
a buffer overflow attack, they effectively turn it into a denial-
of-service attack.

1http://www.angelfire.com/sk/stackshield
2http://www.research.avayalabs.com/project/libsafe

Static techniques permit to overcome this problem by
detecting likely vulnerabilities before deployment. RATS [9]
and ITS4 [19] are examples of tools based on the static
analysis technique. They use lexical analysis and compare
the identified lexemes with a "suspects" database to identify
vulnerabilities in C source files. The main drawback of such
tools is that they may generate false warnings and sometimes
miss real problems. Another tool, CodeAuditor[21], uses
Model checking to find the vulnerabilities. However as we
know, if the code is very large, we can not finish the
verification in an acceptable period of time. If we reduce the
code source size, we may miss some vulnerabilities also.

- Integer vulnerabilities: one approach to fix integer
vulnerabilities is to raise a compile-time warning for each
potential vulnerability and let the programmer fix them.
However, the number of actual vulnerabilities is an order
of magnitude less than the number of warnings. Another
approach consists in translating the C code into a type-
safe code, e.g., Cyclone [10] or CCured [14]. However, this
option may not be practical in many settings, such as for
performance-critical applications or when the user is not
familiar with the type-safe code. PICK [3] is a tool that
uses sub-typing rules to detect unsafe integer operations and
inserts the necessary dynamic checks to prevent exploits. But
it only deals with the casting vulnerabilities. RICH [4] uses
a similar approach to PICK and also suffers of denial of
service attacks.

In this paper, we define a formal approach to detect
buffer and arithmetic vulnerabilities using the B method. Our
approach consists of a static analysis of the code in order
to extract the sufficient and the necessary information about
the different elements that may produce vulnerabilities. This
information is then modeled in B in order to prove the pres-
ence/absence of vulnerabilities. Based on a static technique
and a formal method, our approach has the advantage of
avoiding denial of service attacks and false alarms at the
same time.

8. Conclusion and future work
Software security has always been a concern in the

software industry. The C language is one of the most used
program language in the world, also its vulnerabilities are
well-known. In this paper, we have defined a formal method
based on the B method in order to detect vulnerabilities
with the ultimate goal of correcting them. Basically, our
proposal consists in defining variables to store the size of
buffers, and also to store the values each integer variable can
represent. These different informations together with the C
program are then translated into a B specification on which
we perform proof and model checking activities to detect the
presence of vulnerabilities. We have applied this approach
on several applications (larger and more complex than the
example given in this paper) that gave very promising results.

6

Fig. 3

DETECTION OF VULNERABILITIES USING PROB MODEL CHECKER

Compared to other approaches, our approach can detect
buffer overflow and Integer vulnerabilities at the same time
without generating false alarms. In addition, our proposal
can be applied on any other programming language, like
JAVA for instance, by defining new translation rules to deal
with its vulnerable functions. Finally to make our approach
workable, we have developed a tool that permits us to
point out the vulnerable statements in a C program. This
tool is implemented in JAVA and described elsewhere in
[16]. Currently, we are working on extending the proposed
approach to support loops and recursive functions. Future
work include also the development of a process that would
permit to correct automatically the C code by exploring
the B proof and model-checking result activities. Basically,
we have to define the condition to add within the Main
operation in order to establish the invariant and correct the
corresponding C program. To do that, we can reuse our
previous work presented in [13] that defines a formal process
to calculate the weakest precondition of a B operation to re-
establish an invariant.

References
[1] ABRIAL J. R.: The B-Book: Assigning Programs to Meanings, Cam-

bridge University Press, (1996).
[2] Baratloo, A., Singh, N., Tsai, T.: Transparent Run-Time Defense

Against Stack-Smashing Attacks Protecting Systems from Stack Smash-
ing Attacks with StackGuard, the 9th USENIX Security Symposium,
(2000).

[3] Brumley, D., Song, D., Slember, J.: Towards Automatically Eliminating
Integer-Based Vulnerabilities, Technical Report, School of Computer
Science, Carnegie Mellon University, (2006).

[4] Brumley, D., Xiaodong, D., Song and Tzi-cker Chiueh and Rob
Johnson and Huijia Lin RICH: Automatically Protecting Against Integer-
Based Vulnerabilities, the 14th Annual Network & Distributed System
Security Symposium(NDSS), (2007).

[5] Calton, C.C., Pu C., Maier D., Hinton H., Walpole, J., Bakke, P., Beattie
S., Grier, A., Wagle, P., Zhang, Q.: StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks, the 7th USENIX
Security Symposium, (1998).

[6] CERT Coordination Center. CERT/CC statistics
http://www.cert.org/stats/historical.html, (2007).

[7] Cowan, C., Beattie, S., Day, R.F., Pu, C., Wagle, P., Walthinsen, E.:
Protecting Systems from Stack Smashing Attacks with StackGuard, the
7th USENIX Security Symposium, (1998).

[8] Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G.: Format-
Guard : Automatic Protection From printf Format String Vulnerabilities,
the 10th USENIX Security Symposium, (2001).

[9] Fortify Software Inc Secure software solutions, rats, the rough auditing
tool for security, http://www.securesw.com/rats, (2001).

[10] Jim, T., Morrisett, J.G., Grossman, D., Hicks, M.W. Cheney, J., Wang,
Y.: Cyclone: A Safe Dialect of C, the 9the USENIX Annual Technical
Conference, (2002).

[11] Jimenez, W., Mammar, A., Cavalli, A.R.: Software Vulnerabilities,
Prevention and Detection Methods: A Review, the 1first Interna-
tional Workshop on Security in Model Driven Architecture(SEC-MDA),
(2009).

[12] Kuang, C., Miao, Q., Chen, H.: Analysis of Software Vulnerability,
the 5th WSEAS International Conference on Information Security and
Privacy(ISP), (2006).

[13] X, Y.: A Systematic Approach to Generate B Preconditions: Appli-
cation to the Database Domain, Software and System Modeling 8(3),
(2009).

[14] Necula, G., McPeak, S., Weimer, W.: CCured: Type-Safe Retrofitting
of Legacy Code, the 29th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), (2002).

[15] NIST. The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing. National Institute of Standards and Technology-Final
Report, (2002).

[16] X, Y.: Detecting C Program Vulnerabilities Mas-
ter Thesis, Telecom SudParis, (2009). Available at
http://phoenix.inria.fr/index.php/members/36-pengfei-liu.

[18] Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting Format
String Vulnerabilities with Type Qualifiers, the 10th conference on
USENIX Security Symposium(SSYM), (2001).

[19] Viega, J., Bloch, J. T., Kohno, Y., McGraw, G.: ITS4: A Static
Vulnerability Scanner for C and C++ Code, the 16th IEEE Annual
Conference Computer Security Applications(ACSAC), (2000).

[20] Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient
Software-Based Fault Isolation, the 14th ACM Symposium on Oper-
ating Systems Principles(SOSP), (1993).

[21] Wang, L., Zhang, Q., Zhao, P.: Automated Detection of Code Vul-
nerabilities Based on Program Analysis and Model Checking, the 8th

IEEE International Working Conference on Source Code Analysis and
Manipulation(SCAM), (2008).

[22] ProB.: http://users.ecs.soton.ac.uk/mal/systems/prob.html.

View publication statsView publication stats

7

