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Nous démontrons l'influence de propriétés des réseaux d'interconnexion de centres de données sur l'étirement obtenu pour des routages dits géométriques . Ces routages reposent sur un plongement des sommets du graphe dans un espace métrique simple tel que le plan Hyperbolique. Les réseaux d'interconnexions des centres de données sont généralement conc ¸us pour favoriser les symétries, celles-ci permettant de minimiser la congestion et à chaque entité d'exécuter le même protocole de routage. Nous montrons que les symétries d'un graphe ont un impact négatif sur les performances de certains routages géométriques. Plus précisément, nous prouvons que l'existence de symétries (endomorphismes) non-triviales dans le graphe entraîne un étirement des plus courts chemins qui est proportionnel au diamètre du graphe pour un grand nombre de routages géométriques. Nos résultats sont fondés sur une relation entre l'hyperbolicité d'un graphe (un paramètre qui capture plusieurs propriétés métriques du graphe) et l'existence de stratégies gagnantes dans une variante du jeu du Gendarme et du Voleur. Nous illustrons nos résultats avec quelques topologies usuelles de la littérature (grilles, hypercubes, de Bruijn, Fat-Tree, BCube, etc. . . ).

Introduction

Étant donné un réseau d'interconnexion, un mécanisme de routage assigne pour chaque paire sourcedestination possible un chemin (dans le graphe sous-jacent) par où faire transiter les messages entre ces deux entités. Un mécanisme naïf assignerait à chaque paire un plus court chemin du graphe sous-jacent. Cependant, un tel routage requiert le calcul et la mémorisation de la matrice des distances, et donc ne passe pas à l'échelle pour des réseaux de dizaines de milliers d'unités. À titre d'exemple, Microsoft a plus d'un million de serveurs répartis sur une centaine de centres de données [START_REF]Datacenters internationaux -Microsoft[END_REF]. D'où l'existence d'une vaste littérature sur des routages plus adaptés à la taille croissante des réseaux d'interconnexion, mais au prix d'un étirement de la longueur des chemins empruntés. Nos résultats portent sur l'étirement d'une famille de routages appelés routages géométriques [START_REF] Rao | Geographic routing without location information[END_REF]. En lieu de chemins, ces routages assignent à chaque entité (sommet du graphe) un point dans un espace métrique plus simple , par exemple, le plan Euclidien. Le chemin d'une source vers une destination donnée est alors calculé de proche en proche : chaque entité délivrant le message à n'importe lequel de ses voisins qui est strictement plus proche, dans l'espace métrique, de la destination. Plusieurs constructions ont été proposées pour garantir l'arrivée à destination de tous les messages [START_REF] Camelo | Geometric routing with word-metric spaces[END_REF][START_REF] Flury | Greedy routing with bounded stretch[END_REF][START_REF] Kleinberg | Geographic routing using hyperbolic space[END_REF][START_REF] Papadimitriou | On a conjecture related to geometric routing[END_REF].

Nos résultats portent plus précisément sur des routages utilisant comme espace métrique soit un espace Hyperbolique [START_REF] Kleinberg | Geographic routing using hyperbolic space[END_REF], soit un espace métrique de mot [START_REF] Camelo | Geometric routing with word-metric spaces[END_REF]. Nous nous intéressons à leur étirement dans le cas particulier où le réseau d'interconnexion est celui d'un centre de données. Le sujet a connu un regain d'attention récent [START_REF] Camelo | Efficient routing in data center with underlying Cayley Graph[END_REF], et il a été montré expérimentalement sur plusieurs topologies usuelles de la littérature (dont Fat-Tree, BCube, Hypercube et Butterfly) que les étirements moyens obtenus étaient de faible ampleur. Ce résultat positif a motivé l'étude de l'étirement dans le pire cas.

État de l'art. Il a été prouvé que la valeur de l'étirement est proportionnelle à l'hyperbolicité du graphe sous-jacent [START_REF] Verbeek | Metric embedding, hyperbolic space, and social networks[END_REF]. Ce paramètre mesure la proximité de la distribution des distances dans un graphe avec celle d'un arbre. Une raison intuitive pour cette relation est que les routages considérés se restreignent à un sous-arbre couvrant du graphe sous-jacent. Calculer l'hyperbolicité d'un graphe se fait en temps polynomial, toutefois, les algorithmes connus [START_REF] Borassi | On computing the hyperbolicity of real-world graphs[END_REF] prennent en entrée la matrice des distances, et donc ne passent pas à l'échelle. Afin d'évaluer l'hyperbolicité des graphes des réseaux d'interconnexion des centres de données, nous avons cherché des relations entre ce paramètre et d'autres propriétés de graphes.

Nos contributions. Il est courant que les graphes des réseaux d'interconnexion des centres de données soient symétriques. En effet, utiliser les symétries dans un graphe est un moyen commode d'équilibrer la charge du trafic, donc de minimiser la congestion. Nous prouvons que les symétries ont un impact négatif sur l'hyperbolicité d'un graphe, et par conséquent sur l'étirement des routages géométriques appliqués aux réseaux d'interconnexion des centres de données. Plus précisément :

-l'hyperbolicité des graphes sommet-transitifs ou arête-transitifs est proportionnelle à leur diamètre ; -de même, étant donné n'importe quel endomorphisme d'un graphe G, son hyperbolicité δ(G) est au moins proportionnelle à la plus petite distance entre un sommet et son image. Nos résultats sont détaillés dans un rapport de recherche [START_REF] Coudert | Data center interconnection networks are not hyperbolic[END_REF]. Dans la suite, nous esquisserons les preuves de nos deux résultats principaux, puis nous les appliquerons à quelques topologies usuelles de la littérature. Dans la suite, nous utiliserons le fait que si G est δ-hyperbolique alors G 4δ est cop-win (cf [START_REF] Chalopin | Cop and robber games when the robber can hide and ride[END_REF] pour de plus amples informations). Liens entre symétries et étirements de routages dans les réseaux d'interconnexions de centres de données.

Preuve. Pour tout endomorphisme σ de G, comme σ préserve les relations d'adjacence on a que pour tout u, v ∈ V , dist G (σ(u), σ(v)) ≤ dist G (u, v), et par conséquent σ est aussi un endomorphisme de G 4δ . En particulier, G sommet-transitif implique que G 4δ l'est aussi, et donc que G 4δ est régulier. Mais alors, comme G 4δ est cop-win et régulier, c'est un graphe complet [START_REF] Aigner | A game of cops and robbers[END_REF]. En conséquence, 4δ ≥ D.
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Le résultat du Théorème 1 s'étend aux graphes arête-transitifs (nous en donnons une preuve dans [START_REF] Coudert | Data center interconnection networks are not hyperbolic[END_REF]).

Théorème 2 Si G est arête-transitif, de diamètre D et d'hyperbolicité δ, alors δ ≥ D/2 /2.

Nous montrons ci-dessous comment des résultats similaires sur l'hyperbolicité peuvent se déduire sans utiliser la sommet-transitivité (qui est une hypothèse forte). En fait, l'existence d'un endomorphisme non-trivial suffit dans la plupart des cas.

Théorème 3 Soient G un graphe δ-hyperbolique et σ un endomorphisme de G tel que pour tout sommet u ∈ V , dist G (u, σ(u)) ≥ l ≥ 2. On a que δ ≥ l/2 /2.

Preuve. Il suffit de montrer que G l-1 n'est pas cop-win, ce qui impliquera 4δ ≥ l et donc le résultat. Pour le prouver, considérons un jeu du Gendarme et du Voleur sur G l-1 . Nous démontrons l'existence d'une stratégie pour le Voleur telle que le Gendarme ne pourra jamais atteindre sa position. La stratégie consiste à se positionner sur l'image par σ de la position du Gendarme. Cette stratégie est valide puisque : comme σ est un endomorphisme de G, c'est aussi un endomorphisme de G l-1 et donc le Voleur peut toujours se déplacer sur l'image par σ de la position du Gendarme ; de plus, puisque pour tout u ∈ V , dist G (u, σ(u)) ≥ l, on a que u et σ(u) ne sont pas adjacents dans G l-1 , donc la position du Voleur n'est jamais adjacente à celle du Gendarme. 2

3 Applications aux r éseaux d'interconnexion de centres de donn ées Dans notre rapport [START_REF] Coudert | Data center interconnection networks are not hyperbolic[END_REF], nous avons considéré un grand nombre de topologies usuelles des réseaux d'interconnexion de centres de données. Nous nous sommes servis de nos résultats dans la section précédente pour borner inférieurement l'hyperbolicité de leurs graphes sous-jacents, et donc l'étirement de certains routages géométriques appliqués à ces réseaux. Nous présentons quelques unes de nos bornes ci-dessous (d'autres de nos résultats sont listés dans la Table 1).

• L'hypercube H(n) a pour sommets les mots binaires de taille n, avec une arête entre deux mots s'ils ne diffèrent que par un bit. Le graphe H(n) est sommet-transitif et de diamètre n. Par conséquent, son hyperbolicité est d'au moins n/2 /2 d'après le Théorème 1. Une analyse plus fine dans [START_REF] Coudert | Data center interconnection networks are not hyperbolic[END_REF] montre que H(n) est n/2 -hyperbolique. Ce résultat s'étend à plusieurs généralisations de l'hypercube.

• Le graphe BCube k (n) [START_REF] Guo | BCube : A high performance, server-centric network architecture for modular data centers[END_REF] est défini récursivement. BCube 0 (n) est une étoile à n branches. BCube k (n) est construit à partir de n copies disjointes de BCube k-1 (n), comme suit. Il y a n k copies disjointes de BCube 0 (n) dans chaque copie de BCube k-1 (n), d'où un total de n • n k = n k+1 feuilles. En revanche, les grilles sont un exemple de graphes où les deux méthodes précédentes ne s'appliquent pas. En effet, pour obtenir des symétries intéressantes pour la grille, il faudrait considérer la grille infinie. Or, nos théorèmes ne s'appliquent qu'aux graphes finis. Cet inconvénient technique peut être contourné à l'aide de plusieurs méthodes complémentaires, que nous ne présenterons pas ici par manque de place. 

BCube0(3)[0] BCube0(3)[1] BCube0(3)[2]

Conclusion

Nos résultats démontrent que les graphes symétriques ont une hyperbolicité proportionnelle à leur diamètre, soit le pire cas possible. Comme la plupart des réseaux d'interconnexion de centres de données ont un graphe sous-jacent symétrique, nous pensons que l'utilisation des routages géométriques pour ces réseaux devrait être partiellement remise en question.
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  Sym étries vs. hyperbolicit éDéfinitions. Les symétries dans un graphe sont formellement définies comme l'ensemble de ses endomorphismes. Un endomorphisme dans un graphe G = (V, E) est une fonction σ de V dans V qui préserve les relations d'adjacence. Par exemple, si G est biparti alors la fonction qui associe les deux côtés de la bipartition à deux sommets adjacents de G est un endomorphisme. Un automorphisme est un endomorphisme bijectif. En particulier, un automorphisme préserve à la fois les relations d'adjacence et de nonadjacence. Le graphe G est sommet-transitif si pour toute paire de sommets u, v ∈ V , il existe un automorphisme σ tel que σ(u) = v. De même, G est arête-transitif si pour toute paire d'arêtes {u, v}, {x, y} ∈ E, il existe un automorphisme σ tel que {σ(u), σ(v)} = {x, y}. On peut remarquer que la sommet-transitivité n'implique pas l'arête-transitivité, et vice-versa.La notion d'hyperbolicité[START_REF] Gromov | Hyperbolic groups[END_REF] est plus technique. Par soucis de simplicité, nous n'évoquerons qu'une condition nécessaire pour qu'un graphe soit δ-hyperbolique. Nous aurons besoin d'introduire deux notions standards de la théorie des graphes.1. Un jeu du Gendarme et du Voleur sur le graphe G se joue entre deux joueurs qui à chaque tour peuvent se déplacer l'un après l'autre sur un sommet adjacent à leur position. Le graphe G est cop-win si le premier joueur (appelé le Gendarme) peut toujours finir par atteindre la position du second (appelé le Voleur) quelles que soient leurs positions initiales respectives. Par exemple, tous les arbres sont cop-win, mais le triangle est le seul cycle cop-win. Plus généralement, les graphes complets sont les seuls graphes cop-win et réguliers[START_REF] Aigner | A game of cops and robbers[END_REF].2. Finalement, le graphe-puissance G k a pour sommets V et pour arêtes toutes les paires de sommets u, v ∈ V à distance au plus k dans G. En particulier, G 1 = G.

Théorème 1

 1 Si G est sommet-transitif, de diamètre D et d'hyperbolicité δ, alors δ ≥ D/2 /2.

FIGURE 1 :

 1 FIGURE 1: Le graphe BCube 1Pour construire BCube k (n), on ajoute n k nouveaux sommets, avec chacun de ces sommets adjacent aux n copies d'une même feuille. La construction est illustrée pour k = 1 avec la Figure1.En s'inspirant de la construction récursive, on peut construire pour tout k endomorphisme σ k de BCube k (n) où la distance entre un sommet et son image vaut au moins 2k. D'après le Théorème 3, ce résultat implique que l'hyperbolicité du graphe BCube k (n) est au moins k/2. En fait, nous prouvons dans[START_REF] Coudert | Data center interconnection networks are not hyperbolic[END_REF] que BCube k (n) est (k + 1)-hyperbolique pour tout k ≥ 1. La même approche que pour BCube k (n) se généralise à d'autres familles de graphes définies récursivement dans la littérature, dont le Fat-Tree[START_REF] Al-Fares | A scalable, commodity data center network architecture[END_REF] (qui a un diamètre égal à 6 et qui est 2-hyperbolique).

  -1)/2 /2 -1/2 ≤ δ ≤ 3(n -1)/2 /2

	Nom	Degré max.	Diamètre	Ordre	Hyperbolicité
	de Bruijn (non dirigé)	2d	D	d D	D/2 /2 ≤ δ ≤ D/2
	Shuffle exchange	3	2n -1	2 n	n/2 /2 ≤ δ ≤ n -1
	grille (n, m)	4	n + m -2	nm	min{n, m} -1
	tore (n, m)	4	n/2 + m/2	nm	( n/2 + m/2 ) /2 -1 ≤ δ ≤ ( n/2 + m/2 ) /2
	Cube Connected Cycle	3	2n -2 + max{2, n/2 }	n2 n	n ≤ δ ≤ n -1 + max{1, n/2 /2}
	Butterfly	4	2n	2 n (n + 1)	n
	Bubble-sort	n -1	n 2	n!	n(n -1)/4
	Star	n -1	3(n -1)/2	n!	3(n

TABLE 1 :

 1 Bornes sur l'hyperbolicité de quelques topologies.
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